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Abstract

The results of recent studies on the possibility of spa-
tial localization from panoramic images have shown good
prospects for view-based methods. The major advantages
of these methods are a wide field-of-view, capability of mod-
elling cluttered environments, and flexibility in the learning
phase. The redundant information captured in similar views
is efficiently handled by the eigenspace approach. However,
the standard approaches are sensitive to noise and occlu-
sion. In this paper, we present a method of view-based lo-
calization in a robust framework that solves these problems
to a large degree. Experimental results on a large set of
real panoramic images demonstrate the effectiveness of the
approach and the level of achieved robustness.

1. Introduction and motivation

When dealing with autonomous systems that freely
move in space, an important problem to solve is the esti-
mation of the instantaneous position. In the case of au-
tonomous robot navigation, localization is necessary for
motion planning. In augmented reality applications, local-
ization of the observer is crucial for registration that allows
a combination of virtual and real environments.

In our work we define the problem of localization as
the task of recognizing a panoramic view (see Fig. 1 for
an example of cylindrical panoramic images) from a set of
panoramic views acquired in the learning phase. In the last
decade many researchers have shown that feasible models
of the world can be constructed without using precise geo-
metrical information [2, 6, 7]. Namely, a model of the world
can be constructed as a memory map, built from adequately
compressed sets of images. Such methods have been suc-
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cesfuly tested in the areas of object [5, 7] recognition. The
main motivation for applying such an approach to the prob-
lem of localization is the analogy between recognizing an
object in the scene and recognizing the environment. In
contrast to object recognition, the target to be recognized
in the case of localization is not only a part of the image
(on a cluttered background), but rather the complete image.
If we use panoramic images as representations of positions,
we can expect that views taken from nearby positions and
oriented in the same way tend to be strongly correlated as
it is in the case of looking at an object from two nearby
viewpoints (Fig. 1). This allows us not only to design an
efficient strategy based on correlation, but also to build a
compact representation that eliminates redundancy.

Figure 1. Two cylindrical panoramic images
(labeled 50 and 53 in the path set) taken from
viewpoints 60 cm apart.

Another motivation comes from the discoveries on navi-
gation strategies of insects, that are, although limited in the
brain size, capable of amazingly confident navigation and
of self-localization. In fact, some studies (see [4] and the
references therein) imply, that wood ants may use a repre-
sentation of the environment that is built from wide-angle
snapshots of the scene. Localization is then performed
by comparing the instantaneous view with the stored snap-
shots. According to this and some other studies the patterns
are processed retinotopically, i.e, the snapshot is not seg-
mented, but interpreted as a whole.

For building a compact model from a set of images,
the eigenspace approach proved itself as a viable one [3].
A similar work was done by Aihara et al. [1] who used



row-autocorrelated transforms of cylindrical panoramic im-
ages in order to achieve invariance to rotation of the sensor
around the optical axis. The approach suffers from less ac-
curate results on novel positions, since by correlating the
images some of the information is lost. An alternative ap-
proach was proposed by Pajdla and Hlaváč [8] who used an
appearance-preserving rotational invariant representation,
i.e, the Zero Phase Representation (ZPR).

The major limitation of these approaches is the sensitiv-
ity of the matching stage to noise and occlusion. It is clear
that one has to cope with occlusions in the scene, such as,
for example, people walking by, other objects being moved
around the environment etc. In this paper, we propose a
method for robust localization by applying a robust proce-
dure for recovery of parameters from the eigenspace [5].

The paper is organized as follows. In section 2 we first
discuss the major properties of panoramic images and the
distribution of their correlation over the sensed environ-
ment. In section 3 we describe the procedure for building
the environment model from panoramic views and give an
overview of the robust recognition of views. In section 4 we
present the results on non occluded and occluded data. We
conclude with a summary and an outline of future work.

2. Correlation of panoramic images

We have already emphasized the analogy between lo-
calization and object recognition. When looking at an ob-
ject from two nearby viewpoints, there is a high probability
that the two views are very similar to each other. If the
panoramic sensor has a fixed orientation, as if using an ex-
ternal compass, two images taken at nearby positions also
tend to be strongly correlated. As it can be seen in Fig. 2,
the distribution of correlation is far from a simply charac-
terized function, however, it gives a good indication of the
current location.

Of course, we cannot expect that an external compass
is always available. In such a case, one has to employ a
transformation that maps cylindrical panoramic images into
a representation that is invariant to the rotation of the sensor
and also preserves the properties of the correlation distribu-
tion. As it was shown in [3], this can be achieved by using a
transformation that preserves appearance, such as the ZPR
transform, proposed in [8].

3. Panoramic eigenspace

As already stated we represent the environment by a set
of panoramic images
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, taken in the learn-

ing phase at arbitrary positions. We transform the images
so that they are all oriented the same way. This enables
us to efficiently compress them by the eigenspace method.
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Figure 2. Correlation of panoramic images in
space. XY plane represents the coordinates
of the experimental environment. Measured
and then interpolated is the correlation with
image at X=440, Y=660.

The eigenspace method consists of solving the Singular
Value Decomposition on the covariance matrix of the (nor-
malized) images in

�
, to obtain an orthogonal set of vec-

tors � ��� ��� 	�	�	 � ��� , usually referred to as eigenimages. If
we then choose a subset of � eigenimages with the largest
eigenvalues, we can approximate in the least squares sense
each image parametrically as a linear combination of that
subset to a desirable degree of accuracy. Namely, every
model image

���
therefore projects into some point � � in the

eigenspace, spanned by the selected eigenimages [7].
The major advantage of the eigenspace method is that

the correlation in the image space is related to the Euclidean
distance in the eigenspace, i.e., the stronger are the two im-
ages correlated, the closer will their projections lie in the
eigenspace. It is therefore possible to densely interpolate
the set of points to obtain a spline that represents an ap-
proximation of an arbitrarily dense set of real-world im-
ages [7]. Panoramic views from intermediate positions are
in that way approximated by a spline.

3.1. Robust recognition

Once the model is built, recognition of a view is per-
formed by recovering the coefficient vector � of the instan-
taneous image � , or searching for the point on the spline
which is the nearest to the projected point. As every point
� is associated with the position parameters, we can make
an estimation of the current position. The standard method
to recover the parameters is to project the image vector onto



the eigenspace [7]:
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However, this way of calculation of parameters is non-
robust and thus not accurate in the case of noisy or occluded
data. If we imagine a mobile robot roaming around with
a model acquired under a set of stable conditions, every
change in the environment, such as displaced objects, peo-
ple walking around etc., can result in severe occlusions with
respect to the original stored images.

To overcome this problem, we propose to use the robust
approach [5], that, instead of using the whole image vectors,
generates and evaluates a set of hypotheses � as subsets of
image points � � ��� � � � � � 	�	�	 � ��� � . In fact, the coefficients
can be retrieved by solving a set of linear equations on � �� points:
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The principle of such computation is illustrated in Fig. 3.
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Figure 3. Calculating the coefficients from a
set of linear equations.

Figure 4. Image at 60% occlusion. Crosses
denote the points that contribute to the gen-
eration of a hypothesis.

By selecting only � � � ! � eigenimages as our basis,
we cannot use the previous set of equations, but we rather
try to solve an over-constrained system in a robust way, so
that the solution set of parameters minimizes

% � �&� �
��
� � � �'�(���*),+���� � � � �

� �� � ��� � � 	
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We solve the system on � � � 	 � points, where � is sig-
nificantly smaller than the total number of image points.
The set of points is randomly selected and due to the ro-
bust solving of the equation, only the points on which the
error is arbitrary small contribute to the computation of the
parameters. As we can see in Fig. 4, at this stage most of
the points in the occluded regions are excluded from the
computation.
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Figure 5. Localization on an imaginary path
of 100 images.

To increase the probability of avoiding points that are
noise or represent occlusion, several different hypotheses
are generated. A hypothesis consists of a set of parame-
ters, an error vector - calculated as the squared difference
between the data and the reconstruction, and the domain
of compatible points that satisfy an error margin constraint.
These hypotheses are then subject to a selection procedure,
based on the Minimal Description Length principle, as de-
scribed in [5].
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Figure 6. Mean error of localization for the
standard and for the robust method.
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Figure 7. Localization on an imaginary path of
100 images at 60% occlusion. Left: standard
method; right: robust method.

4. Experimental results

To perform the experiments we used a training set of 62
cylindrical panoramic images taken indoors in a laboratory
with lots of occlusion and artificial lighting. The images
were taken using a spherical mirror camera and warped to
form cylindrical images. The images were taken at posi-
tions

���
cm apart. The experimental layout is depicted in

Fig. 5, with squares denoting the positions where training
images were taken. As a testing set we used

� ���
images

taken at measured positions, depicted in Fig. 5 as full cir-
cles.

From the training set of images we constructed a
� �

di-
mensional eigenspace. The empty circles in Fig. 5 denote
the recovered path after projecting all 100 original test im-
ages. The spline used for projection was interpolated at
�

cm resolution. Since there is no significant occlusion (be-
sides some change in the illumination of the windows area),

the standard and the robust method of coefficient retrieval
perform almost equally well regarding precision. In fact, as
it can be seen from the graph in Fig. 6, the mean error of the
localization is between

� �
cm and

���
cm for

���
occlusion.

The performance of the robust estimator may vary slightly
since the hypothesis generation includes a stochastic step.

The performance of both methods at higher levels of oc-
clusion noise is compared in Fig. 6. We can see a significant
improvement in precision as a result of applying the robust
method. Even in situations of severe occlusion when more
than half of the surrounding is invisible, the robust method
retrieves positions that are reasonably close to the correct
ones. This can be clearly seen in Fig. 7. On the left we
can see that the standard method breaks under ambiguity
of the data while the results of the robust estimator on the
right show quite regular localization results with mean error
under

���
cm.

5. Conclusion

In this paper we presented a method for robust view-
based localization using panoramic images. As our experi-
ments show, we can perform relatively accurate localization
by using a pure view-based model of a pre-learned environ-
ment. By applying a robust framework to the recognition
phase we can also achieve a significant improvement of per-
formance when occlusions or noise are present in the input
images. If we consider a scenario of a mobile robot in an
office environment, the expected levels of noise seem ac-
ceptable for the algorithm.

We are currently exploring the problem of robustness in
the learning phase and incremental on-line building of mod-
els of the environment.
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