
Making Roadmaps Using Voronoi
Diagrams

Michael L. Wager

16 Nov 2000

Abstract
The path planning problem has been proven both PSPACE complete and
NP complete. All the traditional approaches have only had marginal results
when trying to tackle this problem. In recent years a Probabilistic RoadMap
planner (PRM) has been developed that has had impressive results. This
planner has had success in high dimensions but because of its
randomness it is not appropriate in low dimensions. The Voronoi diagram
approach is exact and is thus appropriate in two dimensions. I will discuss
my implementation of the Voronoi diagram approach and show that this
method is not only faster than the standard visibility graph, but is more
desirable as well.

Acknowledgements
I want to firstly give all the glory to God for providing me with a miracle to
start and complete this within three weeks. This year was an especially
difficult one for me and I want to thank some people who stuck by me in
times of need. My supervisor Dr. Peter Kovesi helped me persevere and
made sure I finished something that I started. I want to thank the incredibly
young man, Voon-Li Chung for saying that ``You will finish Honours''. I also
want to say a special thank you to Chew Yan Nurdin for staying up with me
on all those late nights and cheering me on all the way. The rest of the
gang, E-Ling Wong, Warren Teh and Chew Lee Nurdin all supported me
and boy are we going to celebrate when we go around Australia. I want to
thank all of these people for making the impossible, possible. All things are
Possible!

List of Figures

1 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

 2.1 Object Representation.
 2.2 The Minkowski Set Difference.
 2.3 Slihouette Curve.
 2.4 A subgoal network.
 2.5 Dijksta's algorithm.
 4.1 Constructing a Voronoi Diagram.
 4.2 The input given to the Voronoi diagram calculation.
 4.3 The Voronoi diagram of some simple obstacles.
 4.4 Two lines intersect in the above six ways.
 4.5 The pruned Voronoi diagram.
 4.6 Smoothing an intersection of three edges.
 4.7 The final smoothed Voronoi diagram.
 4.8 The maze used to test the Voronoi diagram and the visibility graph.

Contents
Abstract
Acknowledgements
1 Introduction
2 The Traditional Approach
 2.1 Introduction
 2.1.1 Definitions
 2.1.2 Standard Procedure
 2.2 Modeling Objects
 2.2.1 Grid
 2.2.2 Cell Tree
 2.2.3 Polyhedra
 2.2.4 CSG and B-Rep
 2.3 Cspace Construction
 2.3.1 Point Evaluation
 2.3.2 Minkowski Set Difference
 2.3.3 Boundary Equation
 2.3.4 Needle
 2.3.5 Sweep Volume
 2.3.6 Template
 2.3.7 Jacobian Based Approach
 2.3.8 Fast Fourier Transform
 2.3.9 Analysis
 2.4 Motion Planning
 2.4.1 Skeleton

2 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

 2.4.2 Cell Decomposition
 2.4.3 Potential Field
 2.4.4 Mathematical Programming
 2.5 Searching
 2.5.1 Depth First and Breadth First
 2.5.2 Best First

 2.5.3 A*

 2.5.4 Bidirectional
 2.5.5 Dijkstra
 2.5.6 Random Search
 2.6 Local Optimization
 2.7 Conclusions
3 Roadmap Approach
 3.1 Introduction
 3.1.1 Definitions
 3.2 Potential Field Planner
 3.3 PRM Construction
 3.3.1 Pre-processing Phase
 3.3.2 Querying Phase
 3.4 Performance
 3.4.1 Summary
 3.5 Conclusions
4 Voronoi Implementation
 4.1 Introduction
 4.2 Voronoi Diagrams
 4.3 Implementation
 4.3.1 Set up
 4.3.2 Voronoi Construction
 4.3.3 Pruning
 4.3.4 Connecting to diagram
 4.3.5 Smoothing and Dijkstra Search
 4.4 Experiment
 4.5 Suggestions
 4.6 Conclusions
5 Conclusion
A Original Honours Proposal

Chapter 1

3 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

Introduction
Hwang and Ahuja [HA92] describe a highly automated factory where
mobile robots pick up parts and deliver them to assembly robots. The
robots must navigate the factory without colliding with other objects and
robots. The paths that they take must be efficient and seamless; that is
they must not take any delays in choosing a good path. This need for
collision avoidance and efficient motion leads to the creation of robot
motion path planning algorithms.

A path planner is an algorithm that seeks to find a path from a starting point
to the finishing point. This planner is given the source and goal
configuration and has to find a connecting path that avoids any
intermediate obstacles.

There are an increasing number of practical problems that involve path
planners. Koga et al. [KKKL94] show how computer graphics animators
benefit from a path planner that automatically synthesizes video clips with
graphically simulated human and robot characters. Kavraki [Kav97]
illustrates how motion planning is used in molecular biology to compute
motions of molecules docking against each other. Chang and Li [CL95]
show that path planning has been used to check if parts can be removed
from an airplane engine for inspection and maintenance. Efficient and
reliable path planners are also required in medical surgery and space
exploration.

Reif [Rei79] proved that the path planning problem is PSPACE-complete.
This means that a path planner requires storage space (memory)
exponential in the degrees of freedom. This exponential space requirement
stems from the vast number of different configurations these planners have
to cope with. For example, if a robot has 12 degrees of freedom and each

of these can occupy only 100 discrete positions it would amount to 10012

configurations. To store all of these configurations would require a lot of
space!

In addition to the storage problem, Reif also proved that the path planning
problem is NP-complete. This means that a path planner's running time is
exponential in the degrees of freedom. Together the exponential time and
storage requirements create a challenging research problem.

4 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

Many different heuristics have been proposed to solve the motion planning
problem. Firstly in Chapter two, I will look at the notion of Cspace, its
construction and its place in the standard procedure. In Chapter three I will
explain in depth the advantages of the Probabilistic RoadMap
planner(PRM). In Chapter four I will explain my implementation of the road
map approach using Voronoi Diagrams. Additionally, I will show that this
approach is better than the standard Visibility Graph approach. In
conclusion, I will show that even though the Voronoi diagrams planner and
the PRM are two of the best planners, different applications require
different solutions.

Chapter 2
The Traditional Approach
2.1 Introduction
Hwang and Ahuja [HA92] have looked in depth at all of the best attempts at
solving the motion path planning problem. They have come to the
conclusion that different approaches are required in different applications.
Having said that there are some basic issues and steps that make up any
motion planner.

2.1.1 Definitions

Before addressing these steps it is important that the terms used here on in
are well defined. The world space refers to the physical space in which
robots and obstacles exist. The configuration of an object is a set of
independent parameters that characterizes the position of every point in
the object. Six parameters are needed to specify the configuration of a rigid
object in three dimensions (three for position and three for orientation). The
degrees of freedom (dof) are the number of parameters required to specify
the configuration of an object. The configuration space (Cspace) is the set
of all configurations. The free space (Cfree) is the part of Cspace in which

the robot does not collide with any obstacles. The path of an object is a
curve in the configuration space. Feasible simply means collision free. A
solution is a feasible path from the start to the end.

5 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

2.1.2 Standard Procedure

The standard procedure in motion planning begins with constructing a
model of the physical robot and objects. Once this internal world has been
built the configuration space is built using any one of many methods. A
suitable motion planning approach is then applied on the Cspace. After
this, a search method must be selected to find a solution path. Finally, the
solution path may be locally optimized to yield a shorter and smoother path.

2.2 Modeling Objects
A robot has to have a model of objects in its environment before any
motion planning can commence. This information can either be attained by
visual sensors or by a human entering data. Hwang and Ahuja [HA92] list
five common ways of representing the objects.

6 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

Figure 2.1: Object Representation. Reprinted from Hwang and
Ahuja [HA92].

2.2.1 Grid

A grid is an array of identical cells where each cell indicates the presence
of an obstacle. A cell would typically be marked as 1 if an obstacle
occupies it and be marked as 0 otherwise. See Figure 2.1 b for more
details. Although this may seem inefficient its simplicity has many
computational advantages. Calculating the volume for instance is best
calculated using this representation. This is especially true when the object
is irregularly shaped.

2.2.2 Cell Tree

The cell tree is an extension of the grid idea where the object space is
divided into a small number of big cells. See Figure 2.1c. The cells that are
completely inside or outside are marked as such and the other cells are
further divided. This division continues until it reaches a resolution limit.
The cell tree uses less space than the grid but the adjacency computation
of cells takes longer.

2.2.3 Polyhedra

7 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

The commonly used polyhedral representation approximates all the
obstacles as a series of straight lines or flat faces and simply stores their
corner coordinates. This approximation is usually accurate enough due to
the nature of objects having many straight surfaces. Spheres, circles and
other irregular shapes are represented by a finite number of flat faces in
such a way that the original shape is preserved as much as possible. See
Figure 2.1d. Polyhedra are often used since many efficient algorithms exist
for computing the intersection of, and distance between, two polyhedra.
This is important since computation of intersection and distance is
performed quite often in motion planning.

2.2.4 CSG and B-Rep

Constructive Solid Geometry (CSG) represents objects as the union,
intersection and set differences of primitive shapes such as squares,
triangles and circles. The Boundary Representation (B-Rep) explicitly lists
boundary features of objects such as lines and circular arcs. The good
thing about both of these methods is the ease at which circles are
represented and small space that it needs. See Figure 2.1e-f.

2.3 Cspace Construction
Once the objects have been represented the Cspace can be constructed.
Hwang and Ahuja [HA92] list seven basic ways of computing this and
Kavraki [Kav95] gives an interesting alternative using the Fast Fourier
Transform.

2.3.1 Point Evaluation

This simple method involves placing the robot in every configuration and
determines whether it intersects any obstacles. This is the most inefficient
method since all possible configurations are checked for intersection and
this grows exponentially.

2.3.2 Minkowski Set Difference

See Figure 2.2. The Minkowski Set Difference (MSD) of two sets A and B is
the set of points:

MSD(A,B) = { a - b \mid a ⊆ A , b ⊆ B} .

8 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

This results in a set containing A such that B can not intersect A providing
the reference point of B does not go inside the boundary of this new set. In
the construction of Cspace this method effectively grows the obstacles by
the size of the robot. For a rigid robot that cannot change its orientation the
Cspace is the union of the MSD between areas occupied by obstacles and
the robot. However if the robot can rotate or change its shape the Cspace
needs to have another dimension and be built up slice by slice. Every slice
is the MSD of the obstacles and the robot with a fixed orientation. Since
this is rather complicated this method is mostly used for rigid non-rotating
robots such as a two dimensional polygon.

Figure 2.2: The black area is the original object and the lightly shaded
region is the Minkowski Set Difference. The reference point of the robot, r,
in this orientation cannot be placed in this region. Reprinted from Hwang

and Ahuja [HA92].

2.3.3 Boundary Equation

9 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

This method involves deriving the constraints on the configuration variables
that bring the robot in contact with obstacles. These constraints are
expressed algebraically as equations. The equations are derived from the
vertex to face and edge to edge contacts between the robot and obstacles.
Finding these equations is very difficult especially for Cspace having dof
(defined in section 2.1.1) greater than three.

2.3.4 Needle

The needle method involves fixing every configuration parameter except
one. By varying this parameter the values that bring the robot into contact
with an obstacle are computed. These values give intervals (or needles) of
the Cspace. This method is often used to generate a two dimensional slice
of the Cspace by fixing all but two parameters. One of these parameters is
slowly varied as needles are constructed with the other parameter. This
needle method is not used for higher dimensions because of the large
number of needles required.

2.3.5 Sweep Volume

This method computes the volume in the world space swept by a robot as
the configuration is varied over a set in Cspace. If the volume does not
intersect any obstacles the set is in C free . Sweep volume is effective in

determining Cfree but is hard to compute in higher dimensions.

2.3.6 Template

Branicky and Newman [BN90] developed a method that computes Cspace
based on the features of the physical obstacles. The shapes of the
obstacles have matching shapes called a template in Cspace. A line
obstacle for instance has a matching ellipse inside Cspace. The size and
position of the templates depend on the orientation of the obstacles.
Complex obstacles are broken down into simpler shapes that have
matching templates in Cspace. Finally the Cspace is made up of these
templates ``stamped'' together. This method works well for dof less than
five but for higher dof it suffers from huge memory requirements due to the
way templates are stored.

2.3.7 Jacobian Based Approach

10 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

Paden et al. [PMF89] developed a very elegant method to compute a
``block'' of Cspace. The Jacobian J of a robot is a matrix that relates the
displacement, dx, of a point, p on the robot to the change in the robot
configuration, dq. The bound B(q) is the maximum of the absolute value of
the Jacobian J at a configuration q over all points on the robot (max|J(q)|). If
the minimum distance between a robot in a configuration q and all the
obstacles is D then it follows that the sphere centred at q with radius D/B(q)
is in C free . It also follows that if the minimum distance between a

configuration q that is inside an obstacle and the edge of the obstacle is D_

then the sphere centred at q with radius D_/B(q) is an obstacle in Cspace.
This approach can be adjusted by using different measures for distance.
This will result in different shapes being included or excluded from Cfree.

Cuboids for example can be generated using the distance max\mid p i -

qi\mid, where pi and qi are a point on the robot and a configuration of the

robot.

2.3.8 Fast Fourier Transform

Kavraki [Kav95] developed this interesting method that relies on the
observation that for a non rotating rigid body the Cspace is a convolution of
the workspace and the robot. The running time depends only on the
discretization used. It is independent of the complexity of the robot and
obstacles. This method works best where no orientation changes are
required. If they are needed the Cspace can still be built up slice by slice
using a Fast Fourier Transform for every orientation but this takes time. In
addition, this method benefits from the amount of research already done in
this field and from the development of specific hardware to handle the Fast
Fourier Transform. Another advantage is the fact that intersections can be
computed in constant time since the Cspace is stored in a grid. The
analysis done by Kavraki suggests that this method is best used when the
shape of the obstacles and robot are really complex. Otherwise if the
shapes are simple other methods such as needle, point and Minkowski Set
Difference are more appropriate.

2.3.9 Analysis

All of the above methods work well in low dimensions. However as the dof
increase, Cspace grows exponentially and thus becomes extremely difficult

11 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

to compute. I hypothesize that they have a natural limit at around six dof.
For higher dimensions other methods need to be used since the Cspace
can no longer be explicitly stored. In the following Chapter I will discuss an
approach that has been successfully used in dof greater than 75.

2.4 Motion Planning
Once Cspace has been constructed the real problem solving begins. Many
different approaches have been proposed for Motion Planning (MP).
Hwang and Ahuja [HA92] state that these methods are a variation of four
key approaches, the skeleton, cell decomposition, potential field, and
mathematical programming. I will outline all of these methods in this
section. In the next two chapters I will discuss in more detail two of the
skeleton approaches, the probabilistic roadmap and the Voronoi diagram.

2.4.1 Skeleton

This approach involves retracting or reducing C free onto a network of

one-dimen-sional lines. MP is then reduced to a graph-searching problem.
Three steps are involved. A path is first found from the starting position to a
point on the skeleton. A path is then found from the goal configuration to a
point on the skeleton. Finally a path is constructed between the two points
on the skeleton. The correctness of the solution strongly depends on the
skeleton representing the entire Cspace. If the skeleton does not represent
the entire Cspace a solution path may be missed. The standard skeletons
are the visibility graph, the Voronoi diagram, the silhouette and the subgoal
network. All of these will be discussed with the exception of the Voronoi
diagram, which will be covered in Chapter four.

The visibility graph is the collection of lines in Cfree that connects a feature

of an object to that of another. A solution is found when the start and goal
configurations are included as features in the graph. Asano et al. [AGHI85]

developed a way to construct this graph in O(n2) time in two dimensions,
where n is the number of features. This visibility graph will be compared
with the Voronoi implementation in Chapter four.

Canny [Can87] presented a general method of constructing a skeleton in
arbitrary dimensions. His method involves recursively projecting objects of
higher dimensions into lower dimensions and tracing out the boundary

12 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

curves of the projection, which is called the silhouette. This process
terminates when it reaches the one-dimensional line. To ensure that the
projections retain the features of the object, linking curves are placed
where new silhouette curves appear or disappear. This method is mostly
used for theoretical analysis since a path found using this method makes
the robot slide along obstacle boundaries. See Figure 2.3.

w

Figure 2.3: Silhouette curve. Reprinted from Hwang and Ahuja [HA92].

The subgoal network does not need the Cspace to be constructed since it
only checks a number of finite configurations. The method involves keeping
a list of reachable configurations until it reaches the goal. A simple local
MP algorithm called a local operator is used to determine reachability.
Moving the robot in a straight line between the configurations is an example
of a local operator. See Figure 2.4 . As its name suggests the subgoal
network generates intermediate configurations called subgoals and uses
the local operator to successively move the robot through the subgoals. If
the end configuration is not reached these subgoals are stored and more
subgoals are generated and passed to the local operator. This process
continues until it reaches the goal. To summarize, this method moves
towards the goal from the generated subgoals using a local operator.

The subgoal network is memory efficient since the Cspace does not need
to be explicitly stored. The choice of the local operator is the most
important consideration in this method since it determines its

13 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

completeness. The simple go-straight local planner often fails to find
solutions between two points that are far apart. Chen and Hwang [CH92]
completed work on a local operator that is a global motion planner. It
decomposes the MP problem into a number of simpler MP problems.
Hwang and Ahuja [HA92] recommend using a potential field method for a
local operator since it is found to be the most efficient. This is an example
of where two MP techniques are used together to create a better solution.

Figure 2.4: A subgoal network. Reprinted from Hwang and Ahuja [HA92].

2.4.2 Cell Decomposition

This MP algorithm divides Cfree into a set of simple cells. The adjacency

relationships between each cell are stored and then the collision free path
can be computed. This solution is found by finding the cells that contain the
initial and final configurations and then connecting them using a sequence
of connected cells. The cells can be decomposed in a few different ways.
The first method uses the object boundaries to generate the cell

14 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

boundaries (object dependent). The second way partitions Cspace into
cells of a simple shape and then computes if the cell is in C free (object

independent). The object dependent decomposition generates a lot fewer
cells than the object independent method but the algorithm is also more
complex. Cfree is better represented by the object dependent method since

this decomposition does not contain the gaps around obstacles that are
present in the object independent method. Increasing the number of cells in
the independent decomposition can reduce this effect but this consumes
more memory.

2.4.3 Potential Field

Khatib and Mampey [KM78] first developed this idea of using a potential
function for obstacle avoidance. The potential is a scalar function that has a
minimum when the robot is at the goal configuration and a high value on
obstacles. The function in Cfree will be sloping downward towards the goal.

In this way the solution will be found by following a path down towards the
goal configurations.

Two steps are needed to construct the potential. Firstly, an obstacle
potential is constructed that has a high value on the obstacle that
decreases monotonically as the distance from the obstacles increases.
Using the inverse of the distance to the obstacles is a suitable choice.
Next, a goal potential is constructed that has a large negative value at the
goal configuration that increases monotonically as the distance from the
goal increases. The inverse of the distance to the goal is a good choice to
make here. The obstacle potential and the goal potential are added
together to give the final potential.

Although this approach seems simple, the potential function usually has
several local minima at configurations other than the goal. These minima
trap the robot and no solution is found. The potential field is therefore often
used in conjunction with other motion planners like the subgoal network
mentioned earlier. One other problem with the potential field is the problem
it has creating an obstacle potential for concave objects. Despite its few
problems the potential field is still attractive due to its low computational
costs.

2.4.4 Mathematical Programming

15 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

This MP approach uses a numerical method to find the optimal solution.
This is set up by representing obstacle avoidance as a set of inequalities
on the configuration parameters. The solution is thus an optimization
problem that finds a path between the start and goal configurations
minimizing a certain scalar quantity. This quantity is typically the total
distance of the path. Alternatively the optimization could be changed to
maximize the distance from the obstacles to achieve a desirable path. This
however is better done using Voronoi diagrams that are explained in
Chapter four.

2.5 Searching
After C free has been described using a motion planning algorithm the

solution is found by searching for a path through the feasible
configurations. After a skeleton approach has been used, for example, a
search is still required to find the shortest solution. Many searches have

been developed such as breadth first, best first, depth first, A * ,
bidirectional [BF81], simulated annealing [BL90] and Dijkstra's shortest
path algorithm [Dij59]. All of these searches can be used in MP but they
each have their unique advantages.

2.5.1 Depth First and Breadth First

The depth first search and the breadth first search are both not very
efficient. The depth first search always generates a child of the most
recently reached configuration. In this way it travels in straight lines and
only changes direction when a obstacle is reached. The solution is thus not
going to be the shortest one and in many cases it will seemingly take the
longest possible way. The breadth first search generates the children of the
earliest reached configurations first. This is similar to a bush fire since it
searches all the configurations closest to it before moving outward. This will
find the shortest path but it takes a long time.

2.5.2 Best First

The best first search is an improvement since it generates the children of
the current configuration and moves to the child nearest to the goal. This
search requires some measure of distance to be known. The straight-line
distance is a useful metric in this case. This search can also take a long
time to calculate if a blind alley exists between configuration obstacles.

16 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

2.5.3 A*

The A* search is a good way to find the solution when the minimum cost is
desired. This search requires an underestimate of the cost from the current
configuration to the goal (cost to go) such as the straight-line distance. The
sum of the actual cost so far and the cost to go gives a lower bound on the
actual cost. This sum is called the total cost. During the search the child

with the lowest total cost is visited first. The performance of A* is linked to
the accuracy of the cost to go. The smaller the error in the underestimate
the faster the search will be.

2.5.4 Bidirectional

A bidirectional search generates the children of both the start and the goal
configuration. It progressively moves outward until one of the children
connects and thus finds a solution. This search is efficient when the goal
configuration is hard to reach. A good example will be the case when the
goal is in a narrow channel between obstacles.

2.5.5 Dijkstra

Dijkstra's algorithm is the most efficient in finding the shortest solution. It

finds this solution in O(n2) time. It works by partitioning the space into two
sets of configurations. See Figure 2.5.

17 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

Figure 2.5: This is how Dijkstra's algorithm works. The set S contains the
configurations whose shortest paths have already been determined. The
set V is made up of all the other configurations and the best estimates of

the shortest path to them. The curly braces show the estimated path in set
V and the shortest path in set S. The brackets show the estimated distance
in set V and the shortest distance in set S. In each iteration, the path with

the smallest estimate in V is added to the set S. The estimates are
recalculated and the process begins again.

The set S is the set of configurations whose shortest paths have already
been determined and the set V is made up of all the other configurations. It
also keeps track of the best estimates of the shortest paths (distance and
direction) to every configuration. The algorithm begins with only the source
configuration in S. It relaxes the neighbours of the set S by updating the

18 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

shortest path if necessary. The configuration u in V with the shortest path is
moved into S. This process continues until there are no more
configurations inside the set V. In this way the algorithm not only finds the
solution, it also finds the shortest path between the source and any other
configuration. In my Voronoi implementation in Chapter four I used this
search.

2.5.6 Random Search

If it is not possible to search the entire search space due to exponential
time requirements a random search technique can be used. Barraquand
and La-tombe [BL90] have successfully used simulated annealing, for
example. This method will not be covered here since the next chapter will
involve a random MP approach.

2.6 Local Optimization
After a solution has been found it can still be further optimized using a
number of criteria. The length of the path, the safety clearance between the
robot and obstacles, the total traveling time and the amount of energy
spent are some of the typical measures used. Hwang and Ahuja [HA92]
express this mathematically as a minimization of

⌠
⌡

qgoal

qstart
(1+

w

D(q)
)dq

where D(q) is the distance between the robot and obstacles; w is the
relative weighting factor, and the integral is over the path connecting qstart
and q goal . This minimization prevents the robot from colliding with

obstacles. In Hwang and Ahuja [HA89] an obstacle potential function is
used in place of D(q) and this is found to be simpler to compute and
converges to an optimum in 20-30 iterations.

2.7 Conclusions
The above standard procedures can be applied to any motion-planning
problem but the implementation varies with every different situation.
Combinations of approaches can also be used to great effect. Hwang and
Ahuja [HA92] discuss many of these combinations in great depth. In the
next two Chapters I will only discuss two of these approaches in detail.

19 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

Chapter 3
Roadmap Approach
3.1 Introduction
With all of the previous approaches, the number of degrees of freedom of
the robot and its environment was the major limiting factor. Barraquand et

al. [BKL+97] developed a random sampling scheme for path planning that
has been successful in coping with larger dof. Kavraki and Latombe [KL98]
extended this idea to solve multiple planning problems involving robots with
3 to 16 dof using a Probabilistic RoadMap planner (PRM). Koga et
al. [KKKL94] used a similar approach to automatically synthesize video
clips with graphically simulated human and robot characters involving 78
dof.

The roadmap is an extension of the skeleton approach. A roadmap is a
collection of paths that allow for efficient navigation of Cspace. The idea
behind the roadmap is as follows: If you wanted to travel between two
places, you would need a map. Since this map does not exist, it has to be
created. This map does not need to be too detailed since you only need the
major highways to find a connecting route. Upon creation of the map, you
are then able to travel between any two points in the region provided that
you can see the highway from these two points. This simple idea
summarizes the roadmap approach. It involves a pre-processing phase
where the roadmap is constructed. After this, many different queries can be
made to check if roads exist between two points.

Most other planners only allow one query. The fact that roadmap planners
can do more is a considerable advantage. One of the other advantages of
the PRM is that its performance is measurable. By this, I mean that the
probability that it will find a path bounds its running time. A significant
improvement in running time results from lowering the probability of
correctness. This is the notion of probabilistic completeness.

In this Chapter, I will discuss two implementations, the potential field
planner and the PRM. I will also assess their performance along with the
associated visibility and path clearance assumptions.

20 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

3.1.1 Definitions

The clearance of a configuration q is the minimum distance from q to the
boundary of Cfree. In three dimensions, this corresponds to the radius of

the largest sphere centred at q that is still inside Cfree. If the configuration

q is inside an obstacle, the clearance returns a negative number
corresponding to the minimum distance from q to the boundary of Cfree.

Therefore, if a configuration is in Cfree a positive distance is returned; if it is

not in Cfree a negative distance is returned; and if it is on the boundary of

Cfree zero is returned.

A trap is a basin of attraction, in a potential function that is almost
completely surrounded by forbidden configurations. A configuration sees
another configuration if a simple path such as a straight line can connect
them. The degree of a configuration is the number of configurations that it
is connected to. The connectedness of a region in Cspace is proportional
to its degree. The least connected region in Cspace contains the
configuration that has the lowest degree. A component is a set of
configurations where a path is known to exist between every configuration.
A deterministic planner is guaranteed to find a path between any two
configurations but it takes a long time to do so. A milestone refers to a
single configuration in a roadmap.

3.2 Potential Field Planner
Koga et al. [KKKL94] in their implementation extended the potential field
planner that was first used by Barraquand and Latombe [BL91]. The
potential function is a positive function with a global minimum of zero at the
goal configuration; that is

U : Cfree → R+∪{0} .

Barraquand and Latombe [BKL + 97] describe some techniques that
automatically generate this function. These techniques are similar to the
ones mentioned earlier in Chapter Two. A solution is found by alternating
between down and escape motions until it reaches the global minimum.

21 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

The down motion works by taking a configuration q s and checking its

adjacent configurations for a lower potential until it cannot find one. This
motion will gravitate downward until it reaches a local minimum. The outline
for the down motion algorithm is as follows:

Down-Motion(qs)

1. Store qs in q.

2. While q is not labelled a local minimum:

a. Pick at random up to h (arbitrary number) configurations
adjacent to q until q′ is found such that U(q′) < U(q).

b. If this is successful then reset q to q ′ else label q as a local
minimum.

3. Return q.

The adjacency computation in step 2(a) takes advantage of the clearance
function. The creation of a set of adjacent configurations to q relies on the
geometric properties of c, the clearance of q. Adjusting each configuration
component q i , in n dimensions by up to c/√n remains inside Cfree . The

expression of the set of adjacent configurations to q is the product of n
intervals:

∏
i = 1... n

[qi+c/√n , qi - c/√n] .

The random generation of adjacent configurations becomes a matter of
choosing a random point in the adjacent set.

The escape motion involves a random walk of length L, hoping that this will
end up out of the local minimum. Barraquand and Latombe have shown
that on average a random walk of length L ends up √ L away from the
starting point. They also suggest choosing √ L to be the radius of the
Cspace. The outline for the escape motion is as follows:

Escape-Motion(ql)

22 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

1. Pick at random the length, L, of the motion.
2. Store ql as q and set l to 0.

3. While l < L:

a. Pick at random a free configuration q′ adjacent to q.
b. Set l to be l plus the max. of |qi-qi ′ | , where i varies through

each dof.
c. Store q as q′.

4. Return q.

If the down motion falls into a trap, this escape motion has little chance of
escaping the local minimum.

The potential field planner works by successively moving down and up until
it reaches the goal. The algorithm is the following:

Potential field planner(qstart,qgoal)

1. Store down-motion(qstart) as ql

2. While ql ≠ qgoal do:

a. Do:

i. If total configurations generated so far exceed an
arbitrary number n then return NO.

ii. Store Down-Motion(Escape-Motion(ql)) as q′.

until U(ql′) < U(ql).

b. Store ql′ as ql.

3. Return YES.

This planner has been used with success in many situations but it still has
a few niggling problems. Despite the presence of escape motions to deal
with local minima, it can still be trapped indefinitely. This uncertainty means
that the potential field planner's convergence speed remains unknown. In

23 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

the next section, I will discuss the PRM that was written to overcome these
problems.

3.3 PRM Construction
Kavraki et al. [KSLO96] developed this planner that overcomes the
problems with the potential field planner. No problem specific heuristics are
required with the PRM. Additionally, in the next section, I will show that its
convergence speed is known and can be used to bound the running time of
the algorithm.

3.3.1 Pre-processing Phase

The pre-processing phase involves choosing r random configurations that
do not intersect any obstacles. After this every pair of chosen
configurations that are closer than d are checked for connectedness using
a simple and fast planner. Finally, the roadmap is re-sampled by generating
s extra configurations in the least connected regions. The algorithm is as
follows:

Pre-processing:

1. Store 0 as i.
2. While i < r do:

a. Pick a random configuration q in Cspace.
b. If the clearance of q is greater than 0:

i. store q in Roadmap and
ii. increment i.

3. For every pair of milestones whose distance apart is less than d
try to connect.

4. Starting with the least connected region c and in order of
increasing degree generate a configuration q in the
neighbourhood of c and try to connect. If successful store q in
Roadmap. Repeat until s extra configurations are added.

The above algorithm still leaves a lot of room for choice. The first choice to
make is the design of the random configuration generator in step 1. The

24 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

generated roadmap needs to represent accurately the connectedness of
Cspace. Thus the random generator must generate a wide sample of
configurations.

Another decision to make is the choice for connect in step 3. A fast and
simple straight line planner is a good choice to make. A deterministic
planner would not be a good choice because these planners take a long
time to execute and accuracy is not necessary at this stage of the
algorithm.

The distributions of r and s also need to be determined. Barraquand et

al. [BKL+97] recommend first randomly generating 2/3 of the total number
of milestones to be generated and then re-sampling to generate the other
1/3. This choice tends to decrease the number of connected components in
Roadmap. Alternatively, the re-sampling step 4 could be replaced by trying
to join the different components using a deterministic planner (permeate).
This guarantees that all the components in Roadmap are distinct and
would generate the best queries but this takes a long time and should only
be used as a last resort.

One final choice is the determination of the total size of Roadmap. The
greater the number of milestones the higher is the accuracy and speed of
the queries. This is related to performance and will be discussed later.

3.3.2 Querying Phase

After the roadmap has been created the querying process can commence.
This phase involves trying to connect both q start and q goal to the same

component of the roadmap. If it is not initially successful it tries g times to
find an intermediate configuration q that sees both a milestone and the
start or goal configuration. If none of these are successful it returns NO and
terminates. Otherwise, if it is successful in finding q it returns YES if both
qstart and qgoal are connected to the same component. If however they

aren't connected to the same component then NO is still returned. The
algorithm is as follows:

Query(qstart,qgoal):

1. For both qstart and qgoal do the following:

25 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

a. If there exists a milestone m that sees qi then store m as mi.

b. Else repeat g times:

i. Pick a random configuration q in the neighbourhood of qi
until q sees both qi and a milestone m.

ii. If successful store m as mi.

iii. Else if all of g fail return NO.

2. If mstart and mgoal are in the same connected component return

YES else return NO.

This algorithm varies according to the choices made in the pre-processing
phase. If the re-sampling step were changed to permeate

then step 1(b)iii would have to be changed to return FAILURE. Choosing permeate guarantees that every
YES or NO answer from the query is correct. Therefore, NO in step 1(b)iii must be changed to
FAILURE.

In step 1(b)i the generation of a neighbour of q i may require several guesses before one can be found.
The random generation must take this into account to speed up the algorithm.

3.4 Performance
Both the potential field planer and the PRM provide solutions to many practical problems with high dof.
The potential field planner, however has a few niggling problems related to the local minima that it
cannot escape easily. The PRM is a better approach since it does not have any problem-specific
heuristics and its convergence speed is known.

The PRM is probabilistically complete. This means that if a solution exists it will find one with high
probability in bounded time. The running time grows slowly with the probability we are willing to
tolerate. Barraquand et al. [BKL + 97] have guaranteed the performance of the PRM if the following
assumptions are true:

Visibility Assumption The Visibility Assumption or ε-goodness states that each configuration sees
a significant portion of Cfree. Cfree is ε-good if each configuration can see a ε portion of the other
configurations. So for example, if C free is a circle then every configuration can see every other
configuration. Then Cfree is said to satisfy the visibility assumption and would be 1-good.

The value of ε is inversely proportional to the running time of PRM and to the number of
milestones in the roadmap. However, even high values of ε cannot prevent Cfree from containing

26 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

narrow passages. Consider Cfree made up of two circles overlapping slightly. The value of ε ≈ 0.5
and yet C free still contains a narrow passage. The visibility assumption yields high performance
but it is not strong enough and another is required.

Path Clearance Assumption The Path Clearance Assumption states that between the two
configurations given to the query there exists a collision free path T that achieves some clearance
εinf between the robot and the obstacles. This is a powerful assumption and if true, no re-sampling

step or deterministic planner is required in the pre-processing phase. The value ε inf is also
inversely proportional to the running time of PRM and to the number of milestones in the
roadmap.

3.4.1 Summary

Barraquand et al. state that the number of milestones needed grows only as the absolute value of the log
of the probability of an incorrect answer decreases. They prove this given the assumptions stated above.
If the assumptions are true then the PRM produces extremely good results. Otherwise, it is still a good
planner since it can deal with high dof. The potential field planner in my opinion is not as good since its
convergence speed is unknown.

3.5 Conclusions
In this chapter, I have compared two planners that have been successful in practical motion planning. I
have implemented a roadmap approach using Voronoi diagrams that I will discuss in the next Chapter.

Chapter 4
Voronoi Implementation
4.1 Introduction
The PRM is probabilistically complete; it sacrificed a percentage of its correctness for substantial gains
in speed. In lower dimensions, however the complexity required is vastly smaller and such a sacrifice is
not required. Constructing exact planners that always find a solution if it exists is fast in low dof. In two
dimensions, I have implemented the Voronoi diagram approach and the Visibility graph approach. They
are both roadmap planners since queries are only answered after a map of Cspace is built. These planners
are also exact and efficient. In this Chapter, I will explain my implementation of these approaches and
show that the Voronoi diagram is not only faster but it yields a more desirable path (where the paths do
not touch the obstacles) as well.

4.2 Voronoi Diagrams
McKerrow [McK91] states that Voronoi diagrams can be used to divide the environment into regions.
Lee and Drysdale [LD81] show how partitioning the plane into polygonal regions, each of which is

27 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

associated with a given point, forms a Voronoi diagram. The region associated with a point is the locus
of points closer to that point than any other point. Edges separating two regions are composed of points
equidistant from the given points. Therefore, the Voronoi diagram is the set of lines equidistant from two
or more points. This makes an excellent planner since the created paths will be desirable. The created
paths lie in between the obstacles and in doing so, they will not touch any obstacles.

Figure 4.1: Constructing a Voronoi Diagram is as follows: The thick lines in red specify the Voronoi
Diagram, the small black circles specify the points, the thin lines specify the lines equidistant from the

points and the big circles prove the correctness of the Voronoi Diagram.

Figure 4.1 shows how a Voronoi diagram is constructed. The first step involves drawing lines that bisect
every pair of points in the region. Figure 4.1 displays these bisections as the thin lines. The intersection
of these lines determines the corners of the Voronoi diagram (c1 and c2 in Figure 4.1). A circle centred
at this corner coordinate will intersect the three points closest to it (the big circles in Figure 4.1). The
final Voronoi diagram is the collection of lines drawn between the corners (the thick lines in Figure 4.1).
Yap [Yap87] devised a way to find this diagram in O(nlogn) time.

4.3 Implementation
I implemented the Voronoi diagram approach using Matlab version 5.2 in Unix. Matlab is a useful
mathematical language and since a Voronoi function comes built in, it was the logical choice. Six steps
are involved in the planner. Firstly, the environment is set up. The Voronoi diagram is then constructed
based on the points of the obstacles and the boundary. The diagram is then pruned so that only the lines

28 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

outside of the obstacles remain. The start and final configurations are then connected to the pruned
diagram. Finally, the lines are smoothed and a Dijkstra search is performed to find the shortest path.

4.3.1 Set up

I set up the obstacles as polygons made up of the corner coordinates. The polygons can be any shape;
they can be concave or convex. The obstacles are programmed manually in the simulation but sensors
could easily attain this information in a practical environment. For simplicity, the robot is assumed to be
a point. In a practical environment, the polygons must be grown to accommodate for the shape of the
robot. A Minkowski Set Difference is a good choice to make here.

The Voronoi diagram generates lines between points and does not generate lines around points. It was
necessary to create a boundary to the simulation so that the Voronoi diagram would generate paths
around obstacles. This boundary is made up of a number of equally spaced points in the shape of a
rectangle. The actual shape of the boundary does not matter as long as it goes around all the obstacles,
the start and final configurations.

More points than just the corners represent the boundary because the Voronoi diagram generates better
results. Using a spacing equal to the length of the shortest edge of the obstacles is sufficient. The same
principle applies to the obstacles. Points are inserted around each obstacle with the same spacing that
was used to generate the border. See Figure 4.2. When the path planner receives all of these points along
with the start and goal points the computation begins.

29 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

Figure 4.2: This is the input given to the Voronoi diagram calculation. The points in the outer
rectangular box specify the boundary. The blue objects are the obstacles. The points surrounding the
obstacle specify the obstacles. The two star shaped points specify the start and goal configuration.

4.3.2 Voronoi Construction

The Voronoi diagram takes O(nlogn) time, where n is the number of points. The function takes in a set
of points representing the obstacles and the boundary and returns a set of lines specifying the diagram.
Figure 4.3 shows the output from the Voronoi diagram computed from the input in Figure 4.2 . The
Figure shows that the Voronoi diagram intersects the obstacles. These points must be pruned before any
path planning may commence.

Figure 4.3: This is the Voronoi diagram of some simple obstacles (O(nlogn) time, where n is the number

30 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

of points).

4.3.3 Pruning

The lines of the Voronoi diagram that go through any obstacle edge are discarded. Every line in the
Voronoi diagram is checked with every edge of the obstacles. This takes O(n2) time since there are O(n)
lines in the Voronoi diagram and O(n) obstacle edges, where n is the number of points. The lines that
touch the outer edge of an obstacle are not pruned because it is conceivable that a robot will touch an
obstacle. To distinguish between the lines that go through an edge and those that just touch is not as easy
as it first looks. This requires in depth classification of every type of line intersection. For example, two
lines may intersect (go through each other), they may just touch or not touch at all. If the lines just touch
they may form a T-junction, an L-junction or they may be parallel to each other. If they just touch and
are parallel, they may overlap or not overlap. See Figure 4.4 for more details.

Figure 4.4: Two lines intersect in the above six ways.

My implementation classifies each intersection and uses this information to determine if the path
intersects the polygon or not. After the entire pruning process has finished, the function returns the set of

31 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

lines that are outside of all the obstacles but inside the boundary. Figure 4.5 shows the output of the
pruning function when it received the Voronoi diagram from Figure 4.3.

Figure 4.5: This is the pruned Voronoi diagram (O(n2) time, where n is the number of points).

4.3.4 Connecting to diagram

The start and final configurations are both connected to the pruned Voronoi diagram by finding the
nearest edge. This takes O(m) time, where m is the number of edges in the pruned diagram. This takes
special consideration of any obstacles that may be in the way. If an obstacle is blocking the direct path,
another edge must be chosen.

4.3.5 Smoothing and Dijkstra Search

After the configurations have been connected to the diagram, a path can now be found between the start
and the goal. Before searching for the shortest path, the edges are all smoothed to remove the large

32 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

corners that exist in the Voronoi diagram. Joining the midpoints of each connecting edge smooths each
corner. Achieving this takes O(m2) time, where m is the number of pruned edges. This takes so long
because for each edge it has to search for all the edges that it is connected to. The pruned Voronoi
diagram contains some corners where three edges meet. See Figure 4.6. Retaining the original corner and
joining it to the mid points of the three edges resolves this situation.

Figure 4.6: Smoothing an intersection of three edges. The black line is the original line. The midpoints
of these line segments are joined to create the smoothed line.

Finally, a simple and efficient Dijkstra search finds the shortest path. This takes O(m2) time, where m is
the number of smoothed edges. Figure 4.7 shows an example of the shortest smoothed path. The order in
which smoothing and searching for the shortest path is done does not greatly affect the solution. It is
easier to search for the path and then smooth this path because every corner will only intersect one other
edge. Smoothing first however, will ensure that the shortest paths of all the smoothed edges are returned.
Either way the total path length will not change much, if at all.

33 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

Figure 4.7: This is the final smoothed Voronoi diagram with the shortest path ((O(m2) time, where m is
the number of points).

4.4 Experiment
To test my implementation I built a maze and compared the results with the standard visibility graph
(simply connecting all the points together). See Figure 4.8 for details. The visibility graph produces a
shorter solution path but the solution is undesirable since it continually touches the obstacles. On the
other hand, the path produced by the Voronoi method avoids the obstacles and takes less time to find as
well. The Voronoi approach takes O(n2) time whilst the Visibility graph takes O(n3) time. The Visibility
graph is a good approach in two dimensions but its tendency to touch the boundary of the obstacles
suggests that the Voronoi diagram is a better approach to use.

34 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

35 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

Figure 4.8: The maze (top) is the smoothed path using the Voronoi approach (O(n2) time, where n is the
number of points). The maze (bottom) is the smooth-ed path using the Visibility graph approach (O(n3)

time).

4.5 Suggestions
A real robot finds it hard to navigate around sharp corners. It would be better if the whole path were a
single smooth curve. The current implementation smooths the paths to a certain degree but some sharp
corners remain. This needs to be improved. This would require inserting more points into the path until a
certain level of smoothness is attained.

Takashi and Schilling [TS89] developed the generalized Voronoi diagram that is the locus of points
which are equidistant from object boundaries. This is better since the pruning step can be skipped. The
boundary also does not need to be specified since the generalized Voronoi diagram returns the paths
around the obstacles. Additionally for the same reason, only the corners of the polygon need to be

36 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

entered. The advantages of this generalized Voronoi diagram need weighing up against the increased
time taken to compute the diagram.

Extending the Voronoi approach to three dimensions would be useful. Hwang and Ahuja [HA92] state
that this would be more complicated and it would not be obvious what to suggest as features. The
Voronoi diagram among polyhedra is a collection of two-dimensional faces. The question to be
answered is how to navigate these faces. In n dimensions the Voronoi diagram is a collection of n-1
dimensional faces. It becomes increasingly difficult to use these faces to find the shortest path. I suggest
that it is pointless in trying to extend past three dimensions because proven planners such as the PRM
are successful in navigating higher dof.

Another suggestion is to use the Voronoi approach as a local planner in PRM. This would have to be
tested because whilst it yields better results than a simple straight-line planner does, it also takes more
time. The trade off between speed and complexity needs pursuing.

4.6 Conclusions
The Voronoi diagram approach is a very attractive roadmap approach to use in low dimensions. It is
accurate, fast and produces a desirable path. Using this approach in low dimensions and using the PRM
in higher dimensions boosts performances in accuracy and speed. The Voronoi diagram is more accurate
than the PRM in lower dimensions and the PRM is faster than the Voronoi diagram in higher
dimensions. Together they make a useful partnership in combating a whole range of problems.

Chapter 5
Conclusion
Barraquand et al. [BKL+97] state that no single planner is likely to be the most efficient for all possible
problems. Every application requires a hand made solution. In high dimensions the PRM is likely to
contribute to a good solution but it may not. If the workspace is not static for example, PRM cannot
generate a reasonable roadmap and fails to give a solution. Likewise with the Voronoi diagram planner
in two dimensions. If the obstacles are moving it will not be able to generate a solution. This example
shows that even the best solutions for one environment fail in another environment. In static
environments the PRM is able to generate solutions involving over 75 dof and the Voronoi diagram
planner is able to generate accurate solutions quickly in two dimensions, but in moving environments
they are both poor choices. Therefore, if an application involves a static environment either one of the
Voronoi diagram planner or the PRM must be at least considered because these are two of the best
planners available.

Appendix 1
Original Honours Proposal
Title:

37 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

Linux Driver for RTX Robot and high level motion representation
Author:

Michael Wager
Supervisor:

Dr Peter Kovesi

Background
In the early 1990's the Computer Science department attained an RTX robot. The RTX robot is simply
an arm with 7 degrees of freedom. It was used extensively to perform many tasks such as the putting of a
golf ball into a hole. However, the robot eventually became just a piece of equipment on the ground floor
that was rarely touched.

The lack of usage of the robot is not due to the inability of the robot but the age of the software. The
RTX robot was initially working perfectly when connected to a 386 running DOS. However, timing
problems occurred when the software was transferred to a faster 486. This was because the RTX
software was executing too quickly and thus could not synchronise its signals with the robot. The
manufacturer compounded the problem since they did not provide any updates to the original DOS
driver. Although an update would be nice, it is no longer necessary since most of the department
computers are running linux. What is required is a linux driver. The driver would not be easy to
manufacture since no linux driver exists and there has been no development in the area. The effort is
worth it however, since development of a driver for linux would bring the robot up to date and facilitate
further research and experiments.

One such experiment would be to discover and implement higher-level constructs for the motion of the
robot. At present, the typical way of expressing motion to a robot is by specifying a starting point and an
end point with possibly some acceleration parameter. This low-level approach is tedious since you
would need to specify every point along a path to get the required arm movement. It would be extremely
helpful to have higher-level motion constructs that would enable the user to concentrate on other
significant problems.

McKerrow [3] and Trevelyan [4] have previously looked at high-level robot motion. They both consider
error detection and recovery to be a vital part of motion. With Trevelyan it was extremely important that
the robot does not behave chaotically. This is because he worked for many years on the sheep-shearing
project where a sheep was sheared by a robot. A single mistake could easily lead to the death of a sheep.
His work has made significant progress in high-level motion representation.

Aim
I will aim to develop an efficient and robust RTX robot driver for linux. The foundations of the driver
would closely follow the original specifications outlined in the RTX manual [1]. The driver would also
follow linux conventions in communicating via serial ports [5]. To build upon this I would look in depth
at various ways of expressing high level motion and implementing at least one of them. Finally, I would
look at ways of extending the application to allow it be used by a mathematical language like Matlab.
This would allow the robot to be used to its potential and would enable further motion experimentation.

Method

38 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

Driver Research:
(Week 5 - Week 6) Discover the best ways to engineer a driver for the Robot. Do some
experimentation to find out if Java would be feasible as compared to C. Decide on a structure for
the driver.

Initial Experimentation:
(Week 7 - Week 9) This would involve sending and receiving basic bit patterns following the
specification in the manual. [2] Start thesis.

Further Engineering and Research:
(Week 10 - Week 13) To build on the foundation by implementing some higher level functions.
Concurrently look into ways of expressing motion effectively.

Exams and a Holiday:
(Study - Hol 1) Study for Exams, do brilliantly and then take a well-earned break.

Motion Research:
(Hol 2 - Hol 3) Research ways of expressing motion and then decide on one to implement.
Continue thesis.

Motion Implementation:
(Week 1 - Week 2) Implement and test one way of expressing motion. Work more on the Thesis.

Matlab and Thesis:
(Week 3 - Week 4) Look at ways of using the driver inside external applications. Continue writing
the thesis.

Draft Thesis:
(Week 5 - Week 8) Complete draft thesis and hand to supervisor.

Seminar Preparation Final Thesis:
(Week 9 - Week 11) Prepare Seminar and hand in final thesis early.

Seminar:
(Week 12) Give Seminar and then take a well-earned break before exams.

Software and Hardware Requirements
I would need a linux machine connected via a serial cable the RTX robot. I will need to have C and Java
with the Java Communications 2.0 API that would enable me to communicate via the serial port.

References
[1] 1987, Programming RTX using the library, Universal Machine Intelligence Limited, London.
[2] 1987, Using intelligent periphals communications , Universal Machine Intelligence Limited,

London.
[3] McKerrow, P. J. 1991, Introduction to Robotics, Addison-Wesley, Singapore.
[4] Trevelyan, J. P. 1992, Robots for Shearing Sheep Shear Magic , Oxford University Press, New

York.
[5] The Linux Serial Programming How To,

http://www.linuxhq.com/ldp/howto/Serial-Programming-HOWTO.html

Bibliography
[AGHI85]

39 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

T. Asano, L. Guibas, J. Hershberger, and H. Imai. Visibility polygon search and Euclidean shortest
path. In The 26th Symposium on Foundations of Computer Science , pages 155-164, Portland,
Oreg., 21-23 October 1985.

[BF81]
A. Barr and E. A. Feigenbaum. The Handbook of Artificial Intelligence. William Kaufmann, Los
Altos, Calif., 1981.

[BKL+97]
J. Barraquand, L. Kavraki, J. Latombe, T.-Y. Li, R. Motwani, and P. Raghavan. A random
sampling scheme for path planning. International Journal of Robotics Research , 16(6):759-774,
1997.

[BL90]
J. Barraquand and J. C. Latombe. A Monte-Carlo algorithm for path planning with many degrees
of freedom. In Proceedings of IEEE International Conference on Robotics and Automation
[IEE90], pages 1712-1717.

[BL91]
J. Barraquand and J. Latombe. Robot motion planning: A distributed approach. International
Journal of Robotics Research, 10(6):628-649, 1991.

[BN90]
M. Branicky and W. Newman. Rapid computation of configuration obstacles. In Proceedings of
IEEE International Conference on Robotics and Automation [IEE90], pages 304-310.

[Can87]
J. F. Canny. A new algebraic method for robot motion planning and real geometry. In Proceedings
of the 28th Annual Symposium on Foundations of Computer Science , pages 39-48, Los Angeles,
12-14 October 1987. IEEE.

[CH92]
P. C. Chen and Y. K. Hwang. Practical path planning among movable obstacles. In Proceedings of
IEEE International Conference on Robotics and Automation , pages 444-449, Sacramento, 7-12
April 1992. ACM.

[CL95]
H. Chang and T.Y. Li. Assembly maintainability study with motion planning. In Proceedings of
IEEE International Conference on Robotics and Automation, pages 1012-1019, 1995.

[Dij59]
E. W. Dijkstra. A note on two problems in connection with graphs. Numerische Mathematik ,
1:269-271, 1959.

[HA89]
Y. K. Hwang and N. Ahuja. Robot path planning using a potential field representation. In The
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 569-575,
Sand Diego, 4-8 June 1989.

40 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

[HA92]
Yong K. Hwang and Narenda Ahuja. Gross Motion Planning - A Survey. ACM Computing
Surveys, 24(3):219-291, Sep 1992.

[IEE90]
IEEE. Proceedings of IEEE International Conference on Robotics and Automation , Cincinati,
13-18 May 1990.

[Kav95]
L. E. Kavraki. Computation of configuration-space obstacles using the fast fourier transform.
IEEE transactions on Robotics and Automation, 11(3):408-413, 1995.

[Kav97]
L. E. Kavraki. Algorithms for Robotic Motion and Manipulations , chapter Geometry and the
discovery of new ligands, pages 435-448. A. K. Peters, 1997.

[KKKL94]
Y. Koga, K. Kondo, J. Kuffner, and J.C. Latombe. Planning motion with intentions. In
Proceedings of SIGGRAPH'94, pages 395-408, 1994.

[KL98]
L. Kavraki and J. C. Latombe. Practical Motion Planning in Robotics: Current Approaches and
Future Directions , chapter Probabilistic Roadmaps for Robot Path Planning, pages 35-53. John
Wiley, 1998.

[KM78]
O. Khatib and L. M. Mampey. Fonction decision-commande d'un robot manipulateur .
DERA/CERT, Toulouse, France, 1978.

[KSLO96]
L. E. Kavraki, P. Svestka, J. C. Latombe, and M. Overmars. Probabilistic roadmaps for fast path
planning in high dimensional configuration spaces. IEEE transactions on Robotics and
Automation, 12(4):566-580, 1996.

[LD81]
D. T. Lee and R. L. Drysdale. Generalization of Voronoi diagram in the plane. SIAM Journal on
Computing, 10(1):73-83, 1981.

[McK91]
Phillip John McKerrow. Introduction To Robotics. Addison Wesley, 1991.

[PMF89]
B. Paden, A. Mees, and M. Fisher. Path planning using a Jacobian based freespace generation
algorithm. In Proceedings of IEEE International Conference on Robotics and Automation, pages
1732-1737, Scottsdale Arizona, 14-19 May 1989.

[Rei79]
John H. Reif. Complexity of the mover's problem and generalizations (extended abstract). In 20th
Annual Symposium on Foundations of Computer Science, pages 421-427, San Juan, Puerto Rico,

41 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

29-31 October 1979. IEEE.

[TS89]
O. Takashi and R. J. Schilling. Motion Planning in a Plane using Generalized Voronoi Diagrams.
IEEE Transactions on Robotics and Automation, 5(2):143-150, 1989.

[Yap87]
C. K. Yap. An O(nlogn) algorithm for the Voronoi diagram of a set of simple curve segments.
Discrete and Computational Geometry, 30(2):365-393, 1987.

File translated from TEX by TTH, version 2.34.

On 16 Nov 2000, 21:37.

42 of 42 1/26/01 9:28 AM

Making Roadmaps Using Voronoi Diagrams http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html

