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Abstract

Mobile robots navigate through many
environments that include plants. A sensor that
can recognise plants would be wuseful for
navigation in these environments. Two problems
make plant sensing difficult: plant similarity and
plant asymmetry with rotation. A4 CTFM
ultrasonic sensor produces a signal that contains
information about the geometric structure of
plants.  Correlation of echoes from many
orientations show that plants can be recognised
with sufficient accuracy for navigation.

1. Introduction

Mobile robots navigate through many environments
that include plants. The tasks performed by mobile robots
in these environments range from fetch and cary to
agricultural applications. Mowing a lawn requires the
ability to detect the boundary between the part of the lawn
that has been mown and the part that has not. Similarly
harvesting grain requires the combine to track the
boundary between the harvested and unharvested parts of
the field. A sensor that can recognise plants would be
useful for navigation in these environments.

Plants have rough or complex geometry. If we can
sense the geometry of plants, or some characteristics ‘of the
geometry, then we can recognise plants with sufficient
accuracy for them to be used as landmarks for navigation.
Vision research has succeeded in navigating using plants
only in highly constrained situations. Often the
environment has been controlled to make plant recognition
easier. Some systems require the plant to be placed in
front of a known background. Others require artificial
lighting.

Some of the problems encountered with vision systems
can be solved with ultrasonic sensing. When a plant is
insonified with ultrasonic energy the resuitant echo
contains information about the geometric structure of the
plant. This paper discusses the recognition of plants using
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the geometric information in ultrasonic echoes, in
particular the problem of variance with rotation.

In previous research, we demonstrated that there is
sufficient information in the echo for a neural network to
recognise 1 of 4 plants over a wide range of orientations
[3]. To investigate the problems of classifying plants, we
obtained 100 young trees and shrubs from the Wollongong
Botanic Gardens. They were chosen in accordance with
plant taxonomy to give a variety of leaf shapes and foliage
structures. A database containing echoes from 360° of
rotation in 1° steps was built for each plant.

Two problems were immediately obvious: plant
similarity, and asymmetry with rotation. The echo
received by the sensor varies depending on the angle from
which the plant is insonified as it depends on the structure
and orientation of the leaves. However, there is information
in the signal which is relatively invariant with orientation
and which characterises the structure of the plant. We can
capture this information by extracting features from the
echo in the frequency domain.

Auto correlation of the echo can be used to find
repetitive structures in plants [6]. Cross correlation of
both the echo and the features with rotation shows that the
features are more invariant with rotation. Also, knowledge
of the variance of a plant with rotation can be used to
determine the heading of the plant from the robot and thus
is useful for localisation.

2. Machine recognition of plants

A commercial system that uses plants for navigation is
the Steeroid system [1] developed for driving tractors
along rows of young crops to till between them. This
system uses vision to detect the rows of young plants
against a soil background. Kimoto and Yuta [8] used the
standard deviation of ultrasonic range readings to detect a
hedge from a moving robot. Maeyama ef al., [9] used a
combination of vision and ultrasonic sensing to detect
trees along the side of a path.

The AURORA robot [10] was developed to spray
chemicals on plants in a greenhouse. It detects plants
using pulse-echo ultrasonic sensing. It can navigate along



plant rows, where there is very little room to manoeuvre,
using the natural structures. Mandow et al., [10] claim
that the high computation costs associated with vision
sensing along with inherent illumination requirements
rendered vision inappropriate for this task.

An automated fruit picker has to find and pick fruit up
to 600mm inside a tree. Sevila [13] identified the
problems that have to be overcome when using vision to
find fruit on a tree. First, only part of the fruit is visible
due to occlusion by the leaves. Second, the fruit are
shadowed by the leaves and the light reaching individual
fruit varies greatly. Third, from outside a tree, a human
can only see 85% of the fruit.

Nabout et al., [11] identified plants so that they could
separate weeds from crop in order to apply herbicides.
They found that plants have many different complex forms
which cannot be described using simple geometric models.
They claim that they could recognise 17 different weed
species to 82% accuracy.

Ollis and Stentz [12] used vision to guide an
automated harvester through fields of alfalfa hay. They
developed a crop line tracking system to detect the
boundary between cut and uncut crop. Each scan line in
the image is processed separately to find a boundary which
divides the two roughly homogeneous regions that
correspond to cut and uncut crop. This edge is found by
computing the best fit pixel discriminant function. An
adaptive function was required to address the variability in
the image due to changing lighting conditions and soil
type. Using this system they have successfully tracked
and cut curved rows over a mile long.

3. Navigation strategies

Navigation is the science (or art) of directing the course
of a mobile robot as it traverses the environment (land,
sea, or air). Several strategies that have been identified in
both animal and human navigation [12] are: piloting, dead
reckoning, celestial navigation, charting, indirect
navigation and electronic navigation.

Piloting is a navigation strategy that uses known
landmarks. They are used sequentially to find the way to
the goal. The navigator must be familiar with the area,
and know which landmarks to look for. A landmark is a
feature in the environment whose position can be sensed
and that is close enough to the desired path that its
direction varies significantly with the position of the
navigator. A number of strategies are used to achieve
piloting: following continuous landmarks, such as crop
lines; feature matching, such as detecting trees; and
compass piloting.

A sensor that can detect plants is suitable for piloting
or landmark navigation.  The strategy chosen for
navigation will depend on the nature of the environment
(static or dynamic), the robot’s knowledge of the path (has
or doesn’t have a map), and the symmetry of the plants.
These also impact the sensing strategies. One common
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navigation strategy is the teach/replay strategy where the
robot is taught a path by driving it along the path. As it
moves, it senses objects beside the path to select
appropriate candidates for landmarks. The location and
features of these objects are stored in the map.
Autonomous navigation then becomes the replay of this
path, with the robot looking for landmarks to confirm that
it is following the path. We plan to implement this
strategy for landmark navigation using the plant sensing
system described in this paper.

Plant 2
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Figure 1. A simple path flanked by 2
plants

Consider the robot moving along the path in Figure
1. This path consists of two stralght trajectories, and two
plants have been recorded as landmarks. The proposed
navigation system will determine the expected bearing to
the first plant from the current location and the map. Then
the sensor is pointed in the direction of the bearing. As
the robot moves, this bearing changes and hence the
direction of the sensor axis is changed. When the sensor
detects the plant, it will localise the robot to the map from
the range and bearing of the plant. Also, the system can
count plants to determine when the robot is at the bend in
the path. Once at the bend the robot can track the range to
the plant as it turns to confirm that it is on the new
trajectory without any tracking error.

The above proposal assumes that the plants are
symmetrical and, as a result, can be reliably detected with
in the regions of observation shown in Figure 1 with a
single set of features. While some plants are symmetrical,
many are not. This asymmetry can be used to advantage
to determine the orientation of the robot to the plant.
Even the most asymmetric plants have regions where the
features change slowly. So a plant can be divided up into
sectors with partial symmetry, as shown in Figure 2, and a
set of features recorded for each sector. Then, when a robot
tracks around a plant it should be able to use the feature
information to determine its orientation relative to the
plant. We can use correlation to determine the symmetry
of plants (Section 9)

Three problems with this proposed strategy are: plant
growth, plant motion with wind, and plant disappearance.



The impact of plant growth can be minimised by updating
the feature set every time the robot travels along the path.
The effect of wind can be minimised by averaging the
features over several readings or by using echo tracking
(Section 10). Plant disappearance requires the navigation
system to be intelligent enough to realise that a plant is
not where it should be and look for other landmarks.

Figure 2. A plant which is acoustically
different between sectors but similar
within sectors
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Figure 3. CTFM Signals

4. CTFM

When a plant is insonified the resultant echo contains
information about the geometry of the plant, in particular
the structure of the foliage. The echo data was produced
with a Continuously Transmitted Frequency Modulated
(CTFM) ultrasonic system developed by Leslie Kay [11].
A CTFM system transmits a sine wave signal that is
repeatedly frequency swept over a one-octave range
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(typically 100 to 50 kHz with a sweep period of 102.4
ms). The echo is a filtered version of the transmitted
signal, offset in time.

The echo is demodulated with the transmitted signal
to obtain a set of audio tones (0..5KHz) proportional to
range (Figure 3). The audio tone for a target is continuous
from the time at which the echo arrives until the end of the
sweep. Thus, the sweep consists of two time periods: the
first is the time to the arrival of an echo from maximum
range and the second is the time to capture the samples for
the Fast Fourier Transform (FFT).

In the time domain, the complexity of audio signal is
proportional to the geometric complexity of the target. In
the frequency domain, each spectral line occurs for each
range where energy is reflected. A 1024 point FFT
produces positive amplitude values for 512 * 9.77 Hz
frequency bands. The amplitude of the spectral line is
proportional to the intensity of the echo and hence to the
area of the reflecting surface normal to the receiver.

5. Acoustic density profile

The audio tones are range measurements to every near
normal surface in the region of insonification. A small
amount of the signal results from multiple reflections and
interference, and some signal is lost due to shadowing.
The frequency spectra includes information about the
range, size and orientation of surfaces within the field of
audition and can be modelled as an acoustic density
profile. In this model, the sensor measures the acoustic
area at each range. The acoustic density profile for a
specimen of Leptospermum laevigatum is shown in Figure
4. The sum of the values in the range cells is a measure of
the acoustic area of the plant.

The acoustic density profile is a measure of the
acoustic density in each range cell. Each range cell is 3.4
mm deep. Figure 4 shows a significant acoustic density
between the ranges of 200 mm and 540 mm and this
corresponds to the position of the plant in space. The
amplitudes of the individual range lines are a function of
the properties of the surfaces at that range (Figure 5):

the area of the leaves in the range cell;

the orientation of the leaves;

the texture of the leaves; and

the amount of occlusion that affects the leaves.

These properties are illustrated in Figure 5, where the
boundary of the plant is represented with a circle and
leaves with filled ellipses. Waves reflect from the surfaces
of the leaves to be detected by the receiver R.

With the acoustic density profile model, we can
interpret the information in the echo from the plant. We
can extract features from the frequency spectra of the
received echo, and use them for classification of plants [4].
Also, we can match these features to geometric properties
of the plant [5].
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6. Data characteristics

Specular surfaces have a narrow-band signal which
often consists of a very large magnitude at a single range.
Diffuse scatterers result in much smaller magnitudes.
Objects with multiple surfaces generate echoes from each
surface and the resulting echo contains information about
all of the surfaces (Figure 6). It includes the absolute range
to the object and the geometric structure of the object.

Each spectral line has two parameters: frequency and
amplitude. The frequency represents the absolute range to
the surface and the amplitude is a function of the size,
specularity and orientation of the surface. Since there are
many reflective surfaces in a plant, the return signal is
complex. Also, the maximum amplitude (12 mV) is
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significantly smaller than that for a flat wall (100 mV) or a
10 mm metal rod 20 mV).

When a plant is in the field of audition, a CTFM
system can sense it independent of the distance to, the
height of and width of the plant. The plant properties that
modify the echo include the size, orientation and number
of leaves; their spatial positioning and orientation within
the plant; and acoustic shadowing of back leaves by front
leaves (Figure 5).

Leaves with surfaces at an angle to the sensor reflect
most of the acoustic energy away from the receiver. The
surface of the leaf also has an effect on the amount of
acoustic energy returned - smooth flat surfaces reflect more
back to the receiver than textured surfaces. In general, the
more leaves on a plant and the larger the leaves, the greater
the percentage of acoustic energy reflected to the sensor.

The location of leaves within the plant determine the
distribution of reflections throughout the echo. Peaks in
the echo spectra may indicate groups of leaves. Small
changes in the orientation of a plant can result in large
changes in the echo spectrum, due to the specular nature of
leaves. Many leaves are not flat and will return energy from
several different orientations.

Eucalyptus maculata
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Figure 6. Acoustic density profiles of
two plants.

Acoustic shadowing occurs when one leaf occludes
another. Figure 5 shows some acoustic shadowing on the
bottom right hand corner. The large leaf prevents the bulk
of the acoustic energy from penetrating into the range cells
behind it. Some refraction may occur in this situation.
Refraction allows a small amount of the acoustic energy to
penetrate but this will result in a very small contribution
to the amplitude in the range cell.

Dense plants have more shadowing and less of the echo
comes from leaves beyond the front surface of the plant. In



general, the echo from dense plants have one region with
large amplitude which corresponds to the front of the plant
(e.g. Polyscias murrayi in Figure 6).

In contrast, the echo of Eucalyptus maculata includes
echoes from the leaves at the back of the plant. The
amplitude of the spectral lines of sparse plants is lower.
Note, the background in the images is not present when
the acoustic density profile is measured.

7. Plant database

The Wollongong Botanic Gardens supplied 100 plants
for these experiments, in family groups. Plants of the
same family are not necessarily similar in terms of their
acoustic density profile, which depends more on the size,
shape, orientation and overall positioning of the leaves.

For each plant, a portfolio was established which
contains data about the plant and a photograph. The
portfolio contains the information in Table 1, the
conditions under which the plant was processed ie. date,
time, temperature and humidity; and a sample acoustic
density profile for the plant. In addition, a database was
built for each plant containing echoes from 360° of
rotation in 1° steps

Table 1. Characteristics of plants [2]

The scientific name of the plant species.

The assigned common name.

The family of plant to which this species belongs.
Total height of the specimen from the soil to the top
The total with of the plant at its widest point

The average leaf length from the base to the tip.

The average width of the leaves at their widest point.
Count of the total number of leaves on this specimen
Estimate of plant density — scale: high, medium, low
Leaf shape of plant.

Arrangement of the leaves in relation to each other.
Leaves composed of several parts are compound.

The shape of the leaf at its apex

The shape of the leaf at its base

Pattern of the leaf around its outer edge.

Manner in which the veins of leaves are arranged.
The hairy or scaly surface of the leaf

Notes about the physical characteristics of the plants

8. Feature extraction

There is sufficient information in the echo for a neural
network to recognise 1 of 4 plants over a wide range of
orientations [3]. However, the echo can vary considerably
with rotation. To achieve more robust classification we
sought to find a set of features that: a) could be easily
extracted from the echo, b) were invariant with orientation,
and c) represent defined geometric characteristics of a plant.

Consider the plants shown in Figure 6. The acoustic
density profile of the Polyscias murrayi has a higher peak
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than the Eucalyptus maculata. So a feature which may
distinguish these plants is the maximum amplitude of the
acoustic density profile. If this feature is consistent
through rotation then it is a good feature for classification.

Figure 7. Distribution of one feature
for 100 plants. The x axis is the plant's
in ascending order of feature value (y
axis). The standard deviation is shown
by the dashed lines.

Table 2. The features in the plant
acoustic density profiles
Feature Description

Tl‘°§ab°"e_thr35h°ld Counts of the number of range
cells at a specified threshold

:\l“;ﬁf_de“ithpm Sum of all of the range cells
e

variance_range, The variation of the detected
stdev_range, . .
mean_abs_dev_range|reflections frgm the .cem:ral point
coeff of var range|of the acoustic density profile.
front_to_peak_dist|Dyjstance from the first detectable

surface to the surface with the

highest amplitude.
length_of density_|The range over which reflections
profile

are detected.

freq_75_acoustic_a|The range from the first detected
ree reflecting surface to the cell
where 75% of the sum is
accumulated.
no_of_major_peaksl|Count of range cells which have
reflections significantly stronger
than those around it.

’
no_of major_peaks2

To establish candidate features, we studied the acoustic
density profile of different objects and defined measures to
characterise the shape of the patterns. We developed a set
of 67 features. Then we reduced this set down to a



manageable set of 19 features (Table 2) using the
visualisation of the distributions.

In Figure 7, a feature and its standard deviation is
plotted for all 100 plants. Features were selected based on
the slope of the line and the standard deviation. The
standard deviation is a measure of how much the feature
changes with rotation. The slope of the line is a measure
of how easy it is to separate two plants. This is a good
feature for plant recognition. However, the standard
deviation shows that all plants vary with rotation.

9. Plant variation with rotation

The acoustic density profile changes from one
orientation of a plant to its adjacent orientation due to
changes in the relative positions of the leaves. We can
compare adjacent acoustic density profiles with local
correlation (pairwise cross correlation). As a mobile robot
moves around a plant it may use local correlation to
confirm that it is still sensing the same plant. Generally,
the variation between two echoes increases with the angle
of separation between them.

Also, local correlation provides information about the
characteristics of the plants being analysed. For example,
plants with a thick outer layer of foliage have acoustic
density profiles which are more consistent through
rotation, as all of the reflections come from a concentrated
area at the outside of the plant. Those with a wide spread
of leaves vary substantially between adjacent orientations
but can often produce similar acoustic density profiles from
opposite sides of the plant.

Normally, a person has difficulty seeing the differences
between two adjacent acoustic density profiles. As a
result, local correlation usually results in very high
correlation values. The local correlation between the 360
adjacent records of Crinum pedunculatum (Figure 8) is an
average of 0.87, with a standard deviation of 0.08. In
conrast, the local correlation of Pittosporum crassifolium
is an average of of 0.79 and a standard deviation of .07
(Table 3).

Local correlation for these plants is quite good as it
exceeds the generally accepted threshold of positive
correlation of 0.7. When all 100 plants are orderd by local
correlation, Crinum pedunculatum is in 4™ position and
Pittosporum crassifolium is in the 73" position.
However, we will see that the flat physical shape of
Crinum pedunculatum results in much more variation with
rotation than occurs with Pittosporum crassifolium.

The average local correlation for all 100 plants is 0.80,
with a maximum average of 0.9 and a minimum average of
0.74. The local correlation with respect to rotation for the
plants in Figure 8 is graphed in Figure 9. The graphs
show how much the raw acoustic density profile changes
with respect to the previous orientation as the plant is
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rotated. A low value for the correlation indicates a
significant change between one orientation and the next.
i .

Figure 8
pedunculatum
crassifolium

Images of a. Crinum
and b. Pittosporum

The plants with the highest local correlations are those
with very few leaves. These plants have either small leaves
(and don’t have narrow band component in their echo) or
only 1 or 2 large leaves (e.g. palms) (and their echo has a
narrow band component).

The plants with the lowest local correlations are those
wih a large number of leaves, which cause many specular
reflections. Their echo changes significantly between
orientations because the set of leaves that produce the echo
change. Also, the positions of the specular reflectors
change slightly in the acoustic density profile as their
absolute range changes through rotation which results in a
lower correlation.

A sequence of low correlations indicates that the
acoustic density profile is continuing to change
substantially with subsequent orientations. One plant was
observed to have a branch protruding toward the sensor.
The branch was sticking out of the field of audition of the
sensor and as the plant is rotated, echoes from less and less
of it were received. In a practical system, this branch
information may be used to our advantage because
particular plants may be characterised by the fact that they
have protruding branches.

In summary, most of the plants are well correlated in
terms of local correlation. There are groups of adjacent
orientations however, where the acoustic density profile
changes significantly from one orientation to the next as a
sudden change in foliage structure is present. However,
this is in contrast to the rest of the orientations where there
are only small changes from one orientation to the next.
The results show that plants with small, sparse foliage are
more correlated through rotation.
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Figure 9. Local correlation by angle of
the plants in Figure 8

10. Global Correlation

When a mobile robot is sensing irregularly or is
moving at high speed in a static, known environment,
there may be large angular separation between successive
samples of a plant. We can compare any acoustic density
profile from a plant with a reference acoustic density profile
with global correlation. The reference profile can be
selected at a random orientation or can be the average of
the acoustic density profiles from all 360 orientations.

Global correlation of the raw acoustic density profile is
generally weak. Plants with a high number of reflective
surfaces are worse than those with a smaller number of
reflective surfaces. Several of the records on each side of the
reference point are highly correlated to it, but drop of
significantly with small angular rotation. This high
correlation is due to the fact that the acoustic density
profile changes gradually as the plant orientation is
changed.

However global correlation is improved considerably
by correlating features. Global correlation provides a
measure of global symmetry, partial symmetry and the rate
of change of symmetry. In Figure 11, global correlation
with the acoustic density profile is compared to global
correlation with features. The latter achieves much better
correlation. The reference orientation is arbitrarily chosen
as 256°. Global correlation provides more information
about the way that plants change through rotation than
local correlation does.
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These global correlation results are consistent with the
physical properties of the plants. Crinum pedunculatum
has smooth leaves that are very long and thin with the tips
oriented vertically (Figure 8). The cross section of the leaf
is rounded evenly which means that the leaves will reflect
at multiple orientations. In general, the leaves do not
protrude horizontally from the central stem so they allow
little opportunity for the acoustic energy to penetrate and
reflect from other surfaces within the plant except at certain
orientations.

The acoustic density profile changes through rotation
due to the changing orientations of leaves and leaf edges
which cause different amounts of acoustic energy to be
reflected. There are three primary leaves, two of which are
opposite each other with the third leaf being orthogonal.
This means that for any particular signal return, there is a
good chance that there will be two other signal returns
from different orientation which are very similar as they
will be insonifying similar foliage. This is shown by
echoes at several orientations, with large angular
separation, around the plant being highly correlated to the
reference. For example orientations 180 and 256 are
highly correlated even though they are 76° apart.

Pittosporum crassifolium is a plant with very dense
foliage (Figure 8) so acoustic energy will be returned
primarily from the front and the sides of the plant. The
foliage is relatively consistent as the plant is rotated,
which is shown by the correlation graphs. Beside the
notable peak at the point where the reference is correlated
with itself, the graphs are relatively consistent for the entire
revolution. The other point of note is the large dip in
correlations at orientation 144. This is a result of an area of
inconsistency in the foliage. Note that correlation using
features does not show this dip.

11. Conclusion

The suitability of plants as landmarks for navigation
depends on how much they vary with the orientation of the
sensor. Correlation of both acoustic density profiles and
features can be used to characterise the symmetry of a
particular plant. This symmetry information can be used
to choose both a sensing strategy and a navigation strategy
for the path segment where the plant is growing.

Local correlation gives us an indication of how the
acoustic density profile changes with small changes in
orientation and whether a plant is locally acoustically
symmetric but it does not tell us whether the plant is
globally acoustically symmetric. A plant which displays
high local symmetry is a very good iandmark as the sensor
may be a few degrees from the expected orientation and
still get good correlation and hence recognition. Partial
symmetry is acceptable for mobile robot navigation since
the robot will only sense a sector of the plant (usually less
than 180°).



a. Crinum Pedunculatum
1
S os
= 06 !
04 ’
5 |
) 0.2 |
0 ,
o 8 g E
=
@
£
«
>
St
Tt
<
&)
(=) g g g
Aspect

Figure 11.Global correlation. Black -
using features, Grey - using acoustic
density profile, both correlated with
the data at 256°.

Local correlation provides information about the local
consistency of the signal but provides no information
about how well the acoustic density profile correlates with
other orientations which may not be adjacent such as 90°
around the plant or even the view from the other side of the
plant. Global correlation provides a measure of the change
of echo throughout an entire revolution of the plant.

Most plants produce poor cross correlation results
when acoustic density profiles all orientations are
correlated against a selected orientation. This is because a
small change in range places the echoes in different range
cells so the acoustic density profiles’ will be poorly
correlated once an angle more than several degrees from the
reference is used. However, the information in the acoustic
density profile can be more reliably correlated by
considering the features which represent the geometric
pattern of the foliage.
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