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Abstract

This paper considers the problem of covering a continuous planar area by a square-shaped tool

attached to a mobile robot. Using a tool-based approximation of the work-area, we present

an algorithm that covers every point of the approximate area for tasks such as 
oor cleaning,

lawn mowing, and �eld demining. The algorithm, called Spanning Tree Covering (STC),

subdivides the work-area into disjoint cells corresponding to the square-shaped tool, then

follows a spanning tree of the graph induced by the cells, while covering every point precisely

once. We present and analyze three versions of the STC algorithm. The �rst version is

o�-line, where the robot has perfect apriori knowledge of its environment. The o�-line STC

algorithm computes an optimal covering path in linear time O(N), where N is the number

of cells comprising the area. The second version of STC is on-line, where the robot uses its

on-board sensors to detect obstacles and construct a spanning tree of the environment while

covering the work-area. The on-line STC algorithm completes an optimal covering path in

time O(N), but requires O(N) memory for its implementation. The third version of STC is

\ant"-like. In this version, too, the robot has no apriori knowledge of the environment, but it

may leave pheromone-like markers during the coverage process. The ant-like STC algorithm

runs in time O(N), and requires only O(1) memory. Finally we present simulation results

of the three STC algorithms, demonstrating their e�ectiveness in cases where the tool size is

signi�cantly smaller than the work-area characteristic dimension.

1 Introduction
The mobile robot covering problem can be formulated as follows. Let a tool of a speci�c

planar shape be attached to a mobile robot, and let A be a continuous planar work-area
bounded by obstacles. Then the mobile robot has to move the tool along a path such that

every point of A is covered by the tool along the path. The covering problem is currently

receiving considerable attention for several reasons. First, sensor-based coverage by mobile
robots seems amenable to the geometric planning techniques developed for the sensor-based
robot navigation problem, a problem which recently received considerable attention [3, 18].
A second reason is current interest in competitive algorithms1 for autonomous systems that

operate with incomplete information [2, 10]. The optimal covering problem can be formulated
as a generalization of the Traveling Salesperson Problem (TSP) for a continuous domain, and
thus is NP hard [1]. It is therefore natural to seek competitive algorithms for the covering
problem. Finally, recent work on ant-like coverage [23, 22] has spurred considerable interest

in the possibility of achieving complex coverage behavior by bounded-resource agents who

leave pheromone-like markers in the environment.

Besides its theoretical interest, the mobile robot covering problem has several important

applications. One such application area is automatic 
oor cleaning and coating in facilities
such as supermarkets [7] and train stations [24]. Other application areas are lawn mowing

[14], hazardous waste cleaning [8], and �eld demining [12]. Furthermore, although we focus

on mobile robot coverage, the same methods apply to other robotic coverage tasks, such as

car painting and wall �nishing during house construction.

1An algorithm is competitive if its solution to every problem instance is a constant times the optimal

solution to the problem with full information available.
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Previous e�orts on the covering problem have focused mainly on the discrete version

of the problem, where an agent has to visit all nodes of an unknown graph by traversing
its edges. Examples are the discrete covering algorithms of Dudek et al. [6] and Deng and

Mirzaian [5], who achieve competitive graph coverage by using pebble markers that can be

placed and later picked up by the searching agent. More recently, Wagner et al. [23, 22]

have proposed discrete coverage algorithms that use pheromone-like markers to guide the

coverage process and to coordinate cooperation between several agents. The continuous

covering problem, where a robot must sweep a tool over a continuous area, has been studied

by Ntafos [13]. Much like in our approach, Ntafos imposes a tool-based grid approximation

over the work-area. Then he subdivides the grid into rectangular sub-grids that can be

covered optimally, and computes a TSP path that visits all sub-grids. Ntafos considers

only simple grids with no internal holes, and his algorithm covers the grid within 33% of

its optimal covering path. In contrast, we consider general grids, we make no attempt at
subdividing the grid into sub-grids, and our algorithm produces an optimal covering path.

Furthermore, Ntafos's algorithm is strictly o�-line while ours has an on-line version. The

continuous coverage problem has also been studied by Choset and Pignon [4] and by Pirzadeh
and Snyder [15]. However, these works lack any formal analysis of the quality of the resulting

coverage path. Finally, we note that map building or area exploration is distinct from the
covering problem considered here. In the map building problem an autonomous agent has to
completely scan an unknown environment using its sensors [9, 13, 17, 21]. Map building can
thus be interpreted as achieving sensory coverage of an unknown environment. In contrast,
area coverage requires physical sweeping of a tool over every point of a given work-area.

In this paper we make the following simplifying assumptions on the mobile robot cov-
ering problem. First, we assume that the tool is a square of size D. Second, the robot
is allowed to move the tool only in directions orthogonal to the tool's four sides, without
rotating the tool during this motion. Third, we subdivide the work-area into square cells

of size 2D, and discard cells which are partially covered by obstacles (Figure 1). As later

discussed in analysis and simulations, the quality of the approximation depends on the tool
size D being signi�cantly smaller than the work-area characteristic dimension. The algo-

rithm, called Spanning Tree Covering (STC), follows a spanning tree of the graph induced
by the cells, while covering every point precisely once. The STC algorithm can be interpreted
in two ways. First, from a graph-theoretic viewpoint, the algorithm strives to embed the

largest possible Hamiltonian cycle2 in the given work-area. The resulting Hamiltonian cycle
is automatically an optimal covering path, since the tool covers every cell (and hence every
point in the underlying continuous area) precisely once. It should be noted that the problem
of constructing a Hamiltonian cycle in a general grid-like graph is NP hard [11]. We show

that for covering purposes, it is advantageous to �rst construct a �ner grid in O(N) steps,

then construct a Hamiltonian cycle for this grid in additional O(N) steps, where N is the

total number of grid cells. Second, from a robot motion-planning viewpoint, we decompose

the environment into simple cells and use a spanning tree as an adjacency graph for these

cell. However, unlike previous covering paradigms, we carefully weave the traversal of the

adjacency graph with the covering of individual cells. This integration of inter-cell traversal
with intra-cell coverage is a novel approach that has not appeared in the literature before.

2A Hamiltonian cycle is a closed path in a graph which visits every node of the graph precisely once.

2



sub-cell
(a)

cell S

(b)

grid graph

of size D

nodes of the 

starting

of size 2D
grid cell

spanning
tree

Figure 1: (a) Grid approximation of a given work-area. (b) A spanning tree for the grid.

In the next two sections we present and analyze three versions of the STC algorithm.

The �rst version is o�-line, where the robot has perfect apriori knowledge of its environment.

The o�-line STC algorithm computes an optimal covering path for the approximate work-

area in linear time O(N). The second version of STC is on-line, where the robot uses its
on-board sensors to detect obstacles and construct a spanning tree of the environment while

covering the work-area. The on-line STC algorithm completes an optimal covering path

in time O(N). However, it requires O(N) memory, and this requirement limits the size of
the work-areas that can be covered by the on-line algorithm. The third version of STC is
\ant"-like. In this version, too, the robot has no apriori knowledge of the environment, but it
may leave pheromone-like markers during the coverage process. The ant-like STC algorithm
completes an optimal covering path in time O(N), and requires only O(1) memory. The

analysis section also contains a fourth version of the STC algorithm, which is an adaptation
of the on-line STC to an algorithm that achieves exact coverage of the work-area. The
latter algorithm is amenable to competitive analysis, and we show that it achieves complete

coverage with a competitive ratio of 1 + 3(�D=A), where D is the tool size, � is a quantity
related to the obstacles' perimeter, and A the total area. In practice �D << A, and STC
typically achieves an almost optimal coverage of the work-area. Finally we present simulation

results of the three STC algorithms, demonstrating their e�ectiveness in cases where the tool
size is signi�cantly smaller than the work-area characteristic dimension.

2 The STC Algorithm

We describe three versions of the Spanning Tree Covering (STC) algorithm. In all three

versions, we assume that the tool attached to the mobile robot is a square of size D. We also
assume that the robot is allowed to move the tool only in the directions orthogonal to the

tool's four sides, without rotating the tool during this motion. We begin with the o�-line

version of STC.
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Figure 2: An execution example of the o�-line STC algorithm.

2.1 The O�-Line STC Algorithm

The input to the o�-line STC algorithm is a geometrical description of a bounded planar

environment populated by piecewise-smooth and stationary obstacles. The algorithm �rst

subdivides the work-area into cells of size 2D, and discards cells which are partially covered
by obstacles. We de�ne a graph structure, G(V;E), by de�ning as nodes V the center points

of each cell, and as edges E the line segments connecting centers of adjacent cells (Figure
1(a)). The algorithm next constructs a spanning tree for G (Figure 1(b)), and uses this tree
to generate a covering path as follows.

O�-line STC Algorithm:

Input: A geometrical description of the environment, converted to a 2D-size grid with a
graph structure G as described above. A starting cell S.
Pre-processing: Starting from S, construct a spanning tree for G using either DFS or PRIM.
Subdivide every 2D-size cell into four identical sub-cells of size D.

Covering action: Starting at a sub-cell of S, move between neighboring sub-cells (each being
identical to the tool's shape) along a path which circumnavigates the spanning-tree along a

counterclockwise direction. Halt when the starting sub-cell is encountered again.

An execution example is illustrated in Figure 2. It can be seen that during the covering

action the robot moves through sub-cells that lie on the right-side of an edge or a leaf-node
of the spanning tree. Since a tree is contractible to a point, the circumnavigation of the
spanning tree generates a simple closed path that brings the robot back to the starting sub-

cell. The �gure possesses two unrealistic features which were added for clarity. The tool size

D is shown unrealistically large with respect to the work-area size, and the robot's path is
shown curved while it is rectilinear according to the algorithm. We note that the o�-line STC

algorithm can assign edge weights and compute a minimal spanning tree for the weighted
grid-graph using algorithms such as PRIM [16]. We can use this feature to control the

spanning tree and hence the covering path geometry. For example, suitable edge weighting

can generate covering paths that tend to scan the work-area along a particular coordinate

direction, or covering paths that strive to follow obstacle perimeters. These possibilities are

illustrated below.
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2.2 The On-Line STC Algorithm

In the on-line version of STC the robot has no prior knowledge about the environment,

except that obstacles are stationary. Rather, the robot must use its on-board sensors to

detect obstacles and plan its covering path accordingly. We assume that the robot has
position and orientation sensors, allowing it to locally recognize the 2D-size cells comprising

the work-area. We also assume a range sensor, capable of identifying obstacles in the four cell

neighboring the robot's current cell (Figure 3(a)). The practically important issues of sensor

selection, sensor measurement errors, and sensor fusion are not considered here. Rather, we

assume ideal sensors that provide perfect readings. In the on-line STC algorithm, the robot

incrementally constructs a spanning tree for the grid representing the work-area. During the

spanning tree construction, the robot subdivides every cell it encounters into four identical

sub-cells of size D, each being identical to the tool size. The covering tool follows a sub-cell

path which circumnavigates the incrementally constructed spanning tree, until the entire

work-area grid is covered. A description of the algorithm follows.

On-line STC Algorithm:

Sensors: A position and orientation sensor. An obstacle detection sensor.

Input: A starting cell S, but no apriori knowledge of the environment.

Recursive function: A function STC(w; x), where x is the current cell and w the previous
cell along the spanning tree.
Initialization: Call STC(Null; S), where S is the starting cell.
STC(w; x):

1. Mark the current cell x as an old cell.
2. While x has a new obstacle-free neighbor:

2.1 Scan for �rst new neighbor of x in counterclockwise order, starting with parent cell w.

Call this neighbor y.
2.2 Construct a spanning-tree edge from x to y.

2.3 Move to a sub-cell of y as described below.

2.4 Execute STC(x; y).
End of while loop.

3. If x 6= S, move back from x to a sub-cell of w as described below.
4. Return. (End of STC(w; x).)

We now discuss several details of the algorithm. First note that the robot runs a DFS

algorithm during the spanning tree construction. The counterclockwise scanning of neighbors

speci�ed in step 2 is crucial for ensuring that the robot circumnavigates the incrementally
constructed spanning tree in counterclockwise order (Figure 3(a)). The robot may scan the

neighboring cells in clockwise order, but then it would circumnavigate the spanning tree in
clockwise order. Second, in step 2.2 the robot is located in a sub-cell of x and has to move

into a new cell y. By construction there is already a spanning-tree edge from x to y. The

robot moves from its current sub-cell in x to a sub-cell of y by following the right-side of the
spanning tree edges, measured with respect to the robot's direction of motion (Figure 3(b)).
It is shown below that the robot covers the sub-cells of x in counterclockwise order. Hence

no matter where the cell y is located relative to x, the robot always has a sub-cell path from
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Figure 3: (a) Counterclockwise scanning of four neighbors. (b) A move from x to a new cell

y. (c) A return from x to a parent cell w.

x to y which follows the right-side of the spanning tree edges. When the robot returns to a
parent cell w, it again moves through sub-cells that lie on the right-side of the spanning-tree

edge connecting x with w, as shown in Figure 3(c). Finally, the PRIM algorithm is not

useful here, since PRIM requires discontinuous jumps between nodes while in our problem
the robot must physically follow a continuous covering path.

2.3 The Ant-Line STC Algorithm

The ant-like version of STC is also an on-line algorithm, and it uses the same sensors de-
scribed above. However, now the robot has the ability to leave markers in the sub-cells

it covers, using color, odor, heat, or pebble markers [19, 20]. We additionally assume the

availability of a detection device, capable of inspecting the sub-cell markers in the current
cell and its four immediate neighbors. Using this detection device, the robot identi�es a
neighboring cell as new when its four sub-cells are all unmarked.

Much like the on-line STC algorithm, here too the robot uses DFS to incrementally

construct a spanning tree for the work-area grid. However, rather than store the spanning
tree in its memory, the robot uses the sub-cell markers to identify parent cells along the
spanning tree as follows. By construction, the robot covers and marks the sub-cells of a

given cell in counterclockwise order. Hence as long as the four sub-cells of the current cell
are not all marked, the robot need only scan the sub-cells in counterclockwise order and

identify the transition between unmarked and marked sub-cells. The two sub-cells bordering

this transition have an exterior edge in common. As depicted in Figure 4, this edge is
necessarily the boundary edge between the current cell and its parent cell in the spanning

tree. Moreover, the robot has no need to identify a parent cell from a cell whose four sub-cells
are already marked, since once the robot covers the four sub-cells of a given cell it never

returns to this cell again. A description of the algorithm follows.

Ant-like STC Algorithm:

Marking device: A device that marks the sub-cell currently being covered.

Sensors: A position and orientation sensor. An obstacle detection sensor. A marker detector.

Input: A starting cell S, but no apriori knowledge of the environment.
Find parent function: A function Parent(x) which returns the parent of the current cell x
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in the spanning tree, using the technique described above.

Find new neighbor function: A function Neighbor(w; x) which accepts as inputs the current

cell x and its parent cell w, and returns the �rst new obstacle-free neighbor of x in counter-

clockwise order, starting with w. Returns Null if x has no new neighbor.
Initialization: Set x = S.

While S has unmarked sub-cells:

1. Determine the parent cell of x, w = Parent(x).
2. Determine a new neighbor of x, y = Neighbor(w; x).

3. If y is not Null:
3.1 Move to a sub-cell of y, while marking the sub-cells of x being covered.
3.2 Set x=y.

4. Else (y is Null):
4.1 Return from x to a sub-cell of w, while marking the sub-cells of x being covered.

4.2 Set x = w.
End of while loop.

We now discuss several details of the algorithm. In the function Parent(x), the parent of the

starting cell S is not well de�ned. In this case Parent(x) identi�es the transition between
unmarked and marked sub-cells of S in counterclockwise order, and returns the neighbor

cell adjacent to this transition. In steps 3.1 and 4.1, the move between cells is executed by

following the right-side of the spanning tree edges, as depicted in Figure 3. However, in the
ant-like STC the robot does not explicitly construct the spanning tree. Rather, it computes
the two spanning-tree edges required for its local motion. The edge from the current cell x to
its parent cell is computed with Parent(x). The edge from x to a new neighbor (step 3.1), or
from a neighbor back to x (step 4.1), is computed from knowledge of the neighbor. Finally

consider the sub-cell marking speci�ed in the algorithm. As discussed above, Parent(x) can
identify the parent cell of x only when not all four sub-cells of x are marked. Hence the

robot marks a sub-cell only when the covering tool leaves this sub-cell. In particular, when
the covering tool returns to a parent cell w in step 4.1, the robot marks the sub-cells of x

being covered during the return motion, but not the sub-cell of w into which the covering

tool has entered. This feature allows the robot to identify the parent cell of w in the next

step of the algorithm.
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3 Algorithm Analysis

In this section we �rst discuss several properties of the three STC algorithms, establishing
their correctness and deriving performance bounds. Then we present an adaptation of the on-

line STC algorithm which achieves exact coverage and is amenable to competitive analysis.

Additional results concerning the quality of the grid approximation appear in the appendix.

3.1 Properties of the STC Algorithm

For purposes of analysis, we de�ne a repetitive coverage of a point p as the situation where p

is being covered by the robot's tool, then exposed, and later covered again. We �rst establish

that the three STC algorithms do not generate any repetitive coverage.

Lemma 3.1 (non-repetitive coverage). The three STC algorithms: o�-line STC, on-

line STC, and ant-like STC, do not repetitively cover any work-area point.

Proof: In the three algorithms, the robot guides the tool from one sub-cell to an adjacent

sub-cell using translational motion in the direction perpendicular to the edge common to
both sub-cells. Since each sub-cell is identical to the tool size, the motion between adjacent
sub-cells involves no repetitive coverage of either sub-cell. To complete the proof, we have to
show that no sub-cell is visited more than once by the covering tool. In the three algorithms,
the robot moves the tool through a sequence of sub-cells that circumnavigates the spanning

tree (Figure 2). If we consider the spanning-tree edges as having some non-zero thickness, the
curve which circumnavigates the spanning tree is a simple closed curve. By construction, any
two spanning-tree edges which do not emanate from the same node lie at least two sub-cells

apart (Figure 1). Hence the curve circumnavigating the spanning-tree cannot cross the same
sub-cell twice. Consequently the tool which traces this curve cannot visit any sub-cell twice.

This, together with the non-repetitive covering of adjacent sub-cells, implies the result. �

The following proposition considers the covering pattern of individual cells.

Proposition 3.2. The three STC algorithms cover the sub-cells of any particular cell in a

counterclockwise (but not necessarily contiguous) order.

Proof: In all three algorithms, the robot moves the covering tool along a sub-cell path which
locally follows the right-hand side of the spanning-tree, measured with respect to the tool's

direction of motion. If a cell x has no new neighbors, the center of x is a leaf-node of the

spanning tree, and the tool circumnavigates this node in counterclockwise order as depicted
in Figure 5(a). If x has new neighbors, the robot selects the �rst neighbor in counterclockwise

order, starting with the parent cell of x. Let y denote the �rst neighbor and w denote the

parent cell. The covering tool next follows the right-side of the spanning tree to a sub-cell

of x which allows it to exit into y. (This sub-cell is determined by the spanning-tree edge

from x to y.) As depicted in Figure 5(b)-(d), motion along the right-side of the spanning
tree implies that the tool moves through sub-cells of x in counterclockwise order.

When the covering tool returns from y to x, it follows the same spanning-tree edge
that lead it from x to y. Hence the tool re-enters x through a sub-cell which is adjacent to

the sub-cell from which it left x. Let x0 and x00 denote the sub-cells of x associated with
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exiting from x into y and returning from y to x. We now show that x00 is adjacent to x0

in counterclockwise order. There are two cases to consider. In the �rst case x0 is the �rst
sub-cell of x into which the tool entered from w. In this case x00 cannot lie before x0, since
the sub-cell before x0 borders the parent cell w, and this would imply that y = w. In the

second case x0 is not the �rst sub-cell of x. In this case the sub-cell before x0 is already

covered. It follows that x00 cannot lie before x0, since according to Lemma 3.1 no sub-cell

is covered twice. The covering tool thus repeatedly enters and returns from new neighbors
of x in counterclockwise order, until it reaches the last sub-cell of x. The last sub-cell of x
lies on the right-side of the spanning-tree edge that leads from x to w, and the covering tool
returns from this sub-cell to w. �

The proposition has two important implications. First, it ensures that the covering tool can

always access a new neighbor of the current cell x through empty sub-cells of x which follow
the right-hand side of the spanning tree. Figure 5 illustrates these sub-cell paths for the
four possible locations of a target neighbor. Second, the proposition asserts that all cells are
covered by the same counterclockwise pattern. This feature is crucial for the ant-like STC,

which relies on a �xed coverage pattern in order to uniquely identify the parent cell using

sub-cell markers. The next lemma considers the completeness of the three STC algorithms.

Lemma 3.3 (complete coverage). The three STC algorithms: o�-line STC, on-line STC,

and ant-like STC, cover every cell which is accessible from the starting cell S.

Proof: Every obstacle-free cell de�nes a node in the work-area graph, and every pair of

adjacent cells shares an edge in this graph. Hence the component of the work-area grid

accessible from S is a connected graph. The three STC algorithms run DFS (possibly
PRIM in the o�-line STC), which constructs a spanning tree that reaches every cell in the
grid representing the accessible work-area. These cells are partitioned into sub-cells. By

construction, every sub-cell touches the spanning tree either at a point (a leaf node), or

along a segment (an edge-segment emanating from a node). Since every sub-cell touches
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the spanning tree, the sub-cell path generated by circumnavigating the spanning tree passes

through every sub-cell of the cells accessible from S. Since each cell is completely covered
once its four sub-cells are visited by the covering tool, all cells accessible from S are covered.

�

The following theorem summarizes the coverage properties of the three STC algorithms.

Theorem 1. The three STC algorithms: o�-line STC, on-line STC, and ant-like STC,

completely cover any connected grid representing a continuous work-area. Moreover, the

covering is optimal in the sense that there is no repetitive coverage of any point in the

continuous area underlying the grid.

The theorem follows from Lemma 3.1 and Lemma 3.3. The next theorem lists several

performance bounds for the three STC algorithm. For simplicity, we assume that the o�-line
STC runs DFS rather than the PRIM algorithm.

Theorem 2. Let N be the number of cells in the grid representing the accessible work area.

Then the three STC algorithms cover this area in O(N) steps, using a covering path of total

length L = 4ND where D is the tool size. Furthermore, the on-line STC requires O(N)

memory, while the ant-like STC requires O(1) memory.

Let us sketch the derivation of these bounds. First, the bound O(N) on the number of
covering steps re
ects the way all three STC algorithms operate. In each step a new sub-cell

is being covered. Since there are 4N sub-cells in an N -cell grid, all three algorithms cover

the grid in 4N steps. Next consider the covering path total length. The covering path
is a rectilinear curve, in each of whose segments the tool traverses a distance D between
adjacent sub-cells. Since there are 4N sub-cells, the total length of the covering path is
4ND. The O(N) memory requirement of the on-line STC algorithm corresponds to a worst

case scenario, where the algorithm makes N recursive calls into new cells before completing
the coverage of any cell. The O(N) memory requirement imposes a strict limitation on
the size of the work-areas that can be covered by a bounded-memory robot. However, this

limitation can be alleviated by allowing the robot to operate in environments whose total
area is estimated in advance. By installing memory according to the expected work-areas
size, the on-line STC algorithm can cover these work-areas irrespective of their particular

geometry. In contrast, the ant-like STC algorithm uses sub-cell markers to locally identify
the spanning tree. The ant-like STC stores only the following two items, which require O(1)
memory. The �rst is the coverage state of the starting cell S, which allows the algorithm
to determine completion of coverage. (This item can be eliminated in a more sophisticated

formulation of the algorithm.) The second is the identity of the spanning-tree edge along

which the covering tool entered the current cell. This knowledge allows the robot to uniquely

identify the four sub-cells of the current cell, which in turn allows the robot to properly scan

the neighbor cells.

3.2 Competitive Analysis

We now adapt the on-line STC algorithm to an algorithm called exact STC, which achieves

exact coverage. Then we subject the exact STC algorithm to a competitive analysis, which
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compares the length of the covering path generated by the algorithm to the optimal cov-

ering path with full information available. First we make several simplifying assumptions.
We assume that the tool size D is su�ciently small so that the connectivity of the work-

area is preserved by the grid approximation. According to Lemma A.1 in the appendix,

this assumption is automatically satis�ed when the minimal gap between obstacles in the

environment is at least 2R, where R = 2
p
2D. We also assume that every obstacle in the

environment occupies at least one cell which borders the work-area grid. This assumption is
also satis�ed when the minimal gap between obstacles is at least 2R. The ensuing analysis

holds true for environments with narrower gaps between obstacles, but we wish to avoid the

overhead incurred by discussing such environments.

In order to achieve exact work-area coverage, we use Lemma A.2 in the appendix.

According to this lemma, any point of the work-area not included in the grid approximation

lies at a distance of at most R from one of the obstacle boundaries. The robot thus augments
the grid coverage with a sweep of a thickness-R neighborhood about the obstacle boundaries.

Our third assumption is that the covering tool can freely rotate while following the contour

of an obstacle boundary. Since the tool size is D and R = 2
p
2D, the freely rotating tool

can sweep a thickness-R neighborhood about an obstacle using 2
p
2 passes.

The exact STC algorithm simply runs the on-line STC algorithm with the following
modi�cation. Each time the current cell x has a neighbor cell occupied by an obstacle, the
robot checks if this is a new obstacle. If it is a new obstacle, the robot halts the grid coverage
and sweeps a thickness-R neighborhood about the obstacle. During this sweep, the robot
marks the obstacle boundary as being already covered. The robot completes the sweep at

the cell x, and from this cell it resumes the grid coverage according to the on-line STC.
The covering path generated by the exact STC algorithm consists of segments of two

types. Segments which correspond to the grid coverage, and segments associated with the
sweep around obstacle boundaries. The total length of the segments of the �rst type is

4ND according to Theorem 2, where N is the number of grid cells. The total length of

the segments of the second type is as follows. The coverage of a thickness-R neighborhood
about an obstacle requires three passes about the obstacle, at distances of D=2, 3D=2, and

5D=2 from the obstacle's boundary. It can be veri�ed that the length of the curve at a
distance 3D=2 is the average of the length of the other two curves. Hence the total length
of the segments of the second type is 3�, where � is the total length of the curves at a

distance 3D=2 from the obstacles. Our next task it to derive a lower bound on the length of
the optimal covering path. In order to simplify the derivation, we assume that the covering
tool moves along a piecewise linear path, maintaining a �xed orientation along each linear
segment.

Lemma 3.4 (optimality bound). Let a continuous and connected work-area have a total

area A. Then the length L of any piecewise-linear covering path of the work-area satis�es

L � A=Dmax, where Dmax is the tool's maximal sweeping width.

Proof: Let Li be the length of the ith segment in the piecewise-linear covering path,

and let Di be the tool's covering width during this segment. Then for a complete work-area

coverage A �Pi LiDi � Dmax

P
i Li. The covering path total length is given by L =

P
i Li.

Hence any piecewise-linear covering path satis�es L � A=Dmax. �
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Figure 6: An adversarial environment for the exact STC algorithm.

In our case we assume that the covering tool always use a sweeping width of D. The total

length of the covering path generated by the exact STC algorithm is 4ND+3� � A=D+3�,

since 4ND2 � A. It follows that the competitive ratio of the exact STC algorithm is:

A=D + 3�

A=D
= 1 + 3

�D

A
:

In practice �D << A, and the exact STC algorithm typically achieves an almost optimal
coverage of the work-area. However, the exact STC algorithm may perform poorly in certain
environments. Figure 6 depicts a very long corridor of length H, whose width is twice the
tool size D. Both ends of the corridor enter small rooms whose size is negligible with respect
to the corridor's size. The work-area grid is aligned with the corridor and enters both rooms.

The exact STC algorithm covers the grid using an optimal path of length 2H, where we
have neglected the covering of the two small rooms. The globally optimal covering path also

has a length of 2H. However, the exact STC algorithm additionally sweeps a thickness-R
neighborhood about the outer walls. Since the algorithm requires a complete sweep around
the outer walls, the covering tool must pass through the corridor three times in each direction,
or a total of six times, in order to complete three loops around the outer walls. Neglecting

again the two rooms, the total length of the six passes through the corridor is 6H. The
total length of the covering path generated by the exact STC is 8H, and the competitive
ratio for this environment is 8H=2H = 4. The poor performance of the exact STC algorithm

in this environment is due to its ine�cient sweep of a thickness-R neighborhood about the
obstacles. It is reasonable to expect that more sophisticated boundary following methods

would yield a tighter competitive ratio in such environments.

4 Simulation Results

In this section we present simulation results of the three STC algorithms. We begin with
an example of the o�-line STC algorithm which demonstrates the possibility of using edge

weighting to in
uence the covering pattern. Then we consider an example of the on-line and

ant-like STC algorithms. Finally we consider an o�ce environment in which the tool sizeD is

an order-of-magnitude smaller than a door's width. In this case the grid closely approximates
the work-area, and the STC algorithms achieve a 95% coverage of the work-area.

Our �rst example executes the o�-line STC algorithm on the environment shown in

Figure 7. The o�-line STC algorithm can use PRIM rather than DFS to pre-compute a
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Figure 7: Four covering stages of the o�-line STC algorithm using edge weighting.

spanning tree for the work-area. The PRIM algorithm admits arbitrary edge weighting, and

here we assign edge weights that give preference to vertical edges over horizontal edges. The
resulting spanning-tree edges tend to be vertically aligned, and the covering tool consequently
scans the work-area along vertical strips. (For comparison, the spanning tree generated for
the same environment by DFS appears in Figure 8(f).) Figure 7 shows four stages of the

covering process. Figure 7(a) shows the spanning tree and the initial motion of the covering

tool along the right-side of the spanning tree edges. Figure 7(b) shows the covering tool
approaching the left edge of the work-area, using vertical covering sweeps. Figure 7(c) shows

the covering tool entering the lower-right room. Finally, Figure 7(d) shows the completion of
coverage, where the covering tool has completed the circumnavigation of the spanning tree
and returns to the starting cell.

The next example, shown in Figure 8, runs the on-line STC and ant-like STC algorithms
on the same environment. The two algorithms generate identical covering paths, and the

covering stages shown in Figure 8 represent the execution of both algorithms. However, the
two algorithms operate internally in a completely di�erent way. The on-line STC maintains

a data structure of the incrementally constructed spanning tree, while the ant-like STC uses

sub-cell markers to locally identify the spanning tree. In Figure 8(a) the covering tool follows
the right-side of the spanning tree edges along a sub-cell path which spirals outward from

the starting cell S. In Figure 8(b) the covering tool has reached the outer boundary, and it
follows this boundary until it reaches the entrance to the lower-right room. In Figure 8(c)

the covering tool spirals inward to the center of the lower-right room, and in Figure 8(d) it

13



(e)

(d)

(f)

starting cell S

spanning tree

tool
covering

(a) (b)

(c)

Figure 8: Six covering stages of the on-line and ant-like STC algorithms.
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Figure 9: Coverage of an o�ce environment using a tool of size 1=10 of a door's width.

spirals outward along the complementary spiral, until it reaches the room's entrance. At this
stage the lower-right room is completely covered. The covering tool next proceeds to the

left portion of the environment. This portion is populated by two internal obstacles which
divide the area into three cavities. Each of these cavities is covered by the same double-spiral
pattern, and the resulting coverage is shown in Figure 8(e). Finally, the covering tool spirals
inward to the starting cell S, resulting in a complete coverage of the work-area grid. The
spanning tree constructed incrementally by the on-line STC algorithm appears in Figure

8(f). The same spanning tree is locally traced by the ant-like STC algorithm using sub-cell

markers. It should be noted that the covering path is optimal, in the sense that there is no
repeated coverage of any point in the area underlying the grid.

The last example, shown in Figure 9, attempts to provide a realistic o�ce environment
of a startup company making robotic vacuum-cleaners for o�ce and home environments.

This example consists of several rooms and o�ces which are populated by pieces of furniture

and other items. The tool size D is selected to be an order-of-magnitude smaller than a
door's width. The result of executing the on-line STC and ant-like STC algorithms on this
environment appears in Figure 9, where the covered area is 92% of the total area. Note that

the portions of the work-area not covered by the STC algorithms are concentrated around

the obstacle perimeters. Hence it is possible to augment the grid coverage with a sweep

around the obstacle boundaries as described above, in order to achieve exact coverage of the
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entire work-area.

A Properties of the Work-Area Grid

The STC algorithm subdivides the work-area into 2D-size cells and discards cells which are

occupied by obstacles. In this appendix we characterize the quality of this approximation
in terms of the work-area parameters. Given a starting cell S, the accessible work-area is

the connected component of the work-area which contains the cell S and is accessible by the

mobile robot. The following lemma characterizes the connectivity of the grid approximation.

Lemma A.1. The grid approximation of the accessible work-area contains all cells which

can be accessed from the starting cell S by a path whose minimal distance from the obstacles

is at least R = 2
p
2D, where D is the tool size.

The bound is obtained by considering two cells arranged diagonally with a vertex in com-

mon. If these two cells are occupied by obstacles, they may disconnect the work-area grid

as illustrated in Figure ??. We can in principal compute the minimum passage between

obstacles in the work-area, then use the lemma to determine a tool size D which guarantees

a grid approximation that preserves the connectivity of the accessible work-area. The next
lemma characterizes the thickness of the area which is left out by the grid approximation.

Lemma A.2. Any point of the accessible work-area not included in the grid approximation

lies at a distance of at most R from one of the obstacle boundaries, where R = 2
p
2D.

The lemma follows from the fact that the diameter of a 2D-size cell is 2R. Hence all points

which lie in a cell occupied by obstacles are at most R away from one of the obstacles. The
lemma provides a justi�cation for the fourth version of the STC algorithm, which achieves
exact coverage by augmenting the grid coverage with a sweep of an area of thickness R about

the obstacle boundaries. The last lemma gives a formula for the total area not included in
the work-area grid. First we introduce some notation. The total area of the given work-area

is denoted A, while the total area of the grid approximation is denoted Â. In the case of

a polygonal environment, convex and concave obstacle vertices are de�ned as follows. At
a convex vertex an obstacle protrudes into the free space, while at a concave vertex the
free space protrudes into an obstacle. In the case of an environment bounded by smooth
obstacles, we parametrize the obstacle boundaries by arc-length, using the curve �(s).

Lemma A.3. If the work-area is bounded by polygonal obstacles, the total area not included

in the grid approximation is bounded by

A� Â � �R � 1

2
R2(
X

i

(� � �i)�
X
j

cot(
�j

2
));

where R = 2
p
2D, � is the obstacles' total perimeter, �i are the angles of the concave obstacle

vertices, and �j are the angles of the convex obstacle vertices.

If the work-area is bounded by smooth obstacles, the total area not included in the grid

approximation is bounded by
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Figure 10: The computation of A� Â in a polygonal environment.

A� Â � R

Z �

0

k�0(s)kds+ 1

2
R2

Z �

0

�(s)

k�0(s)k2ds;

where �(s) parametrizes the obstacles' boundary, �0(s) is the unit tangent at �(s), and �(s)

is the curvature of the obstacles' boundary at �(s), for 0 � s � �.

The derivation of the bounds forA�Â appears in Ref. [?]. Figure 10 illustrates the derivation
for a polygonal work-area. According to Lemma A.2, points which are not included in the
grid approximation are at a distance of at most R from the obstacles. The term �R is
simply the area of a rectangle of thickness R, whose length � is obtained by unfolding the
obstacles' boundary into a continuous straight line. The negative term (R2=2)

P
i
(� � �i)

(since 0 � �i � �) is the area at the concave obstacle vertices which is counted twice by the
rectangle LR. The positive term (R2=2)

P
j cot(�j=2) is the area of the circular sectors at

the convex obstacle vertices, which has to be added to the rectangle �R. The bounds for

A� Â are quadratic in D, and in principal can be used to determine a tool size which would
guarantee coverage within a desired area tolerance, as illustrated in Figure ??.
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