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Abstract

This paper presents an algorithm for minimizing the travel e�ort of a mobile robot nav-

igating in an unknown environment along a graph constructed on-line by the robot. The

graph, called a roadmap, represents the free con�guration-space of the robot, and the travel

e�ort is measured by the length of the path traveled by the robot during the search. The

algorithm, called Roadmap -A�, strives to minimize the travel e�ort by combining fea-

tures of the classical A� and local graph-search algorithms. A user-speci�ed parameter �

determines the relative emphasize on the two approaches, where �=0 corresponds to A�

while �=1 corresponds to local-search. We study the performance of the algorithm on

roadmaps generated by a cylindrical mobile robot navigating in an unknown environment,

using a potential-�eld roadmap construction method. However, Roadmap -A� is general

and can be used by any on-line roadmap construction method. We study the performance

of Roadmap -A� for various values of � on simulated environments, and indicate how to

best choose � for a given class of environments.

1 Introduction

In sensor-based mobile robot navigation, a robot has to navigate towards a given goal

con�guration while avoiding collision with obstacles. The obstacles are assumed station-

ary, but their location is unknown to the robot who must detect their presence using

sensors. Some approaches to sensor-based navigation are the works of Chatila [4], Foux

[7], Lumelsky [11], Noborio [13], Shiller [22], Stentz [23], and their coworkers. One par-

ticular approach incrementally constructs a graph which represents the connectivity of

the robot's free con�guration-space, called a roadmap. The roadmap graph contains the

initial and goal con�gurations, and the navigation problem is reduced to a physical search

for the goal along the incrementally constructed roadmap graph. Roadmaps are thus

graphs embedded in Euclidean space, such that the cost of traversing an edge is given
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Figure 1: Examples of roadmaps. (a) Voronoi diagram: locus of points equidistant from

obstacles. (b) Visibility graph: visibility edges connecting obstacles. (c) Potential-�eld

roadmaps: local maxima of distance from obstacles along pre-determined sweep direction.

by its length. We note that during the search the robot constructs only a portion of the

roadmap, not the entire roadmap as required in map-building tasks [17, 24]. Examples

of sensor-based roadmaps are: generalized Voronoi diagrams [6], incremental visibility

graphs [7], and potential-�eld based roadmaps [18]. These roadmaps are illustrated for a

point robot in the plane in Figure 1.

The sensor-based roadmap methods typically focus on the construction of a connected

network of curves. This is certainly the most important property any roadmap must

have, as it guarantees that the robot would �nd a path to the goal if such a path exists.

However, these methods pay little attention to the e�ciency of the on-line search along

the roadmap, which is the focus of this paper. If a robot has perfect apriori information

about the environment, it can pre-compute the entire roadmap and perform the search in

the computer memory using classical graph-search algorithms such as A�
[8, 15]. But the

classical graph-search algorithms are not suitable for robots which have to construct the

roadmap incrementally, by physically traveling along the roadmap arcs. For instance, A�

requires frequent discontinuous \jumps" during the search, and a robot which attempts

to execute these jumps by traveling along the roadmap would perform very poorly. Thus

there is a need for a roadmap search algorithm which attempts to reduce the travel e�ort,

measured by the length of the path traveled by the robot.

The existing roadmap search algorithms can be divided into two classes. The �rst class

is depth-�rst search (or DFS) algorithms. In DFS the search agent moves to one of the

unvisited neighbors of the current node according to some selection rule. If a deadend is

encountered, DFS returns to the closest node along the search path which has unvisited

neighbors. Thus DFS is suitable for searching roadmaps, as it avoids undesirable jumps

during the search process. An example is the D-DFS algorithm of Rosenfeld et al. [19],

which takes advantage of the fact that the robot knows the direction to the goal. Another

DFS algorithm is Bug2 of Lumelsky and Stepanov [12], for navigating a point robot in

two-dimensions. (Note, we consider roadmaps in Euclidean space of arbitrary dimension.)

Bug2 searches along a roadmap consisting of the obstacles' bounding curves, and segments

of the line passing through the start and target points. The length of the path traveled by
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the robot under Bug2 can be bounded as follows [12]. Let S and T be the start and target

points. Then the path length l is bounded by l� 1

2

P
i pi�i, where �i is the perimeter of

the ith obstacle, pi is the number of intersections of the S-T line with the ith obstacle,

and the summation is over the obstacles which intersect the disc with center at T and

radius kS�Tk. This bound indicates a de�ciency from which all DFS algorithms su�er:

in certain environments the path length (and hence the travel e�ort) is bounded only by

the size of the search space.

start

target

Figure 2: Using Local-A�
, a search agent may drift arbitrarily far from the target. (See

Figure 9 for Roadmap -A�
performance in a similar case.)

The other approach taken by roadmap search algorithms is to repeatedly run A�

from the current robot location, an approach we call Local-A�
. In Local-A�

the search

agent is at a current node x, and the merit of a node n is determined by the function

f(n) = g(x; n)+h(n; T ), where g(x; n) is the length of the shortest path from x to n along

the known graph, and h(n; T ) is a path-length estimate from n to the target
1
. The search

agent next moves to the node with minimal f -value, exploring its unvisited neighbors and

adding them to the known graph. The search agent thus selects nodes which are close to

its current location along the known graph, giving preference to nodes which seem closer

to the target. The Local-A�
approach �rst appeared in Korf's Real-T ime-A�

(or RTA�
)

algorithm [10] for on-line search of general graphs. We use the term Local-A�
in order to

emphasize the local nature of this search approach. Local-A�
is used for roadmap search

is the work of Foux et al. [7] on searching incremental visibility graphs. Much like DFS

algorithms, Local-A�
algorithms do not possess a mechanism for bounding the search

depth. This de�ciency is illustrated in Figure 2, which shows a long wall separating the

start and target. Using Local-A�
, the search agent will be lead away from the target,

potentially forever if the wall is in�nitely long. The travel e�ort of Local-A�
can thus

become very large, and is again bounded only by the size of the search space. In contrast,

the roadmap search algorithm we propose, Roadmap -A�
, imposes an output-sensitive

bound on the search depth in terms of the length of the shortest path to the target.

The Roadmap -A�
algorithm executes a series of Local-A�

probes, whose depth is

bounded by a higher-level A�

� algorithm. The A�

� algorithm is a variant of the classical A�

[16], in which the search agent may choose to expand any node from a set called focal.

This set consists of open nodes whose value (as determined by the classical A�
) is �-away

from the best open-node value. As such, focal introduces an additional degree of freedom

into A�
, which allows Roadmap -A�

to apply minimum-travel-e�ort considerations in the

selection of nodes for expansion. The A�

� algorithm has properties similar to those of A�
.

In particular, A�

� imposes a bound on the search depth which depends on the length of the

1This approach can also be viewed as best-�rst-search with a local cost function that depends on x.
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shortest path, and it always �nds an �-optimal path to the target. Roadmap -A�
inherits

these important from the A�

� algorithm. Another important feature of Roadmap -A�
is the

way it handles node expansion. Usually expansion requires exploration of every unvisited

neighbor of the current node. But for a mobile robot such an expansion would mean

costly excursions to all unvisited neighbors of the current node. Roadmap -A�
breaks the

node expansion into a series of single-arc explorations using a node-splitting technique.

This technique reduces the travel e�ort during node expansion, yet keeps the operation

of Roadmap -A�
within the framework of A�

� .

In the related literature, another algorithm by Korf called IDA�
shares common fea-

tures with Roadmap -A�
. IDA�

is designed for o�-line search of exponential trees, which

are typically too large to be stored in the computer memory. Korf describes IDA�
as

follows [9]. \IDA�
is a modi�cation of A�

that reduces its space complexity from expo-

nential to linear. IDA�
performs a series of depth-�rst searches, in which a branch is

cut o� when the cost of its frontier node, f(n) = g(n) + h(n), exceeds a cuto� threshold.

The threshold starts at the heuristic estimate of the initial state, and increases at each

iteration to the minimum value that exceeds the previous threshold, until the solution

is found. IDA�
has the same property as A�

with respect to solution optimality, and

expands the same number of nodes, asymptotically, as A�
on an exponential tree, but

uses only linear space." The IDA�
and Roadmap -A�

algorithms are similar in the sense

that both employ local search (either DFS or Local-A�
), which is dynamically bounded

by a higher-level A�
algorithm. However, the two algorithms strive to satisfy di�erent

objectives. While IDA�
is an o�-line algorithm that strives to emulate A�

in linear space,

Roadmap -A�
is an on-line algorithm that strives to reduce physical travel e�ort.

We test the proposed algorithm on roadmaps generated by a potential-�eld based

method called IRoadmap [18]. This approach has been previously described as a gen-

eral paradigm, and we provide here the details necessary for its implementation on a

cylindrical mobile robot equipped with range sensors. Although we test Roadmap -A�
on

roadmaps generated by a particular method, the algorithm can be used by any on-line

roadmap construction method. Roadmap -A�
has the following additional characteristics.

First, the algorithm can run on roadmaps of arbitrary size, as long as the roadmap can be

stored in the computer memory. Second, the algorithm can in principal run on roadmaps

representing the free con�guration-space of general mechanisms, although here we empha-

size the two-degree-of-freedom navigation problem of a cylindrical mobile robot. Third,

the algorithm can run on any graph constructed on-line by a search agent, not necessarily

on graphs embedded in Euclidean space. In the latter case all is required is an admissible

cost estimate h(n; T ), and a monotonic cost function f(n). These terms are reviewed

below, but all reasonable cost functions do have these two properties [10].

The paper is organized as follows. We begin with a description of Roadmap -A�
.

Then we analyze some properties of Roadmap -A�
, showing that monotonicity of the cost

function allows an e�cient implementation of the algorithm. Next we review the sensor-

based roadmap construction method IRoadmap, which is used in the experimental studies

of the algorithm. The travel e�ort of Roadmap -A�
is strongly in
uenced by the user-

speci�ed parameter �. The value of �= 0 corresponds to the classical A�
algorithm and
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�=1 corresponds to pure local-search behavior. In Section 5 we experimentally study

the dependency of the travel e�ort on �, showing that each class of environments has an

optimal range of �-values. In the concluding section we summarize the contributions of

this work and discuss several relevant issues.

2 The Roadmap -A�
Algorithm

We consider a physical search agent (a robot in our case), which has to search for a target

node on an incrementally constructed graph G. The graph is embedded in Euclidean

space and the target coordinates are known to the search agent. First we de�ne a few

terms used by the algorithm, then we present the algorithm itself.

2.1 Basic Terminology

The following terminology is used in the description of the algorithm and its subsequent

analysis. When a node has been visited by the search agent, it is said to be generated.

Note that the search agent has no knowledge of the neighbors of a newly generated node,

until it physically travels along the arcs leading to these neighbors. When an arc has been

traced by the search agent, it is said to be explored. If all the arcs of a node are explored,

the node is said to be expanded. Node expansion requires that the agent physically trace

every arc emanating from the node, a process which may consume considerable travel

e�ort. To facilitate this node expansion process, we introduce the following operation of

node splitting. Let n be a node with k arcs, as depicted in Figure 3. Then n is split into

k subnodes interconnected by zero-length arcs, and the subnodes become regular nodes

in the graph. The splitting operation increases the number of nodes by a factor equal to

the branching factor. However, now each subnode has only one non-zero arc emanating

from it, and the expansion of a subnode requires exploration of a single arc. Moreover,

the zero-length arcs introduced by the splitting operation do not a�ect the algorithm's

convergence, since at each step the agent must explore one non-zero arc.

zero-length arcs

n

n
3

2

unexplored arcs

n

unexplored arcs

exlpored arc
exlpored arc

n1

Figure 3: The splitting of a node having three arcs into three subnodes.
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As the search agent incrementally constructs the graph G, it has knowledge only of the

currently constructed subgraph, denoted G0
. We now introduce several terms associated

with G0
. The start node is denoted S; the node that the search agent is currently visiting

is denoted x; and the target node, which becomes a node of G0
only at the end of the

search, is denoted T . The cost of an arc in G0
is denoted c(n; n0), where n and n0 are

the nodes at the endpoints of the arc. (The splitting operation ensures that there is no

ambiguity with this notation.) Note that the cost of an arc is known only after the search

agent has explored the arc and added it to G0
. A sequence of nodes n1; n2; :::; nk, where

ni+1 is a neighbor of ni in G0
is called a path. The cost of a path is measured by the sum

of the costs of the arcs along the path. Finally, two nodes ni and nj may be connected in

the subgraph G0
via several paths, and c(ni; nj) denotes the minimal cost of these paths.

2.2 The Selection Functions of Roadmap -A�

We introduce three selection functions which organize the execution of Roadmap -A�
.

Roadmap -A�
uses a hierarchy of two algorithms to combine local search with global

travel-e�ort considerations. The higher-level algorithm is A�

� (reviewed in the appendix),

which allows the search agent to choose for expansion any node from a set called focal.

Roadmap -A�
uses the �rst selection function to determine the focal set. The lower-level

algorithm is Local-A�
, which selects from focal a node which tends to minimize the travel

e�ort. The selection of a node from focal by Local-A�
is governed by the other two

selection functions. A description of the selection functions follows.

Recall that h(n; T ) estimates the length of the shortest path from a node n to the

target along the graph G. In roadmap search h(n; T ) is usually chosen as the Euclidean

or Manhattan distance from n to T , but any admissible2 function h can be used for this

purpose. The �rst function used by Roadmap -A�
is a global cost function, fglob(n), that

estimates the length of the shortest path from the start to the target through the node n.

Since only the subgraph G0
is known, the shortest path from S to n is computed along

G0
, and its length is denoted c(S; n). The cost of the path from n to T is estimated as

h(n; T ), and the function fglob(n) is given by fglob(n) = c(S; n) + h(n; T ). The algorithm

uses fglob(n) to determine the nodes of focal as follows:

focal = fn 2 open : fglob(n) � (1 + �)fglob(n0)g ;

where open is the set of nodes which have been generated but not yet expanded, n0 is the

node with minimum fglob-value in open, and � is a user-speci�ed parameter. The inclusion

of S in the de�nition of fglob(n) has the e�ect of focusing the search around the shortest

path from S to T , as explained in the discussion following Corollary 3.2. The focal set

introduces a degree of freedom which allows the algorithm to select nodes for expansion

based on minimum-travel-e�ort considerations.

The second function used by Roadmap -A�
is a local cost function, that estimates the

length of the shortest path from the current node to the target through a node n, which

2
h(n;T ) is admissible if it is non-negative and never overestimates the true cost of the path from n to T.
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is already in the known graph G0
. The local cost function is denoted floc(n) and is given

by floc(n) = c(x; n) + h(n; T ), where c(x; n) is the length of the shortest path from the

current node x to n along G0
. The algorithm uses floc(n) to estimate which node of focal

involves the least travel e�ort and should therefore be selected next for expansion. The

function floc(n) attains its minimum value at the subnodes associated with the physical

node currently visited by the search agent. This property endows the algorithm with a

local-search behavior, where the search agent prefers to explore nodes which are close to

its current location along the known graph.

The third function used by Roadmap -A�
is a tie-breaking function. By construction,

subnodes associated with the same physical node have the same local cost floc(n). The

tie-breaking function is denoted fdir(n) and is de�ned as follows. Let earc be a unit vector

tangent to the non-zero arc emanating from a subnode n, and let egoal be a unit vector in

the direction from n to T . Then fdir(n) is given by the scalar product fdir(n) = earc �egoal.

When confronted with a choice among subnodes having the same local cost, the algorithm

selects the subnode with the largest fdir-value, as the direction of the arc emanating from

this subnode is the closest to the direction to the target. More sophisticated tie-breaking

functions can be de�ned, but the principal operation of Roadmap -A�
does not depend on

the particular tie-breaking function being used.

2.3 Description of Roadmap -A�

We now give a schematic description of the algorithm, followed by a description of two

sub-algorithms used by Roadmap -A�
.

Input: A value for the sub-optimality parameter �.

Roadmap -A� Algorithm:

1. Split the start node S into subnodes. Put the subnodes in open and focal.

2. If open is empty, exit with failure.

3. Run Local-A�
(see below) on the known graph G0

, to �nd a node n in focal with

minimal local cost floc(n). If several nodes have the same floc-value, select the node

with maximal directional cost fdir(n). Remove n from open and focal, and put it

in close. Execute a move to n along the known graph G0
.

4. If n is the target node T , exit with the solution.

5. Otherwise, expand the node n by moving along its non-zero arc and generating its

successor node n0. Then execute:

(a) If n0 is neither in open nor in close, it is a new node. If n0 has no other arcs

emanating from it, prune n0 from G0
and return to n. Otherwise, split n0 into

subnodes and add the subnodes to open with a pointer to n. Go to step 6.

(b) Compute the global cost of n0, which is already in open or close. If the new

fglob(n
0
) is less than the old one, update fglob(n

0
) and change the pointer of n0 to

n. Update the nodes in G0
using cost propagation (see below).

6. Update focal using the rule: focal=fn 2 open :fglob(n)�(1 + �)fglob(n0)g where

fglob(n0)=minm2openffglob(m)g. Go to step 2.
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Before describing the two sub-algorithms used by Roadmap -A�
, let us clarify some issues

concerning the algorithm. First, in step 3 the node n is actually a subnode, and step 4

should be more accurately phrased as arrival to any subnode associated with the target

node. Second, in step 5(a) the successor node n0 is a new node which has not been split yet,

while in step 5(b) the successor node n0 is already a subnode. Third, in roadmap search

the search e�ort is strongly dominated by the time it takes the search agent to physically

travel along the roadmap arcs. Other search-e�ort components, such as computation time,

are relatively negligible in this type of a problem. Thus, in step 3 the algorithm runs a

Local-A�
probe along the known graph in the computer memory, and this step takes a

relatively negligible time. In contrast, the move to the next node for expansion at the end

of step 3, and the tracing of an arc during node expansion in step 5, involve a physical

travel and constitute the main search e�ort. We now describe the two sub-algorithms

used by Roadmap -A�
.

Local-A�: Roadmap -A�
chooses for expansion the node n with minimal floc-value in

focal. The function floc(n) is given by floc(n) = c(x; n) + h(n; T ), where x is the search

agent current node. To �nd the node with minimal floc-value in focal, the search agent

runs a Local-A�
along the known graph G0

, starting at the current node x and using floc
for node evaluation. However, while the node T serves as a nominal target, the search

terminates once a node from focal is chosen for expansion. As discussed below, floc is a

monotonic cost function, and consequently the local cost of the nodes chosen for expansion

increases monotonically. Moreover, the cost of a node does not change once it has been

expanded. It follows that the �rst node chosen for expansion by Local-A�
from focal is

the node with minimal floc-value in focal, as required. The Local-A�
search also generates

the shortest path from x to the node with minimal floc-value, and the search agent moves

along this path to the new node. Furthermore, if any subnode associated with the current

node x is in focal, this node would automatically have the minimal floc-value and be

chosen for expansion. Otherwise, one of the immediate neighbors of x would be chosen

for expansion by the Local-A�
sub-algorithm. This property of Local-A�

endows the

Roadmap -A�
algorithm with the desired local-search behavior, where the search agent

prefers to expand nodes in its immediate vicinity.

Cost propagation: When a node n is expanded, the search agent traces a non-zero

arc until it reaches a node n0. If the path to n0 through the arc is shorter than the current

path to n0, the algorithm updates the global cost of n0 and changes the pointer of n0 to n.

Next the algorithm recursively propagates this change to the other nodes in G0
as follows

3
.

At the basis of the recursion comes the updating of n0 itself. Now given a node m which

has just been updated, let m0
be a neighbor of m in G0

. The algorithm computes the

global cost of m0
as fglob(m

0
) = c(S;m) + c(m;m0

) + h(m0; T ), where c(S;m) is the length

of the new path from S to m through n, and c(m;m0
) is the cost of the arc from m to m0

.

If the new global cost of m0
is less than the old one, the algorithm updates the global cost

of m0
and changes the pointer of m0

to m. As discussed below, fglob is also a monotonic

3Unlike the classical A�, the use of focal makes it possible for the global cost of an expanded node to
decrease at a later stage. Hence the cost propagation includes all the nodes in G

0.
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cost function, and this property ensures that the recursion ends in a �nite number of

steps. The cost-propagation process always decreases the global cost of nodes in G0
, and

as a result more nodes of G0
move into focal. A larger focal set means a larger selection

available for the Local-A�
sub-algorithm, resulting in an enhanced travel-e�ort saving at

the local-search level. We note that there exists an alternative technique for updating the

cost of nodes, called node reopening [15, p. 49]. However, the latter technique does not

strive to put as many nodes in focal as possible, resulting in a diminished travel-e�ort

saving at the local-search level.

Finally we mention a possible modi�cation to the algorithm that can further reduce

the travel e�ort. In the de�nition of the algorithm, the agent can explore a non-zero arc

twice. This can happen in the following two ways. The �rst is when the agent reaches a

new physical node n. The agent enters the node through a non-zero arc, and one of the

subnodes of n becomes associated with this arc. The second is when the agent completes

a loop and returns to a previously visited physical node m. It enters the node through

a non-zero arc which is associated with a subnode of m. In both cases let us call the

subnode associated with the entry arc an entry subnode. The entry subnodes are initially

in open, although their non-zero arc has been already explored by the agent. Currently,

when an entry subnode is chosen for expansion, the search agent moves to this subnode

and traces its non-zero arc for the second time. We can avoid this redundant move by

marking the entry subnodes as candidates for instant closing. Once an entry subnode

joins focal, it can be instantly placed in close, since its non-zero arc has already been

explored. This closing avoids unnecessary moves to entry subnodes, and allows the search

agent to immediately proceed with the expansion of other nodes from focal.

3 Analysis of Roadmap -A�

In this section we discuss several properties of Roadmap -A�
. To begin with, Roadmap -A�

belongs to the A�

� family of algorithms. As such, it always terminates on �nite graphs and

�nds a path to the target whenever such a path exists [15, Sec. 3.1]. The following two

corollaries are important to the understanding of the algorithm. The �rst corollary asserts

that Roadmap -A�
explores a portion of the graph that contains an �-optimal solution.

Corollary 3.1 Upon reaching the target, the portion of the graph explored by Roadmap -

A� contains a path from S to T whose length l satis�es l � (1 + �)lopt, where lopt is the

length of the shortest path from S to T in G.

The corollary follows from a similar property of A�

� , see Theorem 1 in the appendix. The

theorem in the appendix requires that the function h(n; T ) be admissible, which holds

true for the Euclidean distance used by Roadmap -A�
. The corollary provides assurance

that Roadmap -A�
explores a portion of the graph G which is most relevant for navigating

from S to T . The next corollary asserts that the algorithm expands only nodes which lie
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in an ellipse whose size
4
is determined by the parameter � and the length of the shortest

path from S to T .

Corollary 3.2 When Roadmap -A� selects a node n for expansion, the node satis�es

kn� Sk+ kn� Tk � (1 + �)lopt; (1)

where lopt is the length of the shortest path from S to T in G. Thus Roadmap -A� expands

only those nodes which lie in an ellipse with focal points S and T and size (1 + �)lopt.

The corollary follows from a similar ellipse property of A�

� stated in the appendix. In

general the roadmap graph is embedded in a Euclidean space of arbitrary dimension, and

the region de�ned by (1) is more precisely an ellipsoid-of-revolution, obtained by rotating

an ellipse with focal points S and T and size (1+�)lopt around its major axis. However, for

convenience we refer to this region as an ellipse. The result stated in the corollary can be

sharpened as follows. At any stage of the search process, draw an ellipse with focal points

at S and T and size (1+�)fglob(n0), where fglob(n0) is the minimal global cost in open.

Then it can be veri�ed that all the currently expanded nodes and all the nodes in focal lie

within this ellipse. In particular, when Roadmap -A�
terminates, the entire collection of

expanded nodes and the nodes of focal lie inside the ellipse with focal points S and T and

size (1+�)lopt. The practical meaning of the ellipse property is as follows. If lopt is close

to the straight-line distance from S to T and � is small, the ellipse is rather \skinny" and

not much longer than the Euclidean distance from S to T . In such a case the portion of

the roadmap which is searched is rather small. Considering that the roadmap can stretch

out far beyond such an ellipse, this is a pleasing output-sensitive result.

The corollary also provides a formal justi�cation for the inclusion of the term c(S; n)

in the global cost function, fglob = c(S; n)+h(n; T ). To illustrate this point, suppose that

the algorithm uses the function f 0glob(n) = h(n; T ). In that case Corollary 3.2 would apply

to f 0glob, and all nodes selected for expansion will satisfy kn� Tk � (1 + �)lopt. In other

words, the algorithm will expand nodes in the disc centered at T with radius (1 + �)lopt.

However, this disc contains the ellipse with focal points at S and T in its interior, since

kn� Sk + kn� Tk � (1 + �)lopt implies that kn� Tk < (1 + �)lopt. It follows that the

inclusion of S in fglob reduces the space explored by the search agent, and focuses the

search to the vicinity of the shortest path from S to T .

However, the ellipse bound is lacking in two important ways. First, the search agent

also visits open nodes which are not in focal, and these nodes do not necessarily lie inside

the ellipse. (But note that the open nodes lie at most one arc away from the ellipse.) The

open nodes can be bounded in a larger ellipse as follows. Let larc be a maximal arc-length

parameter, and let the search agent de�ne intermediate nodes at intervals of length larc
along each arc it travels. The extra nodes would not change the basic operation of the

algorithm, but now all the nodes visited by the search agent lie within a larger ellipse given

by kn� Sk+ kn� Tk � (1 + �)lopt + 2larc. Although this technique provides the desired

4The size of an ellipse is the sum of the distance of points on the ellipse from the ellipse's focal points.
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bound, it is currently not clear how to best choose the parameter larc. The second caveat

is that the ellipse bounds the search space, not the travel e�ort of the search agent. In

practice, roadmaps tend to have evenly distributed nodes. In such roadmaps the average

number of nodes inside the ellipse is determined by the size of the ellipse. Denoting this

number by #nodes, the travel e�ort can be bounded in terms of #nodes as follows. In

each step of the algorithm, the search agent moves from the current node x to a node n

along the shortest path in the known graph G0
. According to Theorem 1 in the appendix,

the length of the path from S to any node selected for expansion is bounded by (1+�)lopt.

Since x and n can be connected by a path through the start node in G0
, the length of

the shortest path from x to n in G0
is at most 2(1+�)lopt. The total length of the path

traveled by the search agent, denoted l, is thus bounded by
5 l � 2(1+�)lopt#nodes. An

alternative approach would be to measure the average performance of the algorithm in

various simulated environments, and this approach is taken in the next section.

In the remainder of this section we discuss properties of the focal set which allow its ef-

�cient implementation. First we establish that the global cost function fglob is monotonic.

By de�nition, fglob is monotonic if it is non-decreasing along paths leading away from the

start node. In other words, if n0 is a direct successor of n, then fglob(n) � fglob(n
0
). But

fglob(n) = c(S; n)+h(n; T ) and fglob(n
0
) = c(S; n)+ c(n; n0)+ h(n0; T ), with c(n; n0) being

the cost of the arc joining n with n0. Thus the inequality fglob(n) � fglob(n
0
) is equivalent

to the condition h(n; T ) � c(n; n0) + h(n0; T ), which is a generalized triangle inequality.

A function h(n; T ) satisfying the generalized triangle inequality is said to be consistent,

and we note that consistency implies admissibility. The following lemma asserts that the

function h(n; T ) = kn� Tk used by Roadmap -A�
is consistent.

Lemma 3.3 The path-length estimate used by Roadmap-A�, h(n; T ) = kn� Tk, is con-

sistent. Hence the cost functions fglob and floc are monotonic.

Proof: According to the usual triangle inequality, kn� Tk � kn� n0k+ kn0 � Tk. In

our case h(n; T ) = kn� Tk and h(n0; T ) = kn0 � Tk. Hence h(n; T ) � kn� n0k+h(n0; T ).

But c(n; n0) � kn� n0k, since c(n; n0) is the length of the arc joining n with n0. Therefore

h(n; T ) � c(n; n0) + h(n0; T ), and the function h(n; T ) = kn� Tk is consistent. 2

The monotonicity of fglob plays a role during cost propagation, as it guarantees that the

updating of the global cost of nodes in G0
would end in a �nite number of steps. The

monotonicity of floc is used in the running of Local-A�
from the current node, in order

to �nd the node with minimum floc-value in focal. We need the following lemma, which

guarantees that during the search process, Roadmap -A�
only improves the global cost of

every node in the known graph.

Lemma 3.4 The global cost fglob of each node in the known graph G0, expanded or unex-

panded, decreases monotonically during the search process.

5The area of the ellipse is given by �

4
(1+�)lopt[(1+�)2l2

opt
� kS�Tk

2]1=2. Assuming a uniform density

of � nodes per unit area, l � �

2
�(1+�)2l2opt[(1+�)2l2opt � kS�Tk

2]1=2.

11



Note that the lemma refers to the cost of a particular node in G0
, not to the cost of nodes

along paths leading away from S.

Proof: The global cost of a node n is given by fglob(n) = c(S; n) + h(n; T ). Out of

the two components of fglob, only the cost of the path c(S; n) along the known graph G0

may change, while h(n; T ) remains constant. The only way by which c(S; n) can change

is when a shorter path from S to n is found. Hence the value of fglob(n) for a particular

node n can only decrease during the search process. 2

The following proposition asserts that the best node in open remains the same node until

it is expanded.

Proposition 3.5 If at any stage of the search a node has the minimal global cost fglob in

open, this node remains the best node in open until it is selected for expansion.

Proof: Let n be the node with the minimal fglob-value in open. According to Lemma

3.4, fglob(n) does not increase during the search process. We now show that fglob(n)

also does not decrease. Let m 2 focal be the node chosen next for expansion. Then

by assumption fglob(m) � fglob(n). Suppose that after the expansion of m, fglob(n) has

decreased to f 0glob(n). This change in the global cost of n can occur after a pointer from

m to n has been installed, or after cost propagation has been executed (step 5(b) in the

algorithm). In both cases we have that n is a successor of m, and the monotonicity of fglob
implies that fglob(m) � f 0glob(n). Hence, if the new value f 0glob(n) is smaller than the old

one, it must be true that fglob(m) < fglob(n). But this contradicts our initial assumption

that fglob(m) � fglob(n). Hence fglob(n) cannot decrease.

We also have to show that no other node than n can become the best node in open

after the expansion of m. There are two possible cases to consider. A node z which is

already in open has become better than n, or a new node z which has been added to

open has a lower fglob-value than n. In both cases fglob(z) < fglob(n) after the expansion

of m. But in both cases the node z is necessarily a successor of m, which implies by

the monotonicity of fglob that fglob(z) � fglob(m). This leads to a contradiction, since by

assumption fglob(n) � fglob(m) and consequently fglob(z) � fglob(m) � fglob(n). 2

The next proposition asserts that the best node in open has a monotonically increasing

global cost.

Proposition 3.6 The minimal global cost of nodes in open increases monotonically dur-

ing the search process.

Proof: We already know from Proposition 3.5 that the minimal global cost in open

changes only when the node with this cost is selected for expansion. Suppose that after

an expansion of the best node n, a node n0 has the minimal global cost in open. If n0

was in open prior to the expansion of n, then either the global cost of n0 has not changed,

or it has changed and then n0 is necessarily a successor of n. In the �rst case we have

that fglob(n) � fglob(n
0
) since n was the best node in open, and in the latter case we have
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that fglob(n) � fglob(n
0
) by the monotonicity of fglob. If n

0
was not in open, it must have

appeared as a result of the expansion of n. This also means that n0 is a successor of n,

and by the monotonicity of fglob, fglob(n) � fglob(n
0
). Thus in all possible cases the global

cost of the new best node n0 is equal or larger than the global cost of the previous best

node n. 2

The algorithm must re-compute the focal set at each iteration, and this computation can

be e�ciently performed as follows. According to Proposition 3.5, the minimum fglob-value

in open, fglob(n0), is piecewise constant. As long as fglob(n0) remains constant, nodes in

open which have been rejected from entering focal will stay out of focal until their global

cost decreases due to cost propagation. Moreover, according to Lemma 3.4, the global

cost of each particular node decreases monotonically. Hence no node ever leaves focal

except when the node is selected for expansion. This result holds true even when fglob(n0)

changes, since fglob(n0) can only increase according to Proposition 3.6. To summarize, at

each iteration the algorithm has to consider only nodes which are candidates for entering

focal. At an iteration where fglob(n0) has not changed, the candidate nodes are either the

new nodes in open, or nodes which are already in open whose cost has decreased due to

cost propagation. At an infrequent iteration where fglob(n0) has increased, the candidate

nodes are all the nodes in open which are not already in focal. This understanding of the

possible changes in focal allows its updating in optimal time i.e., in time proportional to

the number of nodes that can possibly join focal.

4 Incremental Roadmap Construction

We describe a roadmap construction method called IRoadmap, that is used below for

testing the Roadmap -A�
algorithm. This method has its origin with the work of Canny

and Lin [3], who introduced the approach in the context of o�-line planning. The on-

line version of the method is described in [18], but only in general terms applicable to

any robot. Here the method is instantiated for a cylindrical mobile robot, and the details

required for its implementation using range sensors are given in the appendix. The method

has been implemented and tested on a Nomad mobile robot equipped with a sonar ring.

The roadmap is constructed in the robot's con�guration space, and we �rst review

this representation. The location of a cylindrical robot is uniquely determined by the

coordinates of its center, denoted (rx; ry). These coordinates form the con�guration space,

or c-space, of the robot. The con�guration space is populated by forbidden regions which

represent the physical obstacles as follows. Given an obstacle Bi, its c-obstacle CBi is the

set of con�gurations at which the robot intersects the obstacle. For a cylindrical mobile

robot, CBi is obtained by \growing" the obstacle Bi by a layer of thickness R, where R is

the radius of the robot (Figure 5(b)). The complement of the c-obstacles' interiors, called

the freespace F, is the collection of con�gurations where the robot may move without

hitting obstacles. The planning of the robot motions is consequently performed in F , and

the roadmap graph represents the connectivity of this space.

In IRoadmap the robot uses three sensors. A position sensor which measures the
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robot's current location, a range sensor which measures the minimum distance of the

robot to the surrounding obstacles, and a novel sensor which detects critical points in the

robot's con�guration space. The latter sensor is described below. The robot encodes the

range data as a repulsive potential �eld and uses it as illustrated in Figure 4. The robot

�rst determines a sweep direction and regards the freespace as a series of slices along

this direction. (The speci�c sweep direction a�ects the resulting roadmap, but not its

connectivity.) The roadmap contains two families of curves. The �rst family consists of

ridge curves, which correspond to local-maxima of the repulsive potential associated with

the range data. The other family consists of linking curves, which pass through critical

points and connect neighboring ridge-curves. Next we discuss the construction of these

two families of curves.
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Figure 4: (a) The ridge curves and their endpoints. (The robot is shown at selected

locations.) (b) The linking curves through join and split points.

To trace a ridge-curve, the robot initially moves in the slice of the start con�guration

along increasing value of the repulsive potential, until it reaches a local maximum. This

local maximum is a point on the ridge-curve. Then the robot follows the ridge-curve by

tracing the local-maxima along the sweep direction, as illustrated in Figure 4(a). The

linking-curves pass through critical points where the connectivity of the freespace slices

changes. These critical points are either join points where two locally distinct components

of the freespace slices meet, or split points where a connected component splits along the

sweep direction. Each linking-curve passes through a particular critical point and connects

two neighboring ridge-curves, as shown in Figure 4(b). To construct a linking-curve, the

robot �rst moves in the slice of the critical point until it reaches the critical point, then it

continues along increasing value of the repulsive potential until it reaches a neighboring

ridge-curve. Eventually the robot traces a ridge-curve whose basin of attraction includes

the target con�guration, from which the target is directly accessible. It has been shown in

Ref. [18] that the resulting collection of curves always forms a connected network which

contains a path to the target.

The nodes of the roadmap are of the following two types. The �rst type are ridge-curve

endpoints, which are either deadend points where a ridge-curve reaches the boundary of

the freespace, or endpoints in the interior of the freespace. In the latter case the ridge-

curve endpoint is a bifurcation point, designating a slice beyond which points are repulsed
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to a neighboring ridge curve (Figure 5(a)). When the robot reaches a ridge-curve endpoint,

it de�nes a node at this point and reverses its direction along the ridge curve. The second

type of nodes occur when the robot detects a critical point, which causes branching along

the linking-curve associated with the critical point. The critical points are detected by a

novel \sensor" called the critical point detector. This detector is required to locate all the

critical points (join and split points) in the basin of attraction of the current ridge-curve,

and its implementation is discussed in the appendix. The robot de�nes a node at the

point where the linking-curve branches o� from the ridge curve, and a second node at the

point where the linking-curve reaches the neighboring ridge curve.
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Figure 5: (a) Detection of a bifurcation point. (b) The tangent to CBi at c is parallel to

the tangent to Bi at b.

When a critical point is detected, the robot may choose to continue along the ridge-

curve, or to �rst build a linking-curve through the critical point to a neighboring ridge-

curve. But IRoadmap does not specify which pieces of the roadmap the robot should

explore �rst during the search. Similarly, other on-line roadmap construction methods do

not specify how to e�ciently conduct the search along the roadmap. The Roadmap -A�

algorithm we presented provides a framework for making such decisions, in a way which

tends to minimize the robot's travel e�ort.

5 In
uence of � on Travel E�ort

The choice of the sub-optimality parameter � strongly in
uences the travel e�ort of

Roadmap -A�
. In order to investigate this in
uence, we measured the average travel

e�ort as a function of � in two types of simulated environments. The �rst type, called

room environment, is a simple environment consisting of a rectangular room populated

by randomly located polygonal objects representing pieces of furniture (Figure 6(a)). The

second type, called o�ce 
oor environment, is a rather complex environment consisting of

o�ces interconnected by doors and corridors and populated by objects representing pieces
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Figure 6: Top view of (a) a room environment, and (b) an o�ce 
oor environment. The

roadmaps are generated by a cylindrical robot using a horizontal sweep direction.

of furniture (Figure 6(b)). Each �gure also shows the roadmap generated by a cylindrical

robot for a particular choice of start and target. As previously noted, the robot constructs

only a portion of the roadmap, not the entire roadmap as required in map-building tasks.

Before presenting the experimental results, we introduce a parameter that character-

izes the geometrical complexity of the shortest path from S to T . Recall that lopt is the

length of the shortest path from S to T in G. Then the geometrical complexity of the

shortest path is de�ned as the ratio � = lopt=kS�Tk. Note that � � 1, and a higher

value of � indicates a more complicated path. The parameter � is a characteristic of the

environment, and we now discuss how to best choose � in terms of �. To do that, let us

consider in detail the initial search performed by the algorithm.

The search begins at the node S, whose global cost is given by fglob(S) = kS � Tk.

The robot initially moves along one of the arcs emanating from S, selecting the arc whose

direction leads towards the target. Using a local-search behavior endowed by the local

cost function floc, the robot next probes a series of nodes which seems to lead to the

target. The nodes participating in this probe are chosen from focal. Since focal is initially

given by focal = fn : fglob(n) � (1+�)kS�Tkg, the depth of the search probe, measured

by the length of the paths leading away from S, is bounded by (1+�)kS�Tk. The search

probe terminates when the only nodes remaining in focal are the open subnodes of S.

At this stage the local-search behavior have already brought the robot back to the start

node, in order to expand another subnode of S. Continuing in this manner, the robot

performs a series of local-search probes until all the subnodes of S are expanded. Only

then the minimum value of fglob in open increases, allowing an enlargement of focal and

consequently deeper search probes.

Thus the robot initially explores paths whose length from the start node is bounded by

(1+ �)kS�Tk. If there exists a path to the target whose length is less than (1+�)kS�Tk,

there is a good chance that the robot will �nd this path before it expands all the subnodes
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Figure 7: Average travel e�ort as a function of �. (a) For a a room environment. (b) For an

o�ce 
oor environment. The travel e�ort is measured in units of length, in environments

of size 750�750 units.

of S. The necessary condition for this desirable behavior is:

lopt � (1 + �)kS � Tk:

In order to satisfy this condition, we have to choose � as follows:

� �
lopt

kS � Tk
� 1 = �� 1: (2)

Thus, it is desirable to select the parameter � larger than � � 1, so that the robot need

not return to the start node in order to increase its allowed search depth. Although the

robot has no apriori knowledge of �, many environments possess an evenly distributed

geometry, and in such environments � can be estimated during the search process.

The average travel e�ort is plotted as a function of � in Figure 7. The graph of

Figure 7(a) is for the room environment and the graph of Figure 7(b) is for the o�ce


oor environment. Each graph was generated by stepping with � through increments of

�� = 0:1 between � = 0 and � = 5. (Only lower values of � are shown in the graphs.)

We randomly selected 20 instances of each environment type, and ran in each instance

10 experiments using randomly selected start and target points. Each graph therefore

represents 10,000 runs of the algorithm. At the last stage, we smoothed the data points

using cubic spline. The resulting graphs have a similar qualitative structure, except for

large � values. The graphs can be interpreted as follows. When � = 0, Roadmap -A�

becomes a classical A�
algorithm, and the travel e�ort is very large due to wasteful moves

between successively expanded nodes. As � increases, more nodes move into focal and

the local-search behavior of the algorithm becomes more pronounced. As a result the

travel e�ort decreases in the lower range of � values. After the initial decrease, there is

an intermediate interval of �-values where the two graphs look like a series of hills. This

periodic-like behavior re
ects the series of search-probes described above, where the robot

returns to the vicinity of the start node several times before the search-depth becomes

su�ciently large to include the target in its horizon.
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As � further increases, there is a sharp fall in the travel e�ort, when � is large enough

to allow the robot to reach the target without returning to the start node. The sharp

fall occurs at the optimal value �� = 1�� dictated by formula (2). Clearly, we must

use a value of � which is larger than this optimal value. Beyond the optimal �-value

the two graphs become qualitatively di�erent. In the room environment the travel e�ort

remains 
at, while in the o�ce 
oor environment it grows slowly with �. The reason for

this phenomenon is that in the room environment the robot reaches the target using a

single local-search probe, which is not a�ected by increasing � beyond the optimal value.

The travel e�ort in the room environment remains 
at even beyond the value of �=2:5

shown in the graph. In contrast, in the more complicated o�ce 
oor environment, the

local-search probes sometimes drift away from the target and the algorithm imposes an

�-dependent dynamic bound on the depth of these search probes. Since a higher value of

� means that deeper search probes are allowed, the travel e�ort increases as � increases

in this range of � values. The above discussion indicates that while we should choose

� larger than the optimal �-value for the environment, we must not choose � too much

larger, in order to limit the depth of the local-search probes. Note that while the optimal

�-value is not known to the robot, it can be selected with a safety margin and still give a

signi�cantly small travel e�ort.

Algorithm Scenario

room o�ce 
oor maze

A�
12.067 18.427 14.522

Local-A�
(improved) 1.432 3.652 7.091

Roadmap -A�
1.432 2.171 3.458

Roadmap -A�
without fdir 4.713 6.852 5.913

Table 1: Average value of l=lopt for the algorithms: A�
, Local-A�

(with node splitting and

fdir), Roadmap -A�
, and Roadmap -A�

without fdir. (Note, Roadmap -A�
performs better

than A�
only in terms of travel e�ort.)

The advantage of Roadmap -A�
with suitably chosen � over the Local-A�

and A�

algorithms is illustrated in Table 1. To prepare the table, we selected three particular

environments: a room environment (Figure 6(a)), an o�ce 
oor environment (Figure 6(b)),

and a third type of environment called maze environment (Figure 9). In each environment

we measured the average ratio l=lopt over 100 randomly selected start and target points.

For each selection of start and target we ran the following algorithms. The classical A�

algorithm, the local-search algorithm Local-A�
, and two versions of the Roadmap -A�

algorithm. In the running of Local-A�
we added the node splitting technique and the

use of fdir. These additions not only reduce the travel e�ort of Local-A�
, but allow us

to clearly demonstrate in what ways Roadmap -A�
is better than Local-A�

. We also

measured the performance of Roadmap -A�
without the use of fdir, to demonstrate the

utility of using the directional selection function. In the running of Roadmap -A�
, we

computed the optimal �-value for each environment o�-line, and used this value as input
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Figure 8: The roadmap generated by the searching robot in an o�ce 
oor environment,

using (a) Local-A�
, and (b) Roadmap -A�

. (Using a horizontal sweep direction.)

to the algorithm. (Such knowledge is not available to the searching robot, but any � not

much larger than the optimal �-value would give similar results.)

The results in Table 1 indicate that Roadmap -A�
is much more e�cient in terms

of travel e�ort than A�
. The results also indicate that Roadmap -A�

performs simi-

larly to Local-A�
in simple environments. In such environments locally optimal decisions

tend to be globally correct, and since we have implemented the Local-A�
algorithm with

the travel-e�ort enhancing features of Roadmap -A�
, the two algorithms exhibit similar

performance. However, Roadmap -A�
has an advantage over the Local-A�

algorithm in

complex environments, where local-search algorithms often lead the robot away from the

target. In particular, Local-A�
performs poorly in the pathological maze environment,

while Roadmap -A�
�nds the goal rather easily in this environment. Examples of the

search path taken by the robot under Local-A�
and Roadmap -A�

in the o�ce 
oor and

maze environments appear in Figures 8 and 9.

6 Concluding Discussion

We presented Roadmap -A�
, an algorithm for searching roadmap graphs constructed on-

line by a robot. The algorithm strives to minimize the travel e�ort, measured by the length

of the path traveled by the robot during the search. At the higher-level Roadmap -A�
runs

an A�

� algorithm, and at the lower-level it runs a Local-A�
algorithm. The A�

� algorithm

maintains a set of nodes called focal, and at every iteration the search agent moves only

to a node from this set. The restriction to nodes of focal has the e�ect of imposing an

output-sensitive bound on the depth of the search-probes performed by the lower-level

algorithm. At the lower-level, the Local-A�
algorithm moves the search agent through a

series of nodes which locally lead to the target and tends to minimize the travel e�ort

associated with moving between successive nodes. An additional mechanism employed by

Roadmap -A�
is node splitting, which allows the search agent to expand nodes by tracing
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Figure 9: The roadmap generated the searching robot in a maze environment, using (a)

Local-A�
, and (b) Roadmap -A�

. (Using a sweep direction inclined 45
�
below the horizon.)

one arc at a time. The node splitting technique allows the search agent to move in an

e�cient depth-�rst fashion, while still keeping the entire operation of Roadmap -A�
within

the framework of the A�

� algorithm.

We also presented several formal properties of Roadmap -A�
, inherited by its mem-

bership in the A�

� family of algorithms. In particular, the search space of Roadmap -A�

is bounded by an ellipse of size (1+�)lopt, where lopt is the length of the shortest path

from S to T . In the case where the nodes are evenly distributed, the ellipse also bounds

the travel e�ort in a way which depends on lopt, �, and kS�Tk. We also measured the

average travel-e�ort as a function of � in simulated environments. In the lower-range of �

values there is a steep drop in the travel e�ort, due to the increasing in
uence of the local-

search component in the behavior of the algorithm. Then, after an intermediate range

of �-values, there is another sharp drop in the travel e�ort at the optimal �-value. The

optimal �-value is determined by the ratio � = lopt=kS�Tk, and the results indicate that

the travel e�ort in the interval just beyond the optimal �-value is still very low. Hence in

practice we only need to select � with a safety margin beyond the optimal value in order

to get signi�cantly low travel e�ort.

Following are several issues for further research. First, it is possible for a mobile robot

to sense portions of the roadmap arcs emanating from its current location. Rather then

use such additional information, we made the conservative assumption that the agent can

only sense the direction of the arcs emanating from its current position. Our approach

is formally justi�ed, as it is known that even simple environments can render powerful

sensors myopic. Furthermore, Roadmap -A�
can also be used for searching roadmaps

which represent the free con�guration space of mechanisms other than mobile robots,

such as robot arms. For such mechanisms it is not immediately clear how sensors can
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provide information about the roadmap arcs. Second, while discussing the ellipse bound,

we mentioned a technique for introducing intermediate nodes at regular intervals of length

larc. This technique ensures that every node visited by the search agent would reside in an

ellipse of size (1+ �)lopt+2larc. However, how to best select the parameter larc, preferably

in an output-sensitive way, is an open issue.

One last issue for further research is the derivation of worst-case
6
lower bounds on the

travel e�ort associated with on-line search by a robot equipped with sensors. Knowledge

of such bounds would enable us to assess in an absolute way the quality of a given on-line

navigation algorithm [20][p. 806-808]. It is worth mentioning that some results on such

universal bounds are already available in the literature. Lumelsky [12], Sankaranarayanan

[21], and their coworkers derive such bounds for a point robot moving in the plane. How-

ever, their bounds are expressed only in terms of the obstacles' perimeter and the distance

kS�Tk, not in terms of the crucial parameter lopt. Berman [1], Blum [2], Papadimitriou

[14], and their coworkers derive lower bounds on the search e�ort which explicitly depend

on lopt. However, they discuss only special types of environments. The derivation of

worst-case lower bounds for general cases, such as the case of searching general roadmaps

discussed in this paper, is an open problem.

Acknowledgments: The authors would like to acknowledge the insightful comments

made by Richard Korf and Shaul Markovitch on early versions of this paper.

A Review of the A
�

� Algorithm

The A�

� algorithm is a variant of the classical A�
algorithm [16], which uses in addition to

the open and close sets of nodes, a subset of open called focal. The focal set is de�ned as

follows,

focal =

(
n 2 open : f(n) � (1 + �) min

m2open
ff(m)g

)
;

where � > 0 is a parameter. The A�

� algorithm operates identically to A�
, except that it

chooses for expansion the node from focal with a minimal F -value, where F is a second

evaluation function. The function f has the additive structure of A�
, given by f(n) =

g(S; n) + h(n; T ), where g(S; n) is the length of the path from S to n, and h(n; T ) an

estimate of the length of the path from n to T . In contrast, the function F can have any

desired form and may use any information available to the search agent. The parameter

� can be interpreted as controlling the relative emphasize on the functions f and F . In

particular � = 0 gives the classical A�
algorithm, while � = 1 gives a best-�rst-search

algorithm which is wholly controlled by the function F .

The A�

� algorithm has properties similar to those of A�
. Like A�

, it terminates on

�nite graphs and is complete on possibly in�nite graphs. The solution found by A�

� is

�-optimal, as made precise in the following theorem.

6That is, for any on-line search algorithm, there exists an obstacle course where the algorithm generates
a path at least that long.
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Theorem 1 ([15],Theorem 3.13) Let the function h(n; T ) be admissible. When A�

�

selects a node z for expansion, the f-value of z satis�es f(z) � (1 + �)lopt, where lopt is

the length of the shortest path from S to T .

In particular, A�

� always �nds a path from S to T whose length l satis�es l � (1 + �)lopt.

Last we state the ellipse property of A�

� , which is a straightforward extension of a similar

property of A�
[15, p. 146-150]. We assume that the function h(n; T ) is given by the

Euclidean distance, h(n; T ) = kn� Tk, although the result can be generalized to any

admissible function h(n; T ).

Theorem 2 Let a graph G be embedded in Euclidean space with the cost of edges given

by their length, and let h(n; T ) = kn� Tk. Then when A�

� selects a node z for expansion,

the node satis�es

kz � Sk+ kz � Tk � (1 + �)lopt;

where lopt is the length of the shortest path from S to T . Thus A�

� expands only those

nodes which lie in an ellipse with focal points S and T and size (1 + �)lopt.

Proof: The function f is given by f(n) = g(S; n)+ kn� Tk. Since h(n; T ) = kn� Tk

is admissible, we may invoke Theorem 1. According to the theorem, when a node z is

selected for expansion from focal it satis�es f(z) = g(S; z) + kz � Tk � (1 + �)lopt. On

the other hand, the length of the path from S to z along the graph is equal or larger than

the Euclidean distance between S and z. Hence g(S; z) � kz � Sk, and consequently

kz � Sk+ kz � Tk � (1 + �)lopt. 2

B Implementation of the IRoadmap Method

To implement the IRoadmap method on a cylindrical mobile robot, we need to specify

how to trace a ridge-curve, how to detect a ridge-curve endpoint, and how to implement

the critical point detector. First we consider the tracing of a ridge-curve. The robot's

range sensor induces an imaginary ring surrounding the robot, whose radius is equal to

the distance of the robot to the closest obstacle. Using the range data as a repulsive

�eld, the robot moves away from the closest obstacle while limiting its position to a slice

perpendicular to the sweep direction. When the distance to the obstacles achieves a

maximum, the robot has reached a ridge-curve. The robot then traces the ridge-curve

by moving along the sweep direction by a small increment, then repeating the distance

maximization process in the new slice. More sophisticated tracing techniques are also

available, see e.g. [5].

Next we describe how the robot detects the endpoints of a ridge-curve. An endpoint

which lies on the boundary of the freespace is easily detectable, since the robot touches

some physical obstacle at this point. A bifurcation endpoint is detected with the technique

depicted in Figure 5(a). Let the central line of the robot be the line passing through the

center of the robot parallel to the sweep direction. When the robot is located in the
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Figure 10: Detection of critical points by (a) distance discontinuity, (b) obstacle tangent

perpendicular to the sweep direction.

interior of a ridge-curve, its range sensor detects the two closest obstacles on both sides

of the robot's central line. At a bifurcation point, the range-sensor's ring touches one

of the two closest obstacles exactly on the central line. At this location the two closest

obstacles are on the same side of the robot, and they repulse the robot towards another

ridge-curve. This is precisely the condition for a bifurcation endpoint.

Last we describe the implementation of the critical point detector. It can be veri�ed

that the critical points in c-space lie on the boundary of the c-obstacles, at points where

the tangent to the c-obstacle is perpendicular to the sweep direction. It can further be

veri�ed that the normal to the boundary of a physical obstacle Bi at b is also normal to

the boundary of the corresponding c-obstacle CBi at a point c where the normal crosses

the boundary of CBi (Figure 5(b)). Thus the tangent to Bi at b is parallel to the tangent

to CBi at c. The robot detects the critical points by measuring the distance to the

obstacles along two rays which are perpendicular to the sweep direction (Figure 10(a)).

If one of the rays detects a distance-discontinuity between successive readings, the point

of discontinuity, denoted b, lies on the boundary of an obstacle Bi. Assuming that the

robot coordinate rx is aligned with the sweep direction, the coordinates of b are: b =

(rx; ry+minfdi; di+1g), where di and di+1 are the successive distance readings and (rx; ry)

are the robot coordinates. Since the measurement ray is tangent to Bi at b, the tangent

to CBi at the corresponding point c is perpendicular to the sweep direction, and c is a

critical point. If di < di+1 the critical point is a join point, and if di > di+1 it is a split

point. The c-space coordinates of c are: c=(bx�R; by), where b=(bx; by) is the point on

the boundary of Bi, R is the radius of the robot, and the � sign depends on the direction

of motion of the robot and its position with respect to the obstacle.

In our implementation, we have found that practical range sensors such as sonars ob-

tain exact readings only when the measurement ray is nearly perpendicular to an obstacle

boundary. But by construction at a critical point the measurement ray is tangent to an
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obstacle boundary. Hence we augment the distance-discontinuity measurement with the

following predictive technique. Each time the robot reaches a new node on the roadmap,

it scans the environment for obstacle boundary points whose tangent is perpendicular

to the sweep direction (Figure 10(b)). These points satisfy a necessary condition for a

critical point. When the robot passes through the slice of such a point it check for dis-

tance discontinuity at this point. The combination of the predictive technique with the

distance-discontinuity check provides a reasonably accurate detection of the critical points

in practice.
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