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Abstract
The path planning problem has been proven both PSPACE complete and
NP complete. All the traditional approaches have only had marginal results
when trying to tackle this problem. In recent years a Probabilistic RoadMap
planner  (PRM) has been developed that  has had  impressive  results.  This
planner  has  had  success  in  high  dimensions  but  because  of  its
randomness it  is  not  appropriate  in  low dimensions.  The Voronoi  diagram
approach is exact and is thus appropriate in two dimensions. I will discuss
my  implementation  of  the  Voronoi  diagram  approach  and  show  that  this
method  is  not  only  faster  than  the  standard  visibility  graph,  but  is  more
desirable as well. 
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Introduction
Hwang  and  Ahuja [ HA92 ]  describe  a  highly  automated  factory  where
mobile  robots  pick  up  parts  and  deliver  them  to  assembly  robots.  The
robots  must  navigate  the  factory  without  colliding  with  other  objects  and
robots.  The  paths  that  they  take  must  be  efficient  and  seamless;  that  is
they  must  not  take  any  delays  in  choosing  a  good  path.  This  need  for
collision  avoidance  and  efficient  motion  leads  to  the  creation  of  robot
motion path planning algorithms. 

A path planner is an algorithm that seeks to find a path from a starting point
to  the  finishing  point.  This  planner  is  given  the  source  and  goal
configuration  and  has  to  find  a  connecting  path  that  avoids  any
intermediate obstacles. 

There  are  an  increasing  number  of  practical  problems  that  involve  path
planners.  Koga  et  al. [ KKKL94 ]  show  how  computer  graphics  animators
benefit  from a path planner that automatically synthesizes video clips with
graphically  simulated  human  and  robot  characters.  Kavraki [ Kav97 ]
illustrates  how  motion  planning  is  used  in  molecular  biology  to  compute
motions  of  molecules  docking  against  each  other.  Chang  and  Li [ CL95 ]
show that path planning has been used to check if  parts can be removed
from  an  airplane  engine  for  inspection  and  maintenance.  Efficient  and
reliable  path  planners  are  also  required  in  medical  surgery  and  space
exploration. 

Reif [Rei79]  proved that  the path  planning problem is  PSPACE-complete.
This  means  that  a  path  planner  requires  storage  space  (memory)
exponential in the degrees of freedom. This exponential space requirement
stems from the vast number of different configurations these planners have
to cope with. For example, if a robot has 12 degrees of freedom and each

of these can occupy only 100 discrete positions it would amount to 10012

configurations.  To  store  all  of  these  configurations  would  require  a  lot  of
space! 

In addition to the storage problem, Reif also proved that the path planning
problem is NP-complete. This means that a path planner's running time is
exponential in the degrees of freedom. Together the exponential time and
storage requirements create a challenging research problem. 
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Many different heuristics have been proposed to solve the motion planning
problem.  Firstly  in  Chapter  two,  I  will  look  at  the  notion  of  Cspace,  its
construction and its place in the standard procedure. In Chapter three I will
explain  in  depth  the  advantages  of  the  Probabilistic  RoadMap
planner(PRM). In Chapter four I will explain my implementation of the road
map  approach  using  Voronoi  Diagrams.  Additionally,  I  will  show  that  this
approach  is  better  than  the  standard  Visibility  Graph  approach.  In
conclusion, I will show that even though the Voronoi diagrams planner and
the  PRM  are  two  of  the  best  planners,  different  applications  require
different solutions. 

Chapter 2 
The Traditional Approach
2.1  Introduction
Hwang and Ahuja [HA92] have looked in depth at all of the best attempts at
solving  the  motion  path  planning  problem.  They  have  come  to  the
conclusion that  different  approaches are required in  different  applications.
Having said that there are some basic issues and steps that make up any
motion planner. 

2.1.1  Definitions

Before addressing these steps it is important that the terms used here on in
are  well  defined.  The  world  space  refers  to  the  physical  space  in  which
robots  and  obstacles  exist.  The  configuration  of  an  object  is  a  set  of
independent  parameters  that  characterizes  the  position  of  every  point  in
the object. Six parameters are needed to specify the configuration of a rigid
object in three dimensions (three for position and three for orientation). The
degrees of freedom (dof) are the number of parameters required to specify
the configuration of an object. The configuration space (Cspace) is the set
of all configurations. The free space (Cfree) is the part of Cspace in which

the  robot  does  not  collide  with  any obstacles.  The  path  of  an  object  is  a
curve  in  the  configuration  space.  Feasible  simply  means  collision  free.  A
solution is a feasible path from the start to the end. 
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2.1.2  Standard Procedure

The  standard  procedure  in  motion  planning  begins  with  constructing  a
model of the physical robot and objects. Once this internal world has been
built  the  configuration  space  is  built  using  any  one  of  many  methods.  A
suitable  motion  planning  approach  is  then  applied  on  the  Cspace.  After
this, a search method must be selected to find a solution path. Finally, the
solution path may be locally optimized to yield a shorter and smoother path.

2.2  Modeling Objects
A  robot  has  to  have  a  model  of  objects  in  its  environment  before  any
motion planning can commence. This information can either be attained by
visual sensors or by a human entering data. Hwang and Ahuja [HA92] list
five common ways of representing the objects. 
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Figure 2.1: Object Representation. Reprinted from Hwang and
Ahuja [HA92].

2.2.1  Grid

A grid is an array of identical cells where each cell indicates the presence
of  an  obstacle.  A  cell  would  typically  be  marked  as  1  if  an  obstacle
occupies  it  and  be  marked  as  0  otherwise.  See  Figure 2.1 b  for  more
details.  Although  this  may  seem  inefficient  its  simplicity  has  many
computational  advantages.  Calculating  the  volume  for  instance  is  best
calculated using this representation. This is especially true when the object
is irregularly shaped. 

2.2.2  Cell Tree

The  cell  tree  is  an  extension  of  the  grid  idea  where  the  object  space  is
divided into a small number of big cells. See Figure 2.1c. The cells that are
completely  inside  or  outside  are  marked  as  such  and  the  other  cells  are
further  divided.  This  division  continues  until  it  reaches  a  resolution  limit.
The cell tree uses less space than the grid but the adjacency computation
of cells takes longer. 

2.2.3  Polyhedra
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The  commonly  used  polyhedral  representation  approximates  all  the
obstacles as a series of  straight lines or  flat  faces and simply stores their
corner  coordinates.  This approximation is  usually accurate enough due to
the  nature  of  objects  having many straight  surfaces.  Spheres,  circles  and
other  irregular  shapes  are  represented  by  a  finite  number  of  flat  faces  in
such a way that the original shape is preserved as much as possible. See
Figure 2.1d. Polyhedra are often used since many efficient algorithms exist
for  computing  the  intersection  of,  and  distance  between,  two  polyhedra.
This  is  important  since  computation  of  intersection  and  distance  is
performed quite often in motion planning. 

2.2.4  CSG and B-Rep

Constructive  Solid  Geometry  (CSG)  represents  objects  as  the  union,
intersection  and  set  differences  of  primitive  shapes  such  as  squares,
triangles  and circles.  The Boundary Representation (B-Rep)  explicitly lists
boundary  features  of  objects  such  as  lines  and  circular  arcs.  The  good
thing  about  both  of  these  methods  is  the  ease  at  which  circles  are
represented and small space that it needs. See Figure 2.1e-f. 

2.3  Cspace Construction
Once the objects have been represented the Cspace can be constructed.
Hwang  and  Ahuja [ HA92 ]  list  seven  basic  ways  of  computing  this  and
Kavraki [ Kav95 ]  gives  an  interesting  alternative  using  the  Fast  Fourier
Transform. 

2.3.1  Point Evaluation

This  simple  method  involves  placing  the  robot  in  every  configuration  and
determines whether it intersects any obstacles. This is the most inefficient
method  since  all  possible  configurations  are  checked  for  intersection  and
this grows exponentially. 

2.3.2  Minkowski Set Difference

See Figure 2.2. The Minkowski Set Difference (MSD) of two sets A and B is
the set of points: 

MSD(A,B) = { a - b \mid a ⊆ A , b ⊆ B}  .
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This results in a set containing A such that B can not intersect A providing
the reference point of B does not go inside the boundary of this new set. In
the construction of  Cspace this method effectively grows the obstacles by
the size of the robot. For a rigid robot that cannot change its orientation the
Cspace is the union of the MSD between areas occupied by obstacles and
the robot. However if the robot can rotate or change its shape the Cspace
needs to have another dimension and be built up slice by slice. Every slice
is  the  MSD of  the  obstacles  and  the  robot  with  a  fixed  orientation.  Since
this is rather complicated this method is mostly used for rigid non-rotating
robots such as a two dimensional polygon. 

Figure 2.2: The black area is the original object and the lightly shaded
region is the Minkowski Set Difference. The reference point of the robot, r,
in this orientation cannot be placed in this region. Reprinted from Hwang

and Ahuja [HA92].

2.3.3  Boundary Equation
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This method involves deriving the constraints on the configuration variables
that  bring  the  robot  in  contact  with  obstacles.  These  constraints  are
expressed algebraically as equations. The equations are derived from the
vertex to face and edge to edge contacts between the robot and obstacles.
Finding  these  equations  is  very  difficult  especially  for  Cspace  having  dof
(defined in section 2.1.1) greater than three. 

2.3.4  Needle

The  needle  method  involves  fixing  every  configuration  parameter  except
one. By varying this parameter the values that bring the robot into contact
with an obstacle are computed. These values give intervals (or needles) of
the Cspace. This method is often used to generate a two dimensional slice
of the Cspace by fixing all but two parameters. One of these parameters is
slowly  varied  as  needles  are  constructed  with  the  other  parameter.  This
needle  method  is  not  used  for  higher  dimensions  because  of  the  large
number of needles required. 

2.3.5  Sweep Volume

This method computes the volume in the world space swept by a robot as
the  configuration  is  varied  over  a  set  in  Cspace.  If  the  volume  does  not
intersect  any  obstacles  the  set  is  in  C free .  Sweep  volume  is  effective  in

determining Cfree but is hard to compute in higher dimensions. 

2.3.6  Template

Branicky and Newman [BN90] developed a method that computes Cspace
based  on  the  features  of  the  physical  obstacles.  The  shapes  of  the
obstacles  have  matching  shapes  called  a  template  in  Cspace.  A  line
obstacle  for  instance has a  matching ellipse inside Cspace.  The size and
position  of  the  templates  depend  on  the  orientation  of  the  obstacles.
Complex  obstacles  are  broken  down  into  simpler  shapes  that  have
matching  templates  in  Cspace.  Finally  the  Cspace  is  made  up  of  these
templates  ``stamped''  together.  This  method  works  well  for  dof  less  than
five but for higher dof it suffers from huge memory requirements due to the
way templates are stored. 

2.3.7  Jacobian Based Approach
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Paden  et  al. [ PMF89 ]  developed  a  very  elegant  method  to  compute  a
``block''  of  Cspace.  The Jacobian  J  of  a  robot  is  a  matrix  that  relates  the
displacement,  dx,  of  a  point,  p  on  the  robot  to  the  change  in  the  robot
configuration, dq. The bound B(q) is the maximum of the absolute value of
the Jacobian J at a configuration q over all points on the robot (max|J(q)|). If
the  minimum  distance  between  a  robot  in  a  configuration  q  and  all  the
obstacles is D then it follows that the sphere centred at q with radius D/B(q)
is  in  C free .  It  also  follows  that  if  the  minimum  distance  between  a

configuration q that is inside an obstacle and the edge of the obstacle is D_

then the sphere centred at q with radius D_/B(q) is an obstacle in Cspace.
This  approach  can  be  adjusted  by  using  different  measures  for  distance.
This will  result  in different shapes being included or excluded from Cfree.

Cuboids  for  example  can  be  generated  using  the  distance  max\mid  p i  -

qi\mid, where pi and qi are a point on the robot and a configuration of the

robot. 

2.3.8  Fast Fourier Transform

Kavraki [ Kav95 ]  developed  this  interesting  method  that  relies  on  the
observation that for a non rotating rigid body the Cspace is a convolution of
the  workspace  and  the  robot.  The  running  time  depends  only  on  the
discretization  used.  It  is  independent  of  the  complexity  of  the  robot  and
obstacles.  This  method  works  best  where  no  orientation  changes  are
required.  If  they are needed the Cspace can still  be built  up slice by slice
using a Fast Fourier Transform for every orientation but this takes time. In
addition, this method benefits from the amount of research already done in
this field and from the development of specific hardware to handle the Fast
Fourier Transform. Another advantage is the fact that intersections can be
computed  in  constant  time  since  the  Cspace  is  stored  in  a  grid.  The
analysis done by Kavraki suggests that this method is best used when the
shape  of  the  obstacles  and  robot  are  really  complex.  Otherwise  if  the
shapes are simple other methods such as needle, point and Minkowski Set
Difference are more appropriate. 

2.3.9  Analysis

All of the above methods work well in low dimensions. However as the dof
increase, Cspace grows exponentially and thus becomes extremely difficult
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to  compute.  I  hypothesize that they have a natural  limit  at  around six dof.
For  higher  dimensions  other  methods  need  to  be  used  since  the  Cspace
can no longer be explicitly stored. In the following Chapter I will discuss an
approach that has been successfully used in dof greater than 75. 

2.4  Motion Planning
Once Cspace has been constructed the real problem solving begins. Many
different  approaches  have  been  proposed  for  Motion  Planning  (MP).
Hwang and Ahuja [HA92] state that these methods are a variation of  four
key  approaches,  the  skeleton,  cell  decomposition,  potential  field,  and
mathematical  programming.  I  will  outline  all  of  these  methods  in  this
section.  In  the  next  two  chapters  I  will  discuss  in  more  detail  two  of  the
skeleton approaches, the probabilistic roadmap and the Voronoi diagram. 

2.4.1  Skeleton

This  approach  involves  retracting  or  reducing  C free  onto  a  network  of

one-dimen-sional lines. MP is then reduced to a graph-searching problem.
Three steps are involved. A path is first found from the starting position to a
point on the skeleton. A path is then found from the goal configuration to a
point on the skeleton. Finally a path is constructed between the two points
on  the  skeleton.  The  correctness  of  the  solution  strongly  depends  on  the
skeleton representing the entire Cspace. If the skeleton does not represent
the entire Cspace a solution path may be missed. The standard skeletons
are the visibility graph, the Voronoi diagram, the silhouette and the subgoal
network.  All  of  these  will  be  discussed  with  the  exception  of  the  Voronoi
diagram, which will be covered in Chapter four. 

The visibility graph is the collection of lines in Cfree that connects a feature

of an object to that of another. A solution is found when the start and goal
configurations are included as features in the graph. Asano et al. [AGHI85]

developed a way to construct this graph in O(n2) time in two dimensions,
where  n  is  the  number  of  features.  This  visibility  graph  will  be  compared
with the Voronoi implementation in Chapter four. 

Canny [Can87]  presented a  general  method  of  constructing  a  skeleton in
arbitrary dimensions. His method involves recursively projecting objects of
higher  dimensions  into  lower  dimensions  and  tracing  out  the  boundary
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curves  of  the  projection,  which  is  called  the  silhouette.  This  process
terminates  when  it  reaches  the  one-dimensional  line.  To  ensure  that  the
projections  retain  the  features  of  the  object,  linking  curves  are  placed
where  new silhouette  curves  appear  or  disappear.  This  method  is  mostly
used for  theoretical  analysis  since a path  found using this  method makes
the robot slide along obstacle boundaries. See Figure 2.3. 

w 

Figure 2.3: Silhouette curve. Reprinted from Hwang and Ahuja [HA92].

The subgoal network does not need the Cspace to be constructed since it
only checks a number of finite configurations. The method involves keeping
a  list  of  reachable  configurations  until  it  reaches  the  goal.  A  simple  local
MP  algorithm  called  a  local  operator  is  used  to  determine  reachability.
Moving the robot in a straight line between the configurations is an example
of  a  local  operator.  See  Figure 2.4 .  As  its  name  suggests  the  subgoal
network  generates  intermediate  configurations  called  subgoals  and  uses
the local  operator to successively move the robot through the subgoals. If
the  end configuration is  not  reached these subgoals are  stored and more
subgoals  are  generated  and  passed  to  the  local  operator.  This  process
continues  until  it  reaches  the  goal.  To  summarize,  this  method  moves
towards the goal from the generated subgoals using a local operator. 

The subgoal network is memory efficient since the Cspace does not need
to  be  explicitly  stored.  The  choice  of  the  local  operator  is  the  most
important  consideration  in  this  method  since  it  determines  its
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completeness.  The  simple  go-straight  local  planner  often  fails  to  find
solutions between two points  that  are  far  apart.  Chen and Hwang [CH92]
completed  work  on  a  local  operator  that  is  a  global  motion  planner.  It
decomposes  the  MP  problem  into  a  number  of  simpler  MP  problems.
Hwang and Ahuja [HA92] recommend using a potential  field method for a
local operator since it is found to be the most efficient. This is an example
of where two MP techniques are used together to create a better solution. 

Figure 2.4: A subgoal network. Reprinted from Hwang and Ahuja [HA92].

2.4.2  Cell Decomposition

This MP algorithm divides Cfree into a set of  simple cells.  The adjacency

relationships between each cell are stored and then the collision free path
can be computed. This solution is found by finding the cells that contain the
initial and final configurations and then connecting them using a sequence
of connected cells.  The cells can be decomposed in a few different ways.
The  first  method  uses  the  object  boundaries  to  generate  the  cell
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boundaries  (object  dependent).  The  second  way  partitions  Cspace  into
cells  of  a  simple  shape  and  then  computes  if  the  cell  is  in  C free  (object

independent).  The  object  dependent  decomposition  generates  a  lot  fewer
cells  than  the  object  independent  method  but  the  algorithm  is  also  more
complex. Cfree is better represented by the object dependent method since

this  decomposition  does  not  contain  the  gaps  around  obstacles  that  are
present in the object independent method. Increasing the number of cells in
the  independent  decomposition  can  reduce  this  effect  but  this  consumes
more memory. 

2.4.3  Potential Field

Khatib  and  Mampey [ KM78 ]  first  developed  this  idea  of  using  a  potential
function for obstacle avoidance. The potential is a scalar function that has a
minimum when the  robot  is  at  the goal  configuration and  a  high  value on
obstacles. The function in Cfree will be sloping downward towards the goal.

In this way the solution will be found by following a path down towards the
goal configurations. 

Two  steps  are  needed  to  construct  the  potential.  Firstly,  an  obstacle
potential  is  constructed  that  has  a  high  value  on  the  obstacle  that
decreases  monotonically  as  the  distance  from  the  obstacles  increases.
Using  the  inverse  of  the  distance  to  the  obstacles  is  a  suitable  choice.
Next, a goal potential is constructed that has a large negative value at the
goal  configuration  that  increases  monotonically  as  the  distance  from  the
goal increases. The inverse of the distance to the goal is a good choice to
make  here.  The  obstacle  potential  and  the  goal  potential  are  added
together to give the final potential. 

Although  this  approach  seems  simple,  the  potential  function  usually  has
several  local  minima  at  configurations  other  than  the  goal.  These  minima
trap the robot and no solution is found. The potential field is therefore often
used  in  conjunction  with  other  motion  planners  like  the  subgoal  network
mentioned earlier. One other problem with the potential field is the problem
it  has  creating  an  obstacle  potential  for  concave  objects.  Despite  its  few
problems  the  potential  field  is  still  attractive  due  to  its  low  computational
costs. 

2.4.4  Mathematical Programming
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This  MP  approach  uses  a  numerical  method  to  find  the  optimal  solution.
This  is  set  up by representing obstacle  avoidance as  a  set  of  inequalities
on  the  configuration  parameters.  The  solution  is  thus  an  optimization
problem  that  finds  a  path  between  the  start  and  goal  configurations
minimizing  a  certain  scalar  quantity.  This  quantity  is  typically  the  total
distance  of  the  path.  Alternatively  the  optimization  could  be  changed  to
maximize the distance from the obstacles to achieve a desirable path. This
however  is  better  done  using  Voronoi  diagrams  that  are  explained  in
Chapter four. 

2.5  Searching
After  C free  has  been  described  using  a  motion  planning  algorithm  the

solution  is  found  by  searching  for  a  path  through  the  feasible
configurations.  After  a  skeleton  approach  has  been  used,  for  example,  a
search  is  still  required  to  find  the  shortest  solution.  Many  searches  have

been  developed  such  as  breadth  first,  best  first,  depth  first,  A * ,
bidirectional [ BF81 ],  simulated  annealing [ BL90 ]  and  Dijkstra's  shortest
path  algorithm [Dij59 ].  All  of  these  searches  can  be  used  in  MP but  they
each have their unique advantages. 

2.5.1  Depth First and Breadth First

The  depth  first  search  and  the  breadth  first  search  are  both  not  very
efficient.  The  depth  first  search  always  generates  a  child  of  the  most
recently  reached  configuration.  In  this  way  it  travels  in  straight  lines  and
only changes direction when a obstacle is reached. The solution is thus not
going to be the shortest  one and in many cases it  will  seemingly take the
longest possible way. The breadth first search generates the children of the
earliest  reached  configurations  first.  This  is  similar  to  a  bush  fire  since  it
searches all the configurations closest to it before moving outward. This will
find the shortest path but it takes a long time. 

2.5.2  Best First

The best  first  search is  an improvement since it  generates the children of
the current  configuration and moves to the child  nearest  to  the goal.  This
search requires  some measure of  distance to  be known.  The straight-line
distance  is  a  useful  metric  in  this  case.  This  search can  also  take  a  long
time to calculate if a blind alley exists between configuration obstacles. 
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2.5.3  A*

The A* search is a good way to find the solution when the minimum cost is
desired. This search requires an underestimate of the cost from the current
configuration to the goal (cost to go) such as the straight-line distance. The
sum of the actual cost so far and the cost to go gives a lower bound on the
actual  cost.  This  sum is  called  the  total  cost.  During  the  search  the  child

with the lowest total cost is visited first. The performance of A* is linked to
the accuracy of the cost to go. The smaller the error in the underestimate
the faster the search will be. 

2.5.4  Bidirectional

A bidirectional search generates the children of both the start and the goal
configuration.  It  progressively  moves  outward  until  one  of  the  children
connects  and thus finds a  solution.  This  search is  efficient  when the goal
configuration is  hard to reach. A good example will  be the case when the
goal is in a narrow channel between obstacles. 

2.5.5  Dijkstra

Dijkstra's  algorithm  is  the  most  efficient  in  finding  the  shortest  solution.  It

finds this solution in O(n2) time. It works by partitioning the space into two
sets of configurations. See Figure 2.5. 
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Figure 2.5: This is how Dijkstra's algorithm works. The set S contains the
configurations whose shortest paths have already been determined. The
set V is made up of all the other configurations and the best estimates of

the shortest path to them. The curly braces show the estimated path in set
V and the shortest path in set S. The brackets show the estimated distance
in set V and the shortest distance in set S. In each iteration, the path with

the smallest estimate in V is added to the set S. The estimates are
recalculated and the process begins again.

The  set  S  is  the  set  of  configurations  whose  shortest  paths  have  already
been determined and the set V is made up of all the other configurations. It
also keeps track of the best estimates of the shortest paths (distance and
direction) to every configuration. The algorithm begins with only the source
configuration  in  S.  It  relaxes  the  neighbours  of  the  set  S  by  updating  the
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shortest path if necessary. The configuration u in V with the shortest path is
moved  into  S.  This  process  continues  until  there  are  no  more
configurations inside the set V. In this way the algorithm not only finds the
solution,  it  also finds the shortest  path between the source and any other
configuration.  In  my  Voronoi  implementation  in  Chapter  four  I  used  this
search. 

2.5.6  Random Search

If  it  is  not  possible  to  search  the  entire  search  space  due  to  exponential
time  requirements  a  random  search  technique  can  be  used.  Barraquand
and  La-tombe [ BL90 ]  have  successfully  used  simulated  annealing,  for
example. This method will  not be covered here since the next chapter will
involve a random MP approach. 

2.6  Local Optimization
After  a  solution  has  been  found  it  can  still  be  further  optimized  using  a
number of criteria. The length of the path, the safety clearance between the
robot  and  obstacles,  the  total  traveling  time  and  the  amount  of  energy
spent  are  some  of  the  typical  measures  used.  Hwang  and  Ahuja [ HA92 ]
express this mathematically as a minimization of 

⌠
⌡ 

qgoal 

qstart 
(1+

w

D(q)
)dq

where  D(q)  is  the  distance  between  the  robot  and  obstacles;  w  is  the
relative weighting factor, and the integral is over the path connecting qstart
and  q goal .  This  minimization  prevents  the  robot  from  colliding  with

obstacles.  In  Hwang  and  Ahuja [ HA89 ]  an  obstacle  potential  function  is
used  in  place  of  D(q)  and  this  is  found  to  be  simpler  to  compute  and
converges to an optimum in 20-30 iterations. 

2.7  Conclusions
The  above  standard  procedures  can  be  applied  to  any  motion-planning
problem  but  the  implementation  varies  with  every  different  situation.
Combinations of approaches can also be used to great effect. Hwang and
Ahuja [ HA92 ]  discuss  many  of  these  combinations  in  great  depth.  In  the
next two Chapters I will only discuss two of these approaches in detail. 
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Chapter 3 
Roadmap Approach
3.1  Introduction
With all of the previous approaches, the number of degrees of freedom of
the robot and its environment was the major limiting factor. Barraquand et

al. [BKL+97] developed a random sampling scheme for path planning that
has been successful in coping with larger dof. Kavraki and Latombe [KL98]
extended this idea to solve multiple planning problems involving robots with
3  to  16  dof  using  a  Probabilistic  RoadMap  planner  (PRM).  Koga  et
al. [ KKKL94 ]  used  a  similar  approach  to  automatically  synthesize  video
clips  with  graphically  simulated  human  and  robot  characters  involving  78
dof. 

The  roadmap  is  an  extension  of  the  skeleton  approach.  A  roadmap  is  a
collection  of  paths  that  allow  for  efficient  navigation  of  Cspace.  The  idea
behind  the  roadmap  is  as  follows:  If  you  wanted  to  travel  between  two
places, you would need a map. Since this map does not exist, it has to be
created. This map does not need to be too detailed since you only need the
major highways to find a connecting route. Upon creation of the map, you
are then able to travel between any two points in the region provided that
you  can  see  the  highway  from  these  two  points.  This  simple  idea
summarizes  the  roadmap  approach.  It  involves  a  pre-processing  phase
where the roadmap is constructed. After this, many different queries can be
made to check if roads exist between two points. 

Most other planners only allow one query. The fact that roadmap planners
can do more is a considerable advantage. One of the other advantages of
the  PRM  is  that  its  performance  is  measurable.  By  this,  I  mean  that  the
probability  that  it  will  find  a  path  bounds  its  running  time.  A  significant
improvement  in  running  time  results  from  lowering  the  probability  of
correctness. This is the notion of probabilistic completeness. 

In  this  Chapter,  I  will  discuss  two  implementations,  the  potential  field
planner  and  the  PRM.  I  will  also  assess  their  performance along with  the
associated visibility and path clearance assumptions. 
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3.1.1  Definitions

The clearance  of  a configuration q is the minimum distance from q to the
boundary of  Cfree.  In  three dimensions, this corresponds to the radius of

the largest sphere centred at q that is still inside Cfree. If the configuration

q  is  inside  an  obstacle,  the  clearance  returns  a  negative  number
corresponding  to  the  minimum distance  from q  to  the boundary of  Cfree.

Therefore, if a configuration is in Cfree a positive distance is returned; if it is

not in Cfree a negative distance is returned; and if it is on the boundary of

Cfree zero is returned. 

A  trap  is  a  basin  of  attraction,  in  a  potential  function  that  is  almost
completely  surrounded  by  forbidden  configurations.  A  configuration  sees
another  configuration if  a  simple  path  such as  a  straight  line  can connect
them. The degree of a configuration is the number of configurations that it
is  connected to. The connectedness  of a region in Cspace is proportional
to  its  degree.  The  least  connected  region  in  Cspace  contains  the
configuration  that  has  the  lowest  degree.  A  component  is  a  set  of
configurations where a path is known to exist between every configuration.
A  deterministic  planner  is  guaranteed  to  find  a  path  between  any  two
configurations  but  it  takes  a  long  time  to  do  so.  A  milestone  refers  to  a
single configuration in a roadmap. 

3.2  Potential Field Planner
Koga  et  al. [ KKKL94 ]  in  their  implementation  extended  the  potential  field
planner  that  was  first  used  by  Barraquand  and  Latombe [ BL91 ].  The
potential function is a positive function with a global minimum of zero at the
goal configuration; that is 

U : Cfree → R+∪{0}  .

Barraquand  and  Latombe [ BKL + 97 ]  describe  some  techniques  that
automatically  generate  this  function.  These  techniques  are  similar  to  the
ones mentioned earlier  in  Chapter  Two.  A solution is  found by alternating
between down and escape motions until it reaches the global minimum. 
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The  down  motion  works  by  taking  a  configuration  q s  and  checking  its

adjacent  configurations  for  a  lower  potential  until  it  cannot  find  one.  This
motion will gravitate downward until it reaches a local minimum. The outline
for the down motion algorithm is as follows: 

Down-Motion(qs) 

1. Store qs in q. 

2. While q is not labelled a local minimum: 

a. Pick  at  random  up  to  h  (arbitrary  number)  configurations
adjacent to q until q′ is found such that U(q′) < U(q). 

b. If  this is successful  then reset q to q ′  else label  q as a local
minimum. 

3. Return q. 

The adjacency computation in step 2(a) takes advantage of the clearance
function. The creation of a set of adjacent configurations to q relies on the
geometric properties of c, the clearance of q. Adjusting each configuration
component  q i ,  in  n  dimensions  by up  to  c/√n remains  inside  Cfree .  The

expression  of  the  set  of  adjacent  configurations  to  q  is  the  product  of  n
intervals: 

∏
i = 1... n 

[qi+c/√n , qi - c/√n]  .

The  random  generation  of  adjacent  configurations  becomes  a  matter  of
choosing a random point in the adjacent set. 

The escape motion involves a random walk of length L, hoping that this will
end  up  out  of  the  local  minimum.  Barraquand  and  Latombe  have  shown
that  on  average  a  random  walk  of  length  L  ends  up  √ L  away  from  the
starting  point.  They  also  suggest  choosing  √ L  to  be  the  radius  of  the
Cspace. The outline for the escape motion is as follows: 

Escape-Motion(ql) 
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1. Pick at random the length, L, of the motion. 
2. Store ql as q and set l to 0. 

3. While l < L: 

a. Pick at random a free configuration q′ adjacent to q. 
b. Set l  to be l  plus the max. of |qi-qi ′ | ,  where i  varies through

each dof. 
c. Store q as q′. 

4. Return q. 

If the down motion falls into a trap, this escape motion has little chance of
escaping the local minimum. 

The potential field planner works by successively moving down and up until
it reaches the goal. The algorithm is the following: 

Potential field planner(qstart,qgoal) 

1. Store down-motion(qstart) as ql 

2. While ql ≠ qgoal do: 

a. Do: 

i. If  total  configurations  generated  so  far  exceed  an
arbitrary number n then return NO. 

ii. Store Down-Motion(Escape-Motion(ql)) as q′. 

until U(ql′) < U(ql). 

b. Store ql′ as ql. 

3. Return YES. 

This planner has been used with success in many situations but it still has
a few niggling problems.  Despite  the presence of  escape motions to  deal
with local minima, it can still be trapped indefinitely. This uncertainty means
that  the  potential  field  planner's  convergence  speed remains  unknown.  In
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the next section, I will discuss the PRM that was written to overcome these
problems. 

3.3  PRM Construction
Kavraki  et  al. [ KSLO96 ]  developed  this  planner  that  overcomes  the
problems with the potential field planner. No problem specific heuristics are
required with the PRM. Additionally, in the next section, I will show that its
convergence speed is known and can be used to bound the running time of
the algorithm. 

3.3.1  Pre-processing Phase

The pre-processing phase involves choosing r  random configurations that
do  not  intersect  any  obstacles.  After  this  every  pair  of  chosen
configurations that are closer than d are checked for connectedness using
a simple and fast planner. Finally, the roadmap is re-sampled by generating
s  extra  configurations  in  the  least  connected regions.  The algorithm is  as
follows: 

Pre-processing: 

1. Store 0 as i. 
2. While i < r do: 

a. Pick a random configuration q in Cspace. 
b. If the clearance of q is greater than 0: 

i. store q in Roadmap and 
ii. increment i. 

3. For  every pair  of  milestones whose distance apart  is  less than d
try to connect. 

4. Starting  with  the  least  connected  region  c  and  in  order  of
increasing  degree  generate  a  configuration  q  in  the
neighbourhood  of  c  and  try  to  connect.  If  successful  store  q  in
Roadmap. Repeat until s extra configurations are added. 

The above algorithm still leaves a lot of room for choice. The first choice to
make  is  the  design  of  the  random  configuration  generator  in  step  1.  The
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generated  roadmap  needs  to  represent  accurately  the  connectedness  of
Cspace.  Thus  the  random  generator  must  generate  a  wide  sample  of
configurations. 

Another  decision  to  make  is  the  choice  for  connect  in  step  3.  A  fast  and
simple  straight  line  planner  is  a  good  choice  to  make.  A  deterministic
planner  would  not  be  a  good  choice  because  these  planners  take  a  long
time  to  execute  and  accuracy  is  not  necessary  at  this  stage  of  the
algorithm. 

The  distributions  of  r  and  s  also  need  to  be  determined.  Barraquand  et

al. [BKL+97] recommend first randomly generating 2/3 of the total number
of milestones to be generated and then re-sampling to generate the other
1/3. This choice tends to decrease the number of connected components in
Roadmap. Alternatively, the re-sampling step 4 could be replaced by trying
to join the different components using a deterministic planner (permeate ).
This  guarantees  that  all  the  components  in  Roadmap  are  distinct  and
would generate the best queries but this takes a long time and should only
be used as a last resort. 

One  final  choice  is  the  determination  of  the  total  size  of  Roadmap.  The
greater the number of milestones the higher is the accuracy and speed of
the queries. This is related to performance and will be discussed later. 

3.3.2  Querying Phase

After the roadmap has been created the querying process can commence.
This  phase  involves  trying  to  connect  both  q start  and  q goal  to  the  same

component of the roadmap. If it  is not initially successful it tries g times to
find  an  intermediate  configuration  q  that  sees  both  a  milestone  and  the
start or goal configuration. If none of these are successful it returns NO and
terminates.  Otherwise, if  it  is  successful  in finding q it  returns YES if  both
qstart  and  qgoal  are  connected  to  the  same component.  If  however  they

aren't  connected  to  the  same  component  then  NO  is  still  returned.  The
algorithm is as follows: 

Query(qstart,qgoal): 

1. For both qstart and qgoal do the following: 
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a. If there exists a milestone m that sees qi then store m as mi. 

b. Else repeat g times: 

i. Pick a random configuration q in the neighbourhood of qi
until q sees both qi and a milestone m. 

ii. If successful store m as mi. 

iii. Else if all of g fail return NO. 

2. If mstart and mgoal are in the same connected component return

YES else return NO. 

This algorithm varies according to the choices made in the pre-processing
phase. If the re-sampling step were changed to permeate 

then step 1(b)iii would have to be changed to return FAILURE. Choosing permeate guarantees that every
YES  or  NO  answer  from  the  query  is  correct.  Therefore,  NO  in  step  1(b)iii  must  be  changed  to
FAILURE. 

In step 1(b)i  the generation of a neighbour of q i  may require several  guesses before one can be found.
The random generation must take this into account to speed up the algorithm. 

3.4  Performance
Both the potential field planer and the PRM provide solutions to many practical problems with high dof.
The  potential  field  planner,  however  has  a  few  niggling  problems  related  to  the  local  minima  that  it
cannot  escape  easily.  The  PRM  is  a  better  approach  since  it  does  not  have  any  problem-specific
heuristics and its convergence speed is known. 

The  PRM is  probabilistically complete.  This  means  that  if  a  solution  exists  it  will  find  one  with  high
probability  in  bounded  time.  The  running  time  grows  slowly  with  the  probability  we  are  willing  to
tolerate.  Barraquand  et  al. [ BKL + 97 ]  have  guaranteed  the  performance  of  the  PRM  if  the  following
assumptions are true: 

Visibility Assumption The Visibility Assumption or ε-goodness states that each configuration sees
a significant portion of Cfree. Cfree is ε-good if each configuration can see a ε portion of the other
configurations.  So  for  example,  if  C free  is  a  circle  then  every configuration  can  see  every other
configuration. Then Cfree is said to satisfy the visibility assumption and would be 1-good. 

The  value  of  ε  is  inversely  proportional  to  the  running  time  of  PRM  and  to  the  number  of
milestones in the roadmap. However, even high values of ε cannot prevent Cfree from containing
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narrow passages. Consider Cfree made up of two circles overlapping slightly. The value of ε ≈ 0.5
and yet  C free  still  contains  a  narrow passage.  The visibility assumption yields high performance
but it is not strong enough and another is required. 

Path  Clearance  Assumption  The  Path  Clearance  Assumption  states  that  between  the  two
configurations given to the query there exists a collision free path T that achieves some clearance
εinf between the robot and the obstacles. This is a powerful assumption and if true, no re-sampling

step  or  deterministic  planner  is  required  in  the  pre-processing  phase.  The  value  ε inf  is  also
inversely  proportional  to  the  running  time  of  PRM  and  to  the  number  of  milestones  in  the
roadmap. 

3.4.1  Summary

Barraquand et al. state that the number of milestones needed grows only as the absolute value of the log
of the probability of an incorrect answer decreases. They prove this given the assumptions stated above.
If the assumptions are true then the PRM produces extremely good results. Otherwise, it is still a good
planner since it can deal with high dof. The potential field planner in my opinion is not as good since its
convergence speed is unknown. 

3.5  Conclusions
In this chapter, I have compared two planners that have been successful in practical motion planning. I
have implemented a roadmap approach using Voronoi diagrams that I will discuss in the next Chapter. 

Chapter 4 
Voronoi Implementation
4.1  Introduction
The PRM is probabilistically complete; it sacrificed a percentage of its correctness for substantial gains
in speed. In lower dimensions, however the complexity required is vastly smaller and such a sacrifice is
not required. Constructing exact planners that always find a solution if it exists is fast in low dof. In two
dimensions, I have implemented the Voronoi diagram approach and the Visibility graph approach. They
are both roadmap planners since queries are only answered after a map of Cspace is built. These planners
are also exact and efficient. In this Chapter, I will explain my implementation of these approaches and
show that the Voronoi diagram is not only faster but it yields a more desirable path (where the paths do
not touch the obstacles) as well. 

4.2  Voronoi Diagrams
McKerrow [McK91] states that Voronoi diagrams can be used to divide the environment into regions.
Lee  and  Drysdale [ LD81 ]  show  how  partitioning  the  plane  into  polygonal  regions,  each  of  which  is
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associated with a given point, forms a Voronoi diagram. The region associated with a point is the locus
of points closer to that point than any other point. Edges separating two regions are composed of points
equidistant from the given points. Therefore, the Voronoi diagram is the set of lines equidistant from two
or more points.  This makes an excellent planner  since the created paths will  be desirable.  The created
paths lie in between the obstacles and in doing so, they will not touch any obstacles. 

Figure 4.1: Constructing a Voronoi Diagram is as follows: The thick lines in red specify the Voronoi
Diagram, the small black circles specify the points, the thin lines specify the lines equidistant from the

points and the big circles prove the correctness of the Voronoi Diagram.

Figure 4.1 shows how a Voronoi diagram is constructed. The first step involves drawing lines that bisect
every pair of points in the region. Figure 4.1 displays these bisections as the thin lines. The intersection
of these lines determines the corners of the Voronoi diagram (c1 and c2 in Figure 4.1). A circle centred
at  this corner  coordinate will  intersect  the three points closest  to it  (the big circles in Figure 4.1).  The
final Voronoi diagram is the collection of lines drawn between the corners (the thick lines in Figure 4.1).
Yap [Yap87] devised a way to find this diagram in O(nlogn) time. 

4.3  Implementation
I  implemented  the  Voronoi  diagram  approach  using  Matlab  version  5.2  in  Unix.  Matlab  is  a  useful
mathematical language and since a Voronoi function comes built in, it was the logical choice. Six steps
are involved in the planner. Firstly, the environment is set up. The Voronoi diagram is then constructed
based on the points of the obstacles and the boundary. The diagram is then pruned so that only the lines

28 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html



outside  of  the  obstacles  remain.  The  start  and  final  configurations  are  then  connected  to  the  pruned
diagram. Finally, the lines are smoothed and a Dijkstra search is performed to find the shortest path. 

4.3.1  Set up

I set  up the obstacles  as polygons made up of the corner coordinates.  The polygons can be any shape;
they can be concave or convex. The obstacles are programmed manually in the simulation but sensors
could easily attain this information in a practical environment. For simplicity, the robot is assumed to be
a  point.  In  a  practical  environment,  the polygons must  be grown to  accommodate for  the shape of  the
robot. A Minkowski Set Difference is a good choice to make here. 

The Voronoi diagram generates lines between points and does not generate lines around points.  It was
necessary  to  create  a  boundary  to  the  simulation  so  that  the  Voronoi  diagram  would  generate  paths
around  obstacles.  This  boundary  is  made  up  of  a  number  of  equally  spaced  points  in  the  shape  of  a
rectangle. The actual shape of the boundary does not matter as long as it goes around all the obstacles,
the start and final configurations. 

More points than just the corners represent the boundary because the Voronoi diagram generates better
results. Using a spacing equal to the length of the shortest edge of the obstacles is sufficient. The same
principle  applies  to  the  obstacles.  Points  are  inserted  around each obstacle  with  the  same spacing that
was used to generate the border. See Figure 4.2. When the path planner receives all of these points along
with the start and goal points the computation begins. 
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Figure 4.2: This is the input given to the Voronoi diagram calculation. The points in the outer
rectangular box specify the boundary. The blue objects are the obstacles. The points surrounding the
obstacle specify the obstacles. The two star shaped points specify the start and goal configuration.

4.3.2  Voronoi Construction

The Voronoi diagram takes O(nlogn) time, where n is the number of points. The function takes in a set
of points representing the obstacles and the boundary and returns a set of lines specifying the diagram.
Figure 4.3  shows  the  output  from  the  Voronoi  diagram  computed  from  the  input  in  Figure 4.2 .  The
Figure shows that the Voronoi diagram intersects the obstacles. These points must be pruned before any
path planning may commence. 

Figure 4.3: This is the Voronoi diagram of some simple obstacles (O(nlogn) time, where n is the number
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of points).

4.3.3  Pruning

The  lines  of  the  Voronoi  diagram  that  go  through  any obstacle  edge  are  discarded.  Every  line  in  the
Voronoi diagram is checked with every edge of the obstacles. This takes O(n2) time since there are O(n)
lines in the Voronoi diagram and O(n) obstacle edges, where n is the number of points. The lines that
touch the outer edge of an obstacle are not pruned because it  is  conceivable that  a robot will  touch an
obstacle. To distinguish between the lines that go through an edge and those that just touch is not as easy
as it first looks. This requires in depth classification of every type of line intersection. For example, two
lines may intersect (go through each other), they may just touch or not touch at all. If the lines just touch
they may form a T-junction, an L-junction or they may be parallel to each other. If they just touch and
are parallel, they may overlap or not overlap. See Figure 4.4 for more details. 

Figure 4.4: Two lines intersect in the above six ways.

My  implementation  classifies  each  intersection  and  uses  this  information  to  determine  if  the  path
intersects the polygon or not. After the entire pruning process has finished, the function returns the set of
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lines  that  are  outside  of  all  the  obstacles  but  inside  the  boundary.  Figure 4.5  shows  the  output  of  the
pruning function when it received the Voronoi diagram from Figure 4.3. 

Figure 4.5: This is the pruned Voronoi diagram (O(n2) time, where n is the number of points).

4.3.4  Connecting to diagram

The  start  and  final  configurations  are  both  connected  to  the  pruned  Voronoi  diagram  by  finding  the
nearest edge. This takes O(m) time, where m is the number of edges in the pruned diagram. This takes
special consideration of any obstacles that may be in the way. If an obstacle is blocking the direct path,
another edge must be chosen. 

4.3.5  Smoothing and Dijkstra Search

After the configurations have been connected to the diagram, a path can now be found between the start
and  the  goal.  Before  searching  for  the  shortest  path,  the  edges  are  all  smoothed  to  remove  the  large
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corners that exist in the Voronoi diagram. Joining the midpoints of each connecting edge smooths each
corner.  Achieving this  takes  O(m2 )  time,  where  m is  the number of  pruned edges.  This  takes so long
because  for  each  edge  it  has  to  search  for  all  the  edges  that  it  is  connected  to.  The  pruned  Voronoi
diagram contains some corners where three edges meet. See Figure 4.6. Retaining the original corner and
joining it to the mid points of the three edges resolves this situation. 

Figure 4.6: Smoothing an intersection of three edges. The black line is the original line. The midpoints
of these line segments are joined to create the smoothed line.

Finally, a simple and efficient Dijkstra search finds the shortest path. This takes O(m2) time, where m is
the number of smoothed edges. Figure 4.7 shows an example of the shortest smoothed path. The order in
which  smoothing  and searching  for  the  shortest  path  is  done  does  not  greatly affect  the  solution.  It  is
easier to search for the path and then smooth this path because every corner will only intersect one other
edge. Smoothing first however, will ensure that the shortest paths of all the smoothed edges are returned.
Either way the total path length will not change much, if at all. 
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Figure 4.7: This is the final smoothed Voronoi diagram with the shortest path ((O(m2) time, where m is
the number of points).

4.4  Experiment
To test  my implementation  I  built  a  maze  and  compared  the  results  with  the  standard  visibility graph
(simply connecting  all  the  points  together).  See  Figure 4.8  for  details.  The visibility graph produces  a
shorter  solution  path  but  the  solution  is  undesirable  since  it  continually  touches  the  obstacles.  On  the
other hand, the path produced by the Voronoi method avoids the obstacles and takes less time to find as
well. The Voronoi approach takes O(n2) time whilst the Visibility graph takes O(n3) time. The Visibility
graph  is  a  good  approach  in  two  dimensions  but  its  tendency to  touch  the  boundary  of  the  obstacles
suggests that the Voronoi diagram is a better approach to use. 
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Figure 4.8: The maze (top) is the smoothed path using the Voronoi approach (O(n2) time, where n is the
number of points). The maze (bottom) is the smooth-ed path using the Visibility graph approach (O(n3)

time).

4.5  Suggestions
A real robot finds it hard to navigate around sharp corners. It would be better if the whole path were a
single smooth curve. The current implementation smooths the paths to a certain degree but some sharp
corners remain. This needs to be improved. This would require inserting more points into the path until a
certain level of smoothness is attained. 

Takashi  and  Schilling [ TS89 ]  developed  the  generalized  Voronoi  diagram  that  is  the  locus  of  points
which are equidistant from object boundaries. This is better since the pruning step can be skipped. The
boundary  also  does  not  need  to  be  specified  since  the  generalized  Voronoi  diagram  returns  the  paths
around  the  obstacles.  Additionally  for  the  same  reason,  only  the  corners  of  the  polygon  need  to  be
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entered.  The  advantages  of  this  generalized  Voronoi  diagram  need  weighing  up  against  the  increased
time taken to compute the diagram. 

Extending the Voronoi approach to three dimensions would be useful. Hwang and Ahuja [HA92] state
that  this  would  be  more  complicated  and  it  would  not  be  obvious  what  to  suggest  as  features.  The
Voronoi  diagram  among  polyhedra  is  a  collection  of  two-dimensional  faces.  The  question  to  be
answered  is  how  to  navigate  these  faces.  In  n  dimensions  the  Voronoi  diagram  is  a  collection  of  n-1
dimensional faces. It becomes increasingly difficult to use these faces to find the shortest path. I suggest
that  it  is  pointless in trying to extend past three dimensions because proven planners such as the PRM
are successful in navigating higher dof. 

Another  suggestion is  to  use the Voronoi  approach as a  local  planner  in PRM. This would have to  be
tested because whilst it  yields better results than a simple straight-line planner does, it also takes more
time. The trade off between speed and complexity needs pursuing. 

4.6  Conclusions
The  Voronoi  diagram  approach  is  a  very attractive  roadmap  approach  to  use  in  low  dimensions.  It  is
accurate, fast and produces a desirable path. Using this approach in low dimensions and using the PRM
in higher dimensions boosts performances in accuracy and speed. The Voronoi diagram is more accurate
than  the  PRM  in  lower  dimensions  and  the  PRM  is  faster  than  the  Voronoi  diagram  in  higher
dimensions. Together they make a useful partnership in combating a whole range of problems. 

Chapter 5 
Conclusion
Barraquand et al. [BKL+97] state that no single planner is likely to be the most efficient for all possible
problems.  Every  application  requires  a  hand  made  solution.  In  high  dimensions  the  PRM  is  likely  to
contribute  to  a  good  solution  but  it  may not.  If  the  workspace  is  not  static  for  example,  PRM cannot
generate a reasonable roadmap and fails to give a solution. Likewise with the Voronoi diagram planner
in two dimensions. If the obstacles are moving it will not be able to generate a solution. This example
shows  that  even  the  best  solutions  for  one  environment  fail  in  another  environment.  In  static
environments  the  PRM  is  able  to  generate  solutions  involving  over  75  dof  and  the  Voronoi  diagram
planner  is  able  to  generate  accurate  solutions  quickly in  two dimensions,  but  in  moving environments
they are both poor choices.  Therefore, if an application involves a static environment either one of the
Voronoi  diagram  planner  or  the  PRM  must  be  at  least  considered  because  these  are  two  of  the  best
planners available. 

Appendix 1 
Original  Honours  Proposal
Title: 
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Linux Driver for RTX Robot and high level motion representation 
Author: 

Michael Wager 
Supervisor: 

Dr Peter Kovesi 

Background
In the early 1990's the Computer Science department attained an RTX robot. The RTX robot is simply
an arm with 7 degrees of freedom. It was used extensively to perform many tasks such as the putting of a
golf ball into a hole. However, the robot eventually became just a piece of equipment on the ground floor
that was rarely touched. 

The lack of  usage of the robot is  not due to the inability of the robot but the age of the software.  The
RTX  robot  was  initially  working  perfectly  when  connected  to  a  386  running  DOS.  However,  timing
problems  occurred  when  the  software  was  transferred  to  a  faster  486.  This  was  because  the  RTX
software  was  executing  too  quickly  and  thus  could  not  synchronise  its  signals  with  the  robot.  The
manufacturer  compounded  the  problem  since  they  did  not  provide  any  updates  to  the  original  DOS
driver.  Although  an  update  would  be  nice,  it  is  no  longer  necessary  since  most  of  the  department
computers  are  running  linux.  What  is  required  is  a  linux  driver.  The  driver  would  not  be  easy  to
manufacture  since  no  linux  driver  exists  and  there  has  been no  development  in  the  area.  The  effort  is
worth it however, since development of a driver for linux would bring the robot up to date and facilitate
further research and experiments. 

One such experiment would be to discover and implement higher-level constructs for the motion of the
robot. At present, the typical way of expressing motion to a robot is by specifying a starting point and an
end  point  with  possibly  some  acceleration  parameter.  This  low-level  approach  is  tedious  since  you
would need to specify every point along a path to get the required arm movement. It would be extremely
helpful  to  have  higher-level  motion  constructs  that  would  enable  the  user  to  concentrate  on  other
significant problems. 

McKerrow [3] and Trevelyan [4] have previously looked at high-level robot motion. They both consider
error detection and recovery to be a vital part of motion. With Trevelyan it was extremely important that
the robot does not behave chaotically. This is because he worked for many years on the sheep-shearing
project where a sheep was sheared by a robot. A single mistake could easily lead to the death of a sheep.
His work has made significant progress in high-level motion representation. 

Aim
I will aim to develop an efficient and robust RTX robot driver for linux. The foundations of the driver
would closely follow the original specifications outlined in the RTX manual [1]. The driver would also
follow linux conventions in communicating via serial ports [5]. To build upon this I would look in depth
at various ways of expressing high level motion and implementing at least one of them. Finally, I would
look at  ways  of extending the application to allow it  be used by a mathematical  language like Matlab.
This would allow the robot to be used to its potential and would enable further motion experimentation. 

Method
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Driver Research: 
(Week  5  -  Week  6)  Discover  the  best  ways  to  engineer  a  driver  for  the  Robot.  Do  some
experimentation to find out if Java would be feasible as compared to C. Decide on a structure for
the driver. 

Initial Experimentation: 
(Week  7  -  Week  9)  This  would  involve  sending  and  receiving  basic  bit  patterns  following  the
specification in the manual. [2] Start thesis. 

Further Engineering and Research: 
(Week 10 - Week 13) To build on the foundation by implementing some higher level  functions.
Concurrently look into ways of expressing motion effectively. 

Exams and a Holiday: 
(Study - Hol 1) Study for Exams, do brilliantly and then take a well-earned break. 

Motion Research: 
(Hol  2  -  Hol  3)  Research  ways  of  expressing  motion  and  then  decide  on  one  to  implement.
Continue thesis. 

Motion Implementation: 
(Week 1 - Week 2) Implement and test one way of expressing motion. Work more on the Thesis. 

Matlab and Thesis: 
(Week 3 - Week 4) Look at ways of using the driver inside external applications. Continue writing
the thesis. 

Draft Thesis: 
(Week 5 - Week 8) Complete draft thesis and hand to supervisor. 

Seminar Preparation Final Thesis: 
(Week 9 - Week 11) Prepare Seminar and hand in final thesis early. 

Seminar: 
(Week 12) Give Seminar and then take a well-earned break before exams. 

Software  and  Hardware  Requirements
I would need a linux machine connected via a serial cable the RTX robot. I will need to have C and Java
with the Java Communications 2.0 API that would enable me to communicate via the serial port. 

References
[1]  1987, Programming RTX using the library, Universal Machine Intelligence Limited, London. 
[ 2 ]  1987,  Using  intelligent  periphals  communications ,  Universal  Machine  Intelligence  Limited,

London. 
[3]  McKerrow, P. J. 1991, Introduction to Robotics, Addison-Wesley, Singapore. 
[4]  Trevelyan, J.  P.  1992, Robots for Shearing Sheep Shear Magic ,  Oxford University Press, New

York. 
[5]  The Linux Serial Programming How To, 

http://www.linuxhq.com/ldp/howto/Serial-Programming-HOWTO.html 
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