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Abstract

In this paper we develop a probabilistic framework for pursuit-evasion games. We propose a “greedy” policy
to control a swarm of autonomous agents in the pursuit of one or several evaders. At each instant of time this
policy directs the pursuers to the locations that maximize the probability of finding an evader at that particular
time instant. It is shown that, under mild assumptions, this policy guarantees that an evader is found in finite
time and that the expected time needed to find the evader is also finite. Simulations are included to illustrate
the results.

1 Introduction

This paper addresses the problem of controlling a swarm of autonomous agents in the pursuit of one or several
evaders. To this effect we develop a probabilistic framework for pursuit-evasion games involving multiple agents.
The problem is nondeterministic because the motions of the pursuers/evaders and the devices they use to sense their
surroundings require probabilistic models. It is also assumed that when the pursuit starts only a a priori probabilis-
tic map of the region is known. A probabilistic framework for pursuit-evasion games avoids the conservativeness of

deterministic worst-case approaches.

Pursuit-evasion games arise in numerous situations. Typical examples are search and rescue operations, local-
ization of (possibly moving) parts in a warehouse, search and capture missions, etc. In some cases the evaders are
actively avoiding detection (e.g., search and capture missions) whereas in other cases their motion is approximately

random (e.g., search and rescue operation). The latter problems are often called games against nature.

Deterministic pursuit-evasion games on finite graphs have been well studied [1, 2]. In these games, the region
in which the pursuit takes place is abstracted to be a finite collection of nodes and the allowed motions for the
pursuers and evaders are represented by edges connecting the nodes. An evader is “captured” if he and one of the
pursuers occupy the same node. A question often studied within the context of pursuit-evasion games on graphs is
the computation of the search number s(G) of a given graph GG. By the “search number” it is meant the smallest
number of pursuers needed to capture a single evader in finite time, regardless of how the evader decides to move.
It turns out that determining if s(G) is smaller than a given constant is NP-hard [2, 3]. Pursuit-evasion games on

graphs have been limited to worst-case motions of the evaders.
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When a region in which the pursuit takes place is abstracted to a finite graph, the sensing capabilities of each
pursuer becomes restricted to a single node: the node occupied by the pursuer. The question then arises of how to
decompose a given continuous space F' into a finite number of regions, each to be mapped to a node in a graph G, so
that the game on the resulting finite graph G is equivalent to the original game played on F [4, 5]. LaValle et al. [5]
propose a method for this decomposition based on the principle that an evader is captured if it is in the line-of-sight
of one of the pursuers. They present algorithms that build finite graphs that abstract pursuit-evasion games for

known polygonal environments [5] and simply-connected, smooth-curved, two-dimensional environment [6].

So far the literature on pursuit-evasion games always assumed the region on which the pursuit takes place (be
it a finite graph or a continuous terrain) is known. When the region is unknown a priori a “map-learning” phase is
often proposed to precede the pursuit. However, systematic map learning is time consuming and computationally
hard, even for simple two-dimensional rectilinear environments with each side of the obstacles parallel to one of the
coordinate axis [7]. In practice, map learning is further complicated by the fact that the sensors used to acquire
the data upon which the map is built are not accurate. In [8] an algorithm is proposed for maximum likelihood

estimation of the map of a region from noisy observations obtained by a mobile robot.

Our approach differs from others in the literature in that we combine exploration (or map-learning) and pursuit
in a single problem. Moreover, this is done in a probabilistic framework to avoid the conservativeness inherent to
worst-case assumptions on the motion of the evader. A probabilistic framework is also natural to take into account
the fact that sensor information is not precise and that only an inaccurate a priori map of the terrain may be

known [8].

The remaining of this paper is organized as follows: A probabilistic pursuit-evasion game is formalized in
Section 2, and performance measures for pursuit policies are proposed. In Section 3 it is shown that pursuit
policies with a certain “persistency” property are guaranteed to find an evader in finite time with probability
one. Moreover, the expected time needed to do this is also finite. In Section 4 specific persistent policies are
proposed for simple multi-pursuers/single-evader games with inaccurate observations and obstacles. Simulation
results are shown in Section 5 for a two-dimensional pursuit game and Section 6 contains some concluding remarks

and directions for future research.

Notation: We denote by (2, F,P) the relevant probability space with € the set of all possible events related to
the pursuit-evasion game, F a family of subsets of 2 forming a o-algebra, and P : F — [0, 1] a probability measure
on F. We assume that the o-algebra F is rich enough so that all the probabilities considered below are well defined.
Given two sets of events A, B € F with P(B) # 0, we write P(A|B) for the conditional probability of A given B,
i.e., P(A|B) = P(AN B)/ P(B). Bold face symbols are used to denote random variables. Following the usual abuse
of notation, given a random variable £ : @ — F and some A C E we write P(& € A) for P({w € Q : &(w) € A}).

Similar notation is used for conditional probabilities.

2 Pursuit policies

For simplicity we assume that both space and time are quantized. The region in which the pursuit takes place is

then regarded as a finite collection of cells X’ 2 {1,2,...,n.} and all events take place on a set of discrete times 7.



Here, the events include the motion and collection of sensor data by the pursers/evaders. For simplicity of notation

we take equally spaced event times. In particular, T 2 {1,2,...}.

For each time ¢ € T, we denote by y(¢) the set of all measurements taken by the pursuers at time ¢. Every y ()
is assumed a random variable with values in a measurement space Y. At each time ¢t € T it is possible to execute a
control action u(¢) that, in general, will affect the pursuers sensing capabilities at times 7 < ¢. Each control action
u(t) is a function of the measurements before time ¢ and should therefore be regarded as a random variable taking

values in a control action space .

For each time ¢ € 7 we denote by Y; € Y* the sequence! of measurements {y(1),...,y(¢)} taken up to time
t. By the pursuit policy we mean the function g : Y* — U that maps the measurements taken up to some time to

the control action executed at the next time instant, i.e.,
u(t+1) =g(Y), teT. (1)

Formally, we regard the pursuit policy g as a random variable and, when we want to study performance of a specific
function g : Y* — U as a pursuit policy, we condition the probability measure to the event g = g. To shorten
the notation, for each A € F, we abbreviate P(A | g = g) by P5(A). The goal of this paper is to develop pursuit
policies that guarantee some degree of success for the pursuers. We defer a more detailed description of the nature

of the control actions and the sensing devices to later.

Take now a specific pursuit policy g : Y* — U{. Because the sensors used by the pursuers are probabilistic, in
general it may not be possible to guarantee with probability one that an evader was found. In practice, we say
that an evader was found at time t € 7 when one of the pursuers is located at a cell for which the (conditional)
posterior probability of the evader being there, given the measurements Y, taken by the pursuers up to ¢, exceeds
a certain threshold psouna € (0,1]. At each time instant ¢ € T there is then a certain probability of one of the
evaders being found. We denote by T* the first time instant in 7 at which one of the evaders is found, if none is
found in finite time we set T* = 4+00. T* can be regarded as a random variable with values in 7 £ T U {+o0}.

We denote by Fy: 7 — [0, 1] its distribution function, i.e., F5(t) 2 P5(T* <t). Given any ¢t > 1,
F5(t) = P5(T" <t) =P3(T" <t)+ P5(T" =1). (2)

Now, P5(T* = t) can be regarded as the probability of finding an evader at time ¢ and not having found any up to

that time, therefore
Pg(T* =1) = f3(t) P4(T* > 1) = fo(t)(1 — Pg(T* < 1)), (3)

where, for each t € T, f5(t) denotes the conditional probability of finding an evader at time ¢, given that none was

found up to that time, i.e., f5(t) 2 P5(T* =t | T* >t). From (2) and (3) we then conclude that
Fy(t) = Fgt = 1) + fag(t) (1 = Fy(t = 1)), t>1
The previous expression can also be written as

1= Fy(r) = (1= f5(r)) (1 = Fa(r = 1)), > 1,

1 Given a set A we denote by A* the set of all finite sequences of elements of A and, given some a € A*, we denote by |a| the length
of the sequence a.




which can be iterated from 7 =g+ 1 > 1 to 7 =t >ty to conclude that?
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1= Fy(t)= (1 - Fy(to)) I (1= s5(m), 1> > 1.

T=to+1

Since F3(1) = f5(1), from the previous expression we also conclude that

=[] (1= fo(r t>1, (4)

T=
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and therefore
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Fa(t) =1— ][ (1= fa(7)), teT. (5)
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Suppose now that the probability of T* being finite is equal to one and therefore that P;(T* = +o00) = 0. The

expected value of T* is then equal to
A (o] . (o]
= D tP(T* =t) = Fy(1) + Y t(Fy(t) - Fylt - 1)).
t=1

From this and (4) one obtains

which can be simply written as

Eg[T*] = Etfg(t) (1:[ (1- fg(T))) : (6)

t=1 r=1
The expected value of T* provides a good measure of the performance of a pursuit policy. However, since the
dependence of the f; on the specific pursuit policy g is, in general, complex, it may be difficult to minimize E5[T*]
by choosing an appropriate pursuit policy. In the next section we concentrate on pursuit policies that, although

not minimizing E3[T*], guarantee upper bounds for this expected value.

Before proceeding we discuss—for the time being at an abstract level—how to compute f; from known models
for the sensors and the motion of the evader. A more detailed discussion for a specific game is deferred to Sections 4
and 5. Since the decision to whether or not an evader was found at some time ¢ is completely determined by the
measurements taken up to that time, it is possible to compute the conditional probability f5(t) of finding an evader
at time ¢, given that none was found up to ¢ — 1, as a function of the conditional probability of finding an evader
for the first time at ¢, given the measurements taken up to t — 1. Suppose we denote by Y™ C y* 7€ T, the
set of all sequences of measurements of length 7, associated with an evader not being found up to that time, i.e.,

yoind =y, ({w € Q: T*(w) > 7}). Since the decision to whether or not an evader was found up to time 7 is purely

. . . _ A
2In this paper we use the notation that, for every integer m and every sequence {ay}, H;nzﬂll ap = 1.



a function of the measurements Y, taken up to 7, we have that {w € Q : T*(w) > 7} = {w € Q : Y, _; € Y},
T € T. We can then expand f5(t) as

fa@) =Py(T =t |T* >t)= > hy(Yie1) Py(Yeoy = Yioq | Yooy € V75, teT,  (7)
Y€y fnd

where hz : Y* — [0, 1] is a function that maps each sequence Y € Y* of 7 2 |Y| measurements to the conditional

probability of finding an evader for the first time at 7 + 1, given the measurements Y, = Y taken up to 7, i.e.,

hz(Y) = Pg(T* = [Y|+ 1| Yy =Y). Equation (7) shows that fz(#) is equal to the expected value of hg(Y:_1)

when the probability measure is conditioned by Y;_; € ¥;"™M4. This can be written compactly as
Ja(t) = Eglhg(Yeo1) | Y1 € y_'fnd]~

This equation allows one to compute the probabilities f;(¢) using the function hz. The latter effectively encodes
the information relevant for the pursuit-evasion game that is contained in the models for the sensors and for the

motion of the evader. In Sections 4 and 5 we show how to efficiently compute h5(Y) from these models.

3 Persistent pursuit policies

A specific pursuit policy g : YV* — U is said to be persistent if there is some € > 0 such that
5> e et (8)

From (5) it is clear that, for each ¢t € T, F5(¢) is monotone nondecreasing with respect to any of the f5(7), 7€ T.
Therefore, for a persistent pursuit policy g, F5(t) > 1— (1 —¢€)*, ¢t € T, with € as in (8). From this we conclude
that sup, ., Fg(t) = 1 and therefore the probability of T* being finite must be equal to one. The expected value
E3[T*], on the other hand, is monotone nonincreasing with respect to any of the f5(t),t € 7 (cf. equation (6) and

Lemma 4 in the appendix). Therefore, for the same pursuit policy we also have that

Eg[T*] Ztl—e L=t
t=1

The following was proved:

Lemma 1. For a persistent pursuit policy g : Y* — U, Py(T* < o00) = 1, Fy(t) > 1 - (1 —¢), t € T, and
E;[T*] < e !, with € as in (8).

Often pursuit policies are not persistent in the way defined above but they are persistent on the average. By
this we mean that there is an integer 7" and some € > 0 such that, for each ¢ € 7, the conditional probability of
finding an evader on the set of T' consecutive time instants starting at ¢, given that none was found up to that

time, 1s greater or equal to €. In particular,

2

fi) = Po(T € {t,t+1,...t+T—1}|T" >1) >, VteT. (9)

We call T the period of persistence. To analyze policies that are persistent on the average with period T' we define

Firpy 2

F(k) 2 Fy(kT), FRY 2 F((k = 1)T +1), ke{l,2,...}.



This function could be interpreted as the distribution function of T* for an auxiliary game that runs 7" times faster.

Reasoning as in Section 2 we can then conclude that

F(k) :1-1‘[(1-]—‘(;’)), ke{l,2,...}.

Because the pursuit policy is persistent on the average, each f(z) > ¢, which means that the auxiliary game running
T times faster is persistent. Reasoning as in the proof of Lemma 1 with F' and f playing the roles of Fgz and f3,
respectively, we then conclude that for every k € {1,2,...},

Fy(kT) > 1— (1 —¢)F, ikpg (T* e {(k—1D)T+1,(k—1)T+2,... . kT}) < e’
k=1

But then® Fj;(t) > 1 —(1— e)L%J, t€7,and

Ey[T*] = i > (k= 1)T +14) Pg(T" = (k= 1)T +4)

We proved the following:

Lemma 2. For a persistent on the average pursuit policy g : Y* — U, with period T', Pz(T* < oc0) = 1, F5(t) >
1—(1-= e)L%J, t €T, and E4[T*] < Te ', with € as in (9).

Lemmas 1 and 2 show that, with persistent policies, the probability of finding the evader in finite time is equal
to one and the expected time needed to find it is always finite. Moreover, these lemmas give simple bounds for the
expected value of the time at which the evader is found. This makes persistent policies very attractive. It turns
out that often it is not hard to design policies that are persistent. The next section describes a pursuit-evasion

game for which this is the case.

Before proceeding we develop basic tools that can be used to show that a specific pursuit policy g is persistent,
eventually only on the average. In particular, we determine (sufficient) conditions for persistency of g in terms
of the conditional probabilities hy of finding the evader, given the measurements. As we will see in Section 4,
conditions in terms of hg are often more convenient to verify than conditions in terms of f;. A sufficient condition

for (8) to hold—and therefore for g to be persistent—is that
ha(Y) > e, VteT,Y e ymd (10)
This is a direct consequence of (7) and the fact that

Y O P(Yii =YY, €YY =1, VieT.
Yeynfd

An analogous condition (proved in the Appendix) can be found for persistency on the average:

3Given a scalar a, we denote by ] the largest integer smaller or equal to a.



Lemma 3. A sufficient condition for g to be persistent on the average with period T is the existence of some § > 0

such that, for eacht € T and each Y € y;f}d_% there is some T € {t — 1,t,...,t + T — 2} for which hz(Y;) > 4,
where Y, denotes the sequence consisting of the first T measurements in'Y. In this case (9) holds with

T-1
eé{%(l—%) 82

s =-8Tt s< (1

Nl N=

4 Pursuit-evasion games with partial observations and obstacles

In the game considered in this section, n, pursuers try to find a single evader. We denote by x. the position of the
A .

evader and by x = {x1,X3,...,Xp, } the positions of the pursuers. Both the evader and the pursuers can move and

therefore x. and x are time-dependent quantities. At each time ¢t € T, x.(¢) and each x;(¢) are therefore random

variables taking values on .

Some cells contain fixed obstacles and neither the pursuers nor evader can move to these cells. The positions
of the obstacles are represented by a function m : X — {0, 1} that takes the value 1 precisely at those cells that
contain an obstacle. The function m is called the obstacle map and for each z € X', m(z) is a random variable.
All the m(z) are assumed independent. When the game starts only an “a priori obstacle map” is known. By an a
priori obstacle map we mean a function p,, : X — [0, 1] that maps each z € X to the probability of cell  containing

an obstacle, i.e., pm(z) = P (m(;b) = 1), xz € X. This probability is assumed independent of the pursuit policy.

At each time ¢t € T, the control action u(?) 2 {uy,u3,...,u,,} consists of a list of desired positions for the
pursuers at time ¢. Two pursuers should not occupy the same cell, therefore each u(t) must be an element of the

control action space
A .
U= {{vl,vg,...,vnp}:vi EX, v #v; forz;éj}.

Each pursuer is capable of determining its current position and sensing a region around it for obstacles or the
evader but the sensor readings may be inaccurate. In particular, there is a nonzero probability that a pursuer
reports the existence of an evader/obstacle in a nearby cell when there is none, or vice-versa. However, we assume
that the information the pursuers report regarding the existence of evaders in the cell that they are occupying is
accurate. In this game we then say that the evader was found at some time ¢t € 7, only when a pursuer is located
at a cell for which the conditional probability of the evader being there, given the measurements Y, taken up to ¢,

is equal to one.

For the results in this section we do not need to specify precise probabilistic models for the pursuers sensors nor
for the motion of the evader. However, we will assume that, for each € X', Y € Y*, it is possible to compute the
conditional probability p.(z,Y) of the evader being in cell z at time ¢ 4 1, given the measurements Y; = Y taken
up to ¢ 2 |Y|. We also assume that this probability is independent of the pursuit policy being used, i.e., for every
specific pursuit policy g : Y* = U,

Pe(z,Y) =Py (x([Y[+ 1) =2 | Yy =Y), Vee X, Y ey (12)

In practice, this amounts to saying that the motion of the evader is independent of the motions of the pursuers. This

would happen, for example, in games against nature. In Section 5 we show how the function p. can be efficiently



computed for which the motion of the evader follows a Markov model. In fact, we shall see that for every sequence
Y; € Y* of ¢ 2 |Y| € T measurements, the p.(z,Y:), 2 € X, can be computed as a deterministic function of the the
last measurement y(¢) in ¥; and the p.(z,Yi_1), # € X, with Y;_; € Y* denoting the first # — 1 measurements in

Y:. The function p. can therefore be interpreted as an “information state” for the Markov game [9].

4.1 Greedy policies with unconstrained motion

We start by assuming that the pursuers are fast enough to move from any cell to any other cell in a single time
step. When this happens we say that the motion of the pursuers is unconstrained. By the greedy pursuit policy
with unconstrained motion we mean the policy g, : Y* — U that, at each instant of time ¢, moves the pursuers to
the positions that maximize the (conditional) posterior probability of finding the evader at time ¢ + 1, given the

measurements Y; = Y taken by the pursuers up to t, i.e.,

«(Y) = ar max e(ve,Y), Y e y*. 13
9u(Y) = arg }eu;p(’“ ) (13)

{v1,92,...,Un,

We show next that this pursuit policy is persistent. To this effect consider an arbitrary sequence Y € Y, ™4 of
t2 |Y'| measurements for which the evader was not found. Since the data regarding the existence of an evader in
the same cell as one of the pursuers i1s assumed accurate, finding an evader at ¢ + 1 for the first time is precisely
equivalent to having the evader in one of the cells occupied by a pursuer at ¢ + 1. The conditional probability
hg, (Y) of finding the evader for the first time at ¢ 4+ 1, given the measurements Y, = Y € Y;™9 taken up to ¢, is
then given by

hg (Y) =Py, (xc(t+1) =uwe(t+1), Ik €{1,2,...,n,} | Y: =Y).

Moreover, since there is only one evader and all the ug are distinct we conclude that
hg (V)= Py (x(t+1)=w(t +1) | Y, =Y). (14)
k=1

Let now {v1,v2,...,vn,} = gu(Y). Because of (1) we have ug(t +1) = vg, k € {1,2,...,n,}, given that Y, =Y
and g = g,. From this, (12), and (14) we conclude that

hg (Y) =Y pe(vg,Y).

Because of (13) and the fact that "¢ pe(z,Y) = 1, we then obtain

d Np o AN
hg (V)= pe(vx,Y) > n—pre(x,Y)zez -2 (15)
k=1 ¢ r=1

e

Here we used the fact that, given any set of n. numbers, the sum of the largest n, < n. of them, is larger or equal
to n,/n. times the sum of all of them. From (15) one concludes that g, is persistent (cf. (10)) and, because of

Lemma 1, we can state the following:

Theorem 1. The greedy pursuit policy with unconstrained motion g, is persistent. Moreover, P, (T* < c0) = 1,
t

Fo.(t)>1-— ( — Z—”) ,teT, and By [T*] < 2=,



The upper bound on E,, [T*] provided by Theorem 1 is independent of the specific model used for the motion of
the evader. In particular, if the evader moves according to a Markov model (cf. Section 5), the bound for E,, [T*]
is independent of the probability p of the evader moving from his present cell to a distinct one (p can be viewed
as measure of the “speed” of the evader). This constitutes an advantage of g, over simpler policies. One could,
for example, be tempted to use a “stay-in-place” policy defined by g+ (V) = z*, Y € Y*, for some fixed z* € X.
However, for such a policy E,_, [T*] would increase as the “speed” of the evader p decreases. In fact, in the extreme
case of p = 0 (evader not moving), the probability of finding the evader in finite time would actually be smaller

than one.

4.2 Greedy policies with constrained motion

Suppose now that the motion of each pursuer is constrained by that, in a single time step, it can only move
to cells close to i1ts present position. Formally, if at a time ¢ € T the pursuers are positioned in the cells
v 2 {v1,v2,...,vn,} €U, we denote by U(v) the subset of U consisting of those lists of cells to which the pursuers
could move at time ¢ + 1, were these cells empty. We say that the lists of cells in U (v) are reachable from v in a
single time step. A pursuit policy g : Y* — U is called admissible if, for every sequence of measurements Y € V*,
g(Y) is reachable in a single time step from the positions v of the pursuers specified in the last measurement in Y,

ie, g(Y) eU(v).

Although the motion of the pursuers in a single time step is constrained, we shall assume that their motions
are not constrained over a sufficiently large time interval, i.e., that the cells without obstacles form a connected

region, with connectivity defined in terms of the allowed motions for the pursuers:

Assumption 1. For any vinis, vainal € U, there exists a finite sequence
{v(0),v(1),...,v(t) : v(0) = Vinit, v(t) = Vanal, t E T} EU"
such that each v(7), 7 € T, is reachable from v(7 — 1) in a single time step, i.e., v(7) € U (v(r — 1)).

Under this assumptions it is always possible to construct a “navigation policy” that takes a desired list of final
positions for the pursuers vgng € U, together with the measurements Y, taken up to some time ¢ € 7, and either
produces a position reachable in a single time step that is “one step closer” to vana or concludes with probability
one that the final position is not reachable in a single time step from anywhere in /. The latter can only happen
when there are obstacles precisely on the cells specified in vgha. Here we require such a policy to be prioritized in
that only a particular position in vana € U, for example the kth one, needs to be reached in finite time (provided
there is no obstacle there). Such a navigation policy implicitly defines a “distance function” that measures how
many time steps are needed for the kth pursuer to either reach its final position in wgha or conclude that this
position is unreachable. Formally, a navigation policy is the a function nav : U x {1,2,...,n,} x Y* — U for
which there is a bounded distance function dist : U x {1,2,...,n,} x ¥* — R with the properties that, for each

{¥final, k, Yz} in the domain of nav, the following is true:
1. nav(vgnal, k,Y:) € U(v(t)) whenever Py (m(a:k) =1|Y:= Yt) < 1, for any pursuit policy g;

2. dist(vginal, k,Y) = 0 whenever z; = vi (t);



3. dist(vgnal, k,Y) < dist(vfinal, k, Yi—1) — 1 whenever v(¢) = nav(vanal, k, Yi—1).

In the above, v(t) denotes the positions of the pursuers specified in the last element of Y;, Y;_1 the sequence

consisting of the first ¢ — 1 elements in Y, and vy (t) and zj the kth elements of v(t) and vanal, respectively.

Property 1 guarantees that the navigation policy always tries to move the pursuers to positions reachable in
a single time step (unless this is impossible for the kth pursuers); Property 2 states that the distance to the cell
currently occupied by the kth pursuer must be zero; and Property 3 requires that each move produced by the
navigation policy will get the pursuers one step closer to the goal, which is to make the kth pursuer reach its
final position. For simple arrangements of the obstacles, navigation policies can be constructed along the lines of
the “bug” algorithms in [10]. Since the focus of this paper is not on the navigation problem we take as given a

navigation policy nav together with its distance function dist.

When the motion of the pursuers is constrained, greedy policies similar to the one defined in Section 4.1 may
not yield a persistent pursuit policy. For example, it could happen that the probability of existing an evader in any
of the cells to which the pursuers can move is exactly zero. With constrained motion, the best one can hope for it

to design a pursuit policy that is persistent on the average. To this effect we need the following assumption:

Assumption 2. There is a positive constant 4 < 1 such that for any sequence Y; € Y;™4 of + € 7 measurements

for which the evader was not found,

pe(maYt) vae(ma}/t—l): (16)

for any z € X for which (i) z is not in the list of pursuers positions specified in the last measurement in ¥; and (ii)
P; (m(:z:) =1]Y; = Yt) < 1, for any pursuit policy g. In (16), Y;—1 denotes the sequence consisting of the first

t — 1 elements in Y;.

Assumption 2 basically demands that, in a single time step, the conditional probability of the evader being at
acell z € X', given the measurements taken up to that time, does not decay by more than a certain amount. That
is, unless one pursuer reaches z—in which case the probability of the evader being at z may decay to zero if the
evader is not there—or if it is possible to conclude from the measured data that an obstacle is at x with probability

one. Such an assumption holds for most sensor models.

Theorem 2. Suppose Assumptions 1 and 2 hold. There exists an admissible pursuit policy g. : Y* — U that 1s
persistent on the average with period T 24 + n,(d — 1), where n, denotes the number of obstacles and d a (non
1

strict) upper bound for the distance function dist. Moreover, Py, (T* < o0) = 1, Fy.(t) > 1= (1= 9lT) 1 e T,
and E, [T*] < Te™', with ¢ given by (11) and § A yit

Ne

Before proving Theorem 2 it should be emphasized that the upper bounds given here for F,, and E, [T*] may
be very conservative if the parameters v and d on which they are based are also very conservative. This happens

often because v and d correspond to worst-case bounds.

Proof of Theorem 2. We prove this lemma by constructing an admissible pursuit policy g. : Y* — U that is

. . . A . .
persistent on the average with period T'= d+ n,(d — 1). To this effect take an arbitrary sequence of measurements

10



Y € Y* and let R(Y,m) C X denote the set of cells that can be reached in m steps by one of the pursuer, when

they start at the positions specified in the last measurement in Y, i.e.,
R(Y, m) 2 {r € X : dv € U such that z is an element of v and rr}qindist(v, kYY) < m}.

Since dist is bounded by d, R(Y,d) = X. Let now m(Y) be the smallest positive integer for which

d—m(Y)
32t e R(Y,m(Y)) : pe(a®,Y)> 1—— (17)

Ne

The integer m(Y) will be, at most, as large as d. This is because (17) will always hold when m(Y) = d, since
at least one cell z € X = R(Y,d) must have p(z,Y) > 1/n.. m(Y) corresponds to the smallest number of steps

d—m(Y)

needed to reach a cell z* for which p.(2*,Y) > WT Let us now define Zana1(Y) to be the cell with highest
probability of having an evader that can be reached in m(y) steps, i.e., Zfna(Y) = arg maxxeR<Y7m(Y)) pe(z,Y).
Because of the way m(Y') was defined
d=m(Y)
Pel@ana(Y), V) > T (18)

e

To specify g. we need to consider the list of cells vana(Y) € U that are reachable in m(Y") steps and contain

Zfinal(Y), for which the probability of finding an evader by the group of pursuers is maximal. Formally,

A - _

vanal(Y) = {v1,v2,...,v,,} = arg o max Lew E Pe (U, Y). (19)
1,Y2,--,Unp E—1

where N 2 {v €U : znal(Y) is an element of v and ming dist(v, k,Y) < m(Y)}. We shall then define g.(Y) as

follows

9e(Y) 2 nav (vanal(Y), kenat (V),Y), (20)

where kanal(Y) € {1,2,...,n,} is the integer for which 2gna1(Y) = v (v) Because of (18) there must be a non

Kfinal
zero probability of existing an evader at position Zgna1(Y). Therefore, the probability of existing an obstacle at

Zfinal(Y) must be smaller than one. From this and Property 1 of the navigation policy, we conclude that the pursuit

policy g. must be admissible.

It remains to prove that g. i1s persistent on the average with period T' 24 + no,(d — 1). This is done by showing

that the sufficient condition in Lemma 3 holds. In particular, we will show that given any sequence Y &€ y;f}d_2

of t+ T — 2, ¢t € T, measurements for which the evader was not found, and compatible with the pursuit policy g.,
there is some 7 € {t — 1,¢,...,t + T — 2} for which hy (Y;) > ¢ £ 7;—_1 Here, Y, € Y™ denotes the sequence

consisting of the first 7 elements of Y. To this effect pick some s € {t —1,¢,...,t+T — 3} for which m(Y;) > 1 and

Py (m(zanal(Ys)) = 1] Yoq1 = Yiq1) < L. (21)
Since m(Y;) > 1,
’Yd_l
pe(,Y:) < —, Yz € R(Y;,1). (22)

11



Because of (18) and the fact that v < 1, we also have that

Pe (Iﬁnal(Ys)a Ys) >

e Ne

From this and (22) we conclude that zana(Vs) ¢ R(Ys, 1). This means that no pursuer can be at cell zanq () at

time s + 1. Because of this and (21), by Assumption 2, we must have

d—(m(Ys)—1)

pe(mﬁnal(}/s)a Ys+1) > YPe (wﬁnal(ys)a Ys) > (23)

N
Here, we also used (18). Since the pursuit policy g. is being used to move the pursuers, at time s + 1 the cell
Zfinal(Ys) is within reach of one of the pursuers in m(Y;) — 1 steps, therefore zana (V) € R(YS_H, m(Y;) — 1). This,
together with (17) and (23) imply that m(Ys41) < m(Y;) — 1.

We have just shown that for any s € {t — 1,¢,...,4 4+ T — 3} for which m(Y;) > 1 and (21) holds, m(Y;41) <
m(Ys) — 1. Now, Py, (m(zanai(¥Ys)) = 1| Y, =Y;) < 1, because otherwise an obstacle was known to be at position
Zfinal(Ys) with probability one, given the measurements Y; = Y;, and therefore p.(2fna1(Ys),Ys) = 0, which would
contradict (18). This means that (21) can only be violated at the precise times s at which a new obstacle is found
with probability one. Since there are at most n, obstacles we conclude that (21) can be violated at most n, times in
{t—1,t,...,t+T—2}. We therefore conclude that m will always decrease, as long as it is larger than 1, except at a
finite collection of, at most, n, times. Since m < d, at least for one 7 € {t—1,¢,...,t+T—2}, with T' = d+n,(d—1),
we must then have m(Y;) = 1. Consider such a time 7 and let {v1,v2,...,v,,} = 9c(Y7). Because of (1) we have
up(t+1) =wg, k€ {1,2,...,n,}, given that Y, =Y, and g = g.. Therefore the conditional probability of finding

the evader for the first time at 7 + 1, given the measurements Y, = Y, taken up to 7, is given by
hg (Y7) = Py (xe(r+ 1) =up(r+1), Ik € {1,2,...,n,} | Y, =V7) = pe(vg, Yr). (24)
k=1

But since m(Y;) = 1, dist(vfinal(Y7), kfina1(Yr), Y) < 1 because of (19). This means that the kgna-th pursuer can

reach Zfna) in a single step and therefore vy, ., = Zfinal. From (24) and (18) one then concludes that

’)’d_l

Ne

>

hgc(YT) > pe(wﬁnal(yr),yr) > ) > 0.

A straightforward application of Lemmas 2 and 3 finishes the proof. [

5 Example

In this section we describe a specific pursuit-evasion game with partial observations and obstacles to which
the greedy pursuit policies developed in Section 4 can be applied. In this game the pursuit takes place in a
rectangular two-dimensional grid with n, square cells numbered from 1 to n.. We say that two distinct cells
r1, 9 € X = {1,2,---,n.} are adjacent if they share one side or one corner (cf. Figure 1). In the sequel we
denote by A(z) C X the set of cells adjacent to some cell z € X. Each A(z) will have, at most, 8 elements.
The motion of the pursuers is constrained in that each pursuer can only remain in the same cell or move to a

cell adjacent to its present position. This means that if at a time ¢ € 7 the pursuers are positioned in the cells

12



Ne

Figure 1: Pursuit region. The shaded cells are those adjacent to z.

= {v1,v2,...,vn,} €U, then the subset of I consisting of those lists of cells to which the pursuers could move

at time ¢ + 1, were these cells empty, is given by
A
Uv) 2 {{al,az, o n Y EU T € {1} UA(vi)}.

We assume a Markov model for the motion of the evader. The model is completely determined by a scalar
parameter p € [0, 1/8] that represents the probability of the evader moving from its present position to an adjacent
cell with no obstacles. This probability is independent of the specific pursuit policy being used. This means that,
for each z,z € X, n € {0,1,...,8},

p z € A(z) and m(z) =0
Pxc(t+1) =z |x:(t) =2, m(z) =0, ng(Z) =n) =< 1 — (|.,4(:E)|—n)p r==z (25)
0 otherwise

where |A(z)| € {3,5,8} denotes the number of cells adjacent to z and n,(z) € {0, 1, ..., 8} the number of obstacles

in A(Z). This models a situation in which the moving evader is not actively avoiding detection.

Each pursuer is capable of determining its current position and sensing the cells adjacent to the one it occupies
for obstacles/evader. Each measurement y(¢), t € T, therefore consists of a triple {v(t),e(t),o(t)} where v(¢) e U
denotes the measured positions of the pursuers, e(t) C X’ a set of cells where an evader was detected, and o(t) C X
a set of cells where obstacles were detected. For this game we then have Y = U x 2% x 2% where 2% denotes
the power set of X, i.e., the set of all subsets of X'. For simplicity, we shall assume that v(¢) reflect accurate
measurements and therefore v(t) = x(t), t € T. We also assume that the detection of the evader is perfect for
the cells in which the pursuers are located, but not for adjacent ones. The sensor model for evader detection 1is
a function of two parameters The probability p € [0,1] of a pursuer detecting an evader in a cell adjacent to its
current position, given that none was there, and the probability ¢ € [0, 1] of not detecting an evader, given that it
was there. We call p the probability of false positives and q the probability of false negatives. These probabilities
being nonzero reflect the fact that the sensors are not perfect. For simplicity we shall assume that the sensors used
for obstacle detection is perfect in that o(t) contains precisely those cells adjacent to the pursuers that contain an

obstacle.

We describe next how to compute the (conditional) posterior probability p.(z, Y;) of the evader being in cell z at
time ¢4 1, given the measurements Y; = Y; taken up to time ¢ = |Y:|. The derivations below are independent of the
specific pursuit policy g in use and we therefore drop the subscript g in the probability measure. For computational

efficiency p.(z,Y:) is computed recursively in two steps:
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1. A measurement step in which the probability P (xe(t) =z|Y:= Yt) of the evader being in cell z at time ¢,
given the measurements Y, = Y; taken up to ¢, is computed based on the probability p.(z, Y;—1) 2p (xc(t) =
z| Y1 = Yt—1) of the evader being in cell z at time ¢, given the measurements Y;_1; = Y;_; taken up to

t — 1, and the last measurement y(t) in the sequence Y;. The sensor model is used in this step.

2. A prediction step in which the probability p.(z,Y}) 2p (xe t+)=2|Y, = Yt) of the evader being in
cell z at time £ + 1, given the measurements Y; = Y; taken up to time ¢, is then computed from P (xe(t) =

z|Y:= Yt) The evader’s motion model 1s used in this step.

This recursion is initialized with some a priori probability p.(z,0), z € X, for the position of the evader. Here,
) € Y* denotes the empty sequence. To simplify the computations we shall assume that the obstacle density is
sufficiently low so that the position of the evader at any given time is approximately independent of the positions

of the obstacles.

Measurement step. For the measurement step we use Bayes’ rule to write
P(xc(t) =2 |Y:=Y:) = arpe(z, V1) P (y(t) = y(t) [ xc(t) = 2, Yio1 =Yin), (26)

where ay 2 1/P (y(t) =y(t) | Yeo1 = Yt_l) is a positive normalizing constant independent of z. The last term
in (26) must be computed using the sensor model. Partitioning y(?) 2 {v(t),e(t),o(t)} € Y, this term can be

expanded as

P (v(t) =u(t), e(t) =e(t), o(t) = o(t) | xc(t) = 2, Yi—1 = Yt—l)
=P (e(t) =e(t), ot) = o(t) | xe(t) =z, v(t) = v(t), Yi1 = Yt—1)
Here we used the fact that P (v(t) =v(t) | xe(t) =2, Y1 = Yt—1) = 1. This is because, since v(?) is equal to the
position of the pursuers at time t, it is completely determined by Y;_; and the pursuit policy. Therefore, if Y; 1s

compatible with a given pursuit policy g, v(¢) = v(¢) must have probability one when conditioned to Y;_; = Y;_1

and g = g. We therefore have

= (e(t) =e(t), o(t) = o(t) | x(t) =z, v(t) = v(t), Y1 = Yt—1)
=P (e(t) = ct) | xe(t) = 2, v(t) = v(t), Yeo1 = Vie1)
P (o(t) =o(t) |e(t) = e(t), x(t) =, v(t) = v(t), Yio1 = Yt—1)~ (27)
Due to the low obstacle density assumption, o(t) is approximately independent of the position of the evader x. (),

except for the constraint that no obstacle can be detected in the cell x.(t) where the evader lies. In this case,

from (26) and (27) we conclude that

0 z € o(t)

Plet)=o|Yi=Yi)~ {ape(.r,Yt_l) P (e(t) = e(t) | xe(t) = 2, v(t) = v(t), Yie1 = Yie1) ¢ oft)

where o 2 a1 P (o(t) =o(t) | et) = e(t), v(t) = v(t), Yi_1 = Yt—1) is another normalizing constant independent

of . Now, according to our sensor model, the probability of obtaining a measurement e(t) = e(t) of where the
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evader was detected is purely a function of the real position of the evader x.(¢) and the positions of the pursuers

v(t). Therefore*

P (oft) = e(t) | x.(t) = 2, ¥(1) = v(t), Ye1 = Yi_1)
{0 rev(t)\e(t)orIz £ 2 cv(t)Ne(t)

28
pFi(1 — p)*2g*2(1 — )%+ otherwise (28)

where kq is the number of pursuers that reported in e(¢) seeing the evader at cells other than z that are adjacent
to their one (false positives); k2 is the number of pursuers that reported in e(t) not seeing the evader at cells other
than z that are adjacent to their one (true negatives); k3 is the number of pursuers that reported in e(f) not seeing
the evader at the cell z adjacent to their one (false negatives); and k4 is the number of pursuers that reported in
e(t) seeing the evader at the cell z adjacent to their one (true positives). k1 + k2 + k3 + k4 must be equal to the

number of cells adjacent to any of the pursuers positions in v(¢). The measurement step can then be written as

P(Xe(t)::v|Yt:Yt)

0 rzeot)Uv(t)\e®)ordz#£x:zecu(t)Ne(t)

29
pFi(1 — p)*2qf2 (1 — q)*+  otherwise (29)

~ O‘pe(x7 }/t—l) {

where a is a normalizing constant, chosen so that )~ _, P (x(t)=2|Y:=Y;) = 1.

Prediction step. For the prediction step we expand

pe(2,Y:) = Z P(xc(t+1)=2z, x.(t) =2, m(z)=0|Y: =Y;)
ze{z}UA(z)
~P(x(t+ )=z |x(t)=2, Y =Y,)P(x(t) =2 | Y =Y)
+ > P(x(t+1)=2|x(t) =2 m(z) =0, Y, = V})
TeEA(x _
P (x(t)=2| Y, =Y)P(m(z)=0|Y, = Y)
Here, we used the fact that x.(#) = z automatically implies that m(z) = 0, and also the low obstacle density

assumption to conclude that m(z) is approximately independent of the position x.(¢ + 1) = Z of the evader, when

z # &. From (25) we conclude that

P(xe(t+1):x|xe(t):i‘, m(z) =0, Yt:Yt):p, z e A(x)
and
P(xelt+ 1) =2 | xeft) = 2, Yo = %) = 32 (1= (WA(@)] =)o) P (0a(@) = n | (1) = 2, Y = ¥0),

where |A(z)| € {3,5,8} denotes the number of cells adjacent to z and n,(z) € {0, 1, ..., 8} the number of obstacles
in A(z). Because of the low obstacle density assumption, the probability of n,(Z) begin equal to zero is much
larger than that of being larger than 0 and therefore, to simplify the computations we assume that P (no(i‘) =
0]|x.(t) =2, Y= Yt) ~ 1. In this case,
pele V) & (1 = |A@)p) P (xe(t) = 2 | Yo = Vi)
+rP(m@) =0]Y:=Y) 3 Plx(t) =2|Y:=Vi). (30)

4With a slight abuse of notation, here we regard the list of pursuer polélet{(t)gfs)v(t) as a set.
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To conclude the prediction step, it remains to show how to compute P (m(:t:) =0]Y; = Yt), r € X. It turns
out that the computation of these conditional probabilities can be done in a recursive fashion, similar to the
computation of the p.(z,Y:). Actually, it is simpler because the obstacles do not move and therefore the prediction
step is not needed. In fact, since we are assuming that the sensor used for obstacle detection is perfect, we simply

have

1 z ¢ o(t) and is in or adjacent to an element in v(#)
P (m(:b) =0]Y:= Yt) =<0 z € o(t) and is in or adjacent to an element in v(#)
P (m(l) =0]|Yi1 = Yt—1) otherwise

The recursion is initialized with the a priori obstacle map p,, : X — [0, 1].

With (29) and (30) at hand it is straightforward to show that Assumption 2 holds. In fact, from (29) and (30)
one concludes that, for any sequence Y; € Y;'™4 of t € 7 measurements for which the evader was not found, and
for any z € X for which (i) z is not in the list of pursuers positions v(¢) specified in the last measurement in Y;

and (ii) P (m(a:) =1]|Y:,= Yt) <1,

Pe(@,Ye) = (1= [A@)lp) P (x.() = 2 | Yo = Vi) > a(l = |A()|p)p* (1 = )24 (1 = q) *pe(a, Vi),

a Plo(t)=o(t) [e(t) = e(t), v(t) = v(t), Yiu1=Yic1) _ 1 -

P (y(t) =yt) | Yio1 = Yt—1) P (e(t) =e(t), v(t) =v(t) | Yio1 = Yt—1) -
Here we used the fact that  must not be in o(t), otherwise P(m(z) = 1| Y: = Y;) = 1. Since k1 + ks + k3 + ks must
be equal to the number of cells adjacent to any of the pursuers, we must have ki 4+ k2 + k3 + k4 < 8n,. Therefore

P (1—p)*2¢"* (1 — ¢)* > min{p,1 —p,q, 1 — ¢}%",

and we conclude that Assumption 2 holds with ~ 2 (1-8p) min{p, 1 —p, q,1—q}3"» > 0, provided that p,q € (0, 1).

The above game is of the type described in Section 4 with constrained motion for the pursuers. It therefore
admits the pursuit policy g, described in Section 4.2. Figure 2 shows a simulation of this pursuit-evasion game with
Ne £ 400 cells, n, 23 pursuers, p = 5%, p = q = 1%, and p,,(z) = 10/400, z € X. The navigation policy used
is directly inspired in the Bug2 Algorithm in [10]. In Figure 2, the background color of each cell z € X encodes
pe(2]Y+), with a light color for low probability and a dark color for high probability. In some images one can see
very high values for p.(z|Y:) near one of the pursuers, even though the evader is far away. This is due to false

positives given by the sensors.

6 Conclusion

In this paper we propose a probabilistic framework for pursuit-evasion games that avoids the conservativeness
inherent to deterministic worst-case assumptions on the motion of the evader. A probabilistic framework is also
natural to take into account the fact that sensor information is not precise and that only an inaccurate a priori
map of the terrain may be known. We showed that greedy policies can be used to control a swarm of autonomous

agents in the pursuit of one or several evaders. These policies guarantee that an evader is found in finite time and
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Figure 2: Pursuit using the constrained greedy pursuit policy. The pursuers are represented by light stars, the
evader is represented by a light circle, and the obstacles detected by the pursuers are represented by dark asterisks.
The background color of each cell z € X' encodes p.(z|Y:), with a light color for a low probability and a dark color
for high probability.

that the expected time needed to find the evader is also finite. Our current research involves the design of pursuit
policies that are optimal in the sense that they minimize the expected time needed to find the evader or that they
maximize the probability of finding the evader in a given finite time interval. We are also extending the results

presented here to games in which the evader is actively avoiding detection.

A Technical Lemmas

Lemma 4. For a given set of discrete times T 2 {to,t1 ...}, withtge1 > tg, k >0, let f:[0,1]* — [0, 1] be defined
by {ug,ur, ...} —> > oo tau, ( Z;é (1 — uk)) Then, for every integer m for which [, k;ﬁm(l —ug) =0,

or _ _f: (tn—tm)un( nl:[l (l—uk)> <0. (31)

ou
m k=0k#m

Proof of Lemma 4. Let m be an integer for which [],~, k#m(l — ug) = 0. Taking the partial derivative of f with
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respect to u,; one obtains

(9f m—1 00 n—1
m:tm<H(1—uk))— 5 tnun< I (1_%))
k=0 n=m-+1 k=0, k#m

1

- (T o-w) ( - Z(H 8 _uk>)) |

But it is straightforward to show that > _ —mt1 Un <Hk —mtl (1 — uk)) =1- HZO:m+1(1 — uy), therefore

3f m—1 [e¢) [es) n—1
m: ( H (l—uk)) (tm H (1 — ug) — Z (tn—tm)un< H (l—uk) ,
k=0 k=m+1 n=m+1 k=m+1
00 n—1 00
== > (tn—tm)un< II (l—uk)) ttm [ (10— w),
n=m+1 k=0,k#m k=0k#m
from which (31) follows. ]
Proof of Lemma 3. For a given t € T, f;(t) can be written as
T—1
=Y PyT =t+k|T >t) =Y Ps(Yerr € Vi, Yopuor € VIRL, [ Yooy € V759,
k=0

Pick now some 6 € [0,6]. A lower bound for fg (t) can then be constructed constraining the events on the probability

measure as follows:
T-1

fg(t) Z ZP (Yt+k ¢yt+k 7Yt+k 1 S yt+k 1 h(Yt_}.k;_l) Z 5,
k=0

h(Y)<d, s=t—1,t,..t+k—2|Y, €Y ). (32)

For each n € {0,1,...,T — 1}, let us now define®

T—n-2
A —fn < < —fn
un =Y Pa(Yepeo1 € Vit A(Yegno1) > 6, h(Y,) <6, s=t— 11, t+k—2| Y,y € V75

k=0
+P(Yiprono2s €Vt o, R(Y,) <6, s=t—1,¢,...t+T—n—3|Y,_1 € Y;1%).

We show next that fg(t) > dug. To this effect note that for any 7€ {t,t+1,...,t +T — 1},

P (Y, g Y™ Y, e Y™ h(Y,_1) >0, h(Ys) <4, s=t—1,t,...,7—2| Y,y € Y;59)

= > ( > Pa(Y.=Yr Y, =YT_1)) Py(Yro1 = Yoy [ Yoo € V1)
Y, 1ey;ind yey
R(Y,_1)>8 Y gy,
h(Ys)<3, s=t—1,t,..,7—2

where Y, denotes the sequence consisting of the measurements in Y;_; followed by y, and Ys, s < 7 — 1, the
sequence consisting of the first s measurements in Y, . But
Yo Pa(Yr =Y | Yo =Y)

yey
Yr Qy:f“d

5In this paper we use the notation that, for every integer m and every sequence {ay}, E ak = 0
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is precisely the probability A(Y;_1) of finding the evader for the first time at 7, given the measurements Y,_; =
Y,_1 € Y™ Therefore

Po(Y, ¢ V7™ Yoo € VIV, h(Yro0) 26, h(Y,) <8, s=t—1,t,...,7=2| Y,y € YI7)
= > h(Yr_ 1) Pa(Yr1 =Yy | Yiq € Yi0d)

—fnd
Y, 1€Y1

R(Y,_1)>3
h(Y)<3, s=t—1,t,...,71—2
>3Py(Y,o € V7 h(Y,o1) 26, h(Y,) <8, s=t—1,t,...,7—2| Y,y € yid).

T—1"

Using this in (32) we conclude that
— ,T_l — —
Fa) >8> Py(Yino1 € Vifay, h(Yeqn—1) 28, h(Y,) <8, s=t—1Lt,... t+k—2]| Y,y € Y77
k=0
T-2
=30 Py(Yeqno1 €V A(Yeqno1) 26, h(Ys) <8, s=t—1,t,...,t+k—2|Y,y €YY
k=0
+ 0Py (Yeyros € Vit A(Yegr—2) >3, h(Ys) <3, s=t—1,t,...,t+T—=3|Y,_1 € YY) (33)

Now, due to the hypothesis of the lemma, for any realization of the random variables Y:_1,Y: ..., Yii7r_o, if
h(Y;) <6 <8, s=t—1,t...,t +T —3, we must have h(Yiy7_2) > d > 6. We can therefore remove this

constraint in (33) and obtain

0—,\

fa(t) > (34)

From the definition of the w, it is clear that up_y = 1. We proceed by showing that u, > (1 — S)U,H_l, n €
{0,1,...,T — 2}, from which we will conclude that f;(t) > §(1 — §)T~. For a given 7 € {t,t +1,...,t +T — 1},

P (Y, e Y™ h(Y,)<d,s=t—1,t,...,7—1]| Y,y € Y09

= > ( Y. PY. =Y |YT_1=YT_1)> Py(Yroi = Yroa | Yooy € V75

Y,_1€y;md yeyf N
h(Y5)<3, s=t—1,t,...,7—1 Y-ely;

where Y, denotes the sequence consisting of the measurements in Y;_; followed by y, and Ys, s < 7 — 1, the

sequence consisting of the first s measurements in Y;. But

Yo Pa(Yr =Y | Yo =Y)
yey
Yrey:fnd

is precisely the probability 1 — A(Y;_1) of not finding the evader for the first time at 7, given the measurements
Y,_1 =Y,_1 € Y71 Therefore

Py (Y, € V™ h(Y,)<d, s=t—1,¢,...,7— 1| Y,y € Y71

= 3 (1= h(Yro1)) Pg(Yro1 = Yoot | Yeor € Y7109)

Y,_1ey;med
h(Ys)<d, s=t—1,t,...,7—1

>(1=8)Pa(Yr_y € V0 h(Y,) <8, s=t—1,t,....,7—1| Y,y € Y7d).
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Applying the above formula for 7 = ¢+ T'— n — 2, we conclude that

T—-n-2
up > > Py(Yepro1 € Vit h(Yeqko1) > 8, h(Y,) <4, s=t— 1,1, t+k—2| Y,y € Y75
k=0
+ (1= 8)Py(Yepr—n-3 € Vit s, h(Y,) <6, s=t—1,¢,...,t+T —n—3|Y,1 € Y;%)
B T-3-n B
Z (1 — (5) Pg(Yt+k_1 € y{f;i(il, h(Yt-}-k—l) Z 61

h(Ys)<5,S:t—1,t,.. t—l—k—2|Yt1€y—|fnd)
+Ps(Yi4r-n-3€ y;f}d_n_g), h(Yiyr—n_3) >3,
h(Y,) <6, s=t—1,t,.. t+T—n—4|Y,_, €Y.59)
Py (Yesron s €VIEL L h(Y,) <8 s=t— 14, . t+T-n—3|Y € yﬂfnd))
= (1= 8)unt1. (35)

From this and (34) we then conclude that

f3) >8(1=8)" " ur_y =3(1 = 8T Py(Yior € Y04 | Yoy € YY) = 6(1 — 6)T 1

Since the above is true from any § € [0, 6], we also have f;(t) > maXse(o o] §(1=0)T=1 = ¢, with € as in (11). ]
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