Proceedings of the 2000 IEEE
International Conference on Robotics & Automation
San Francisco, CA ¢ April 2000

A New Local Path Planner for Nonholonomic Mobile Robot Navigation in
Cluttered Environments

Gabriel Ramirez and Said Zeghloul
Laboratoire de Mécanique des Solides - UMR 6610 CNRS, Université de Poitiers
SP2MI, Bd. Pierre et Marie Curie, Téléport 2, BP 179, 86360 Futuroscope CEDEX, France

Abstract

This paper presents a new local path planner for
mobile robots in an environment with obstacles, where the
nonholonomic constraints are considered. This planner
uses only the distance information between the robot and
the obstacles, thus it is well adapted for a robot equipped
with embarked sensors, such as ultrasonic sensors. The
obstacles are mapped as linear constraints into the
velocity space of the robot; since the obstacles
constraints are linear, they form a convex subset which
represents the velocities that the robot can use without
collision with the objects. We call this convex subset the
« feasible velocities polygon » (FVP). The planner is
composed by two modules ; the first one is based on an
optimization problem, which is transformed into a
minimal distance calculation problem, in the velocity
space, between the FVP and a point, which represents the
reference velocity obtained by considering the
nonholonomic constraint; the second module, which is
used when a dead-lock situation occurs, uses the FVP
representation to find, locally, the best velocity to escape
from the dead-lock. The major advantages of this method
are the very short calculation time and a continuous
stable behavior of the velocities. The results presented
demonstrate the capabilities of the proposed method for
solving the collision free path planning problem.
mobile robots,

Keywords: Collision avoidance,

nonholonomic systems.

1. Introduction

The navigation problem of wheeled mobile
robots in cluttered environments has been addressed from
two points of view:

(a) In completely known environments, the works have
been focused to global path planning, using different
methods: grid of visits [1], numeric potential fields [2],
graphs (of visibility [3], of tangents [4], Voronoi [5]) all
using an A* algorithm, behavior-based models [6] and
genetic algorithms [7], among others. The main
disadvantage of all these methods is the very expensive
calculation time, which makes them prohibitive for use in
real-time applications.

(b) The local path planning is used for navigation in
known as well as in unknown environments or in dynamic
environments. The short calculation time allows the robot
to react in real-time. Examples of this approach are the
potential fields [8], the Bug algorithm [9], the behavior-
based models [10], the probabilistic models (VFH [11],
certainty grids [6]), the fuzzy logic [12][13], etc. For the

0-7803-5886-4/00/$10.00© 2000 IEEE

most of these methods, the robot is considered as a point
with holonomic properties, thus it can move in all
directions without reorientation. Recently, the
nonholonomic properties of mobile robots have been
included into the path planning problem.

In this paper we present a local path planning
method where the obstacles and the robot are modeled by
convex polygons, and the robot is considered as a system
with nonholonomic properties. This work has been
focused to the differential mobile robots (robots equipped
with two parallel driving wheels and no steering wheel)
and constitutes an extension of the work presented in [14],
in order to solve the dead-lock situations.

The proposed method uses two different
modules. The first module is a control law and a velocity
optimizer, in order to approach the robot to the goal
following a stable trajectory while avoiding the obstacles.
The objective of the control law is to calculate a reference
velocity, which stabilizes the robot on a fixed position in a
free environment, despite the nonholonomic property. The
velocity optimizer is used to avoid obstacles, and uses a
formulation similar to the one proposed by Faverjon et
Tournassaud in [15]. The obstacles are mapped as a linear
constraints over the robot’s velocity to form the feasible
velocities polygon. The module, via distance calculation,
finds the closest velocity on the polygon to the reference
velocity. Finally, the second module uses the feasible
velocity polygon to escape from the dead-lock situations
that could appear over the trajectory.

2. Kinematic model of a differential mobile
robot

The configuration of a mobile robot in a plan can
be completely defined by the following state vector

q=[x y of

Y

A

0 X >X

Figure 1. A differential mobile robot

2058

where (x, y) is the position of a fixed point on the robot
and 6 the orientation of the frame linked to the object with
respect to the X axis. We have chosen the center R of the
wheel axis as the fixed point on the robot. The linear
velocity v and the angular velocity ® of the robot are given
by:
_utw o wh
2 A
where v, and v, are respectively the right wheel and the
left wheel velocities. The kinematic model of the mobile
robot can be written as follows:

1%

X cos® O v)
“|=|sin® 0L)]2 thus 4=J(q)u

3
¢} 0 1

where J(q) is the Jacobean matrix of the robot, and
u=[v,0]' is the input vector (or control vector).
Nonholonomic systcms are systems with nonintegrable
velocity constraints. For this system, the nonholonomic
constraint is given by:

y—xtan0=0

3. Control law

The nonholonomic systems have been the center
of attention in the nonlinear control community in the
recent years. These systems cannot be stabilized to the
equilibrium point using a time-invariant, smooth (or even
continuous) feedback control law [16]. Thus, most
existing results from linear and nonlinear systems theory
are not directly applicable in this case. Time-varying
control laws can be used but such control laws may have
slow rates of convergence. Fast convergence rates
typically necessitate non-smooth/non-continuous control
laws.

The proposed control law is a piecewise smooth
state feedback which makes the final position globailly
exponentially stable. The final robot’s orientation is not
taken into account for the construction of the control law.
Sordalén and Canudas, in [17], have developed a similar
control law in which the final orientation is considered.

Let g¢ = [xg yp, 0]T be the desired goal position
(regardless of the final orientation) and q = [x, y, 0]" the
robot’s current position. Using the polar coordinates (a, o)
of the goal with respect to the robot’s frame, we define the
error vector z(f) as follows (see Figure 2):

a
o

a=qyx; +y;
o =atan2(y,, x,)-0o.e [-m,n]
The dynamics of vector z is given by (cf. [14]):

a=-vcoso

where:

a=—vsino—
a

2059

We propose the following control law, which
leads to exponential convergence:
v=k, acosa

W=k, a+k sinocoso

Figure 2. Error definition

with k1, k2 > 0, thus the closed loop system becomes:
a=-(k, cos’ o) a
o =—k,0
In order to prove that the origin (which

represents the goal) is globally exponentially stable, we
can use the following Lyapunov function:

2] 2
V(z)y=—a" +Ea‘ 20 Vz

1
2
such that:

V(z) = —k,a’ cos’ o —k,0* <0 Vz#0
Because such Lyapunov function exists, the stable
convergence to 0 of (a, o) is guaranteed, and a=0 implies
that the robot has reached the final position.

4. Navigation in a free environment

Using the control law described above, we obtain
the path shown in Figure 3. The initial position is the point
q:=[6, 3, /41" and the goal position is located at the origin
q=[0, 0, O]T. For this example, the coefficients k,, k, are
set to 0.6.

3 .
X axis

Figure 3. Robot's trajectory

The Figure 4 shows the robot’s velocities
evolution. The velocity limits are set to vy,=1.0 m/s and
Wna=1.0 rad/s. We can observe that the velocities are
continuous everywhere, except in t=0.

1,2

1.0

0,4

Velocity (rad/s)
(=]
[o)]

0,2

0,0
0,0 50 Time (s) 10,0 15,0

(a) Angular velocity

Linear velocity

e

1,5

1,0
0,5
0,0

Velocity (m/s)

-0,5
-1,0

-1,5
0,0 5,0 10,0 15,0
Time (s)

(b) Linear velocity
Figure 4. Robot's velocities

5. «Reaching the goal » module

In [15], Faverjon and Tournassaud have
proposed a substitute of potential field method to define
the trajectory in cluttered environment, for a manipulator
robot with a high number of degrees of freedom. This
approach is called constraints method, because the
obstacles are mapped as linear constraints over the robot’s
joint velocities. The method is based on an iterative
scheme where the configuration vector is found by using
the following formula:

q;, =q,, +Arq

The vector q is the joint velocities vector which
minimizes the following function:

2 -
with qgaal =—q—q£~
“q—q,ﬂ

7 =34

subject to the obstacle constraints given by the velocity’

damper model:
dz_ _~._‘
é¢—¢
where q and q; are respectively the current and final
configuration vectors, q,,, is the vector of desired joint

velocities, calculated in order to obtain a straight line in
the joint space, 4 is the minimal distance between the
robot and the considered object, d; is the influence
distance from which a constraint becomes active, d, is the
security distance that must be respected, and & represents
a coefficient in order to adapt the convergence speed.

The first module of our method uses a similar
approach. The optimization problem can be stated as
follows: find a vector u that minimizes the following
function

£, =l
r) goal
where
k,acosa
Yoa =[kzot+kl sinotcosot]
is the velocity vector obtained from the exponential
control law proposed in section 3.

Obstacle

Robot
Figure 5. Establishing the obstacle constraints

For any obstacle at a distance d less than d;, we
can express the velocity damper constraint as a function of
the control vector u:

(vm+ml€xﬁ)-n<§d——d‘~
- di _d»
where m is the unit vector along the robot axis X, and n is
the unit vector along the segment PQ of minimal distance
between the robot and the obstacle.

The set of obstacle constraints and the velocity
limit constraints are linear in (v, ®), thus they define a
convex subset in the (v, @) space. Because this subset
defines the bi-dimensional set of velocities that the robot
can use without collision with the obstacles, we call it the
« feasible velocities polygon » or FVP.

For example, let’s consider the situation shown in
Figure 6(a). The obstacle C is at a greater distance than d;
from the robot, so only objects A and B are considered in
the calculation process, i.e. they are mapped as linear
constraints over the robot’s velocity. The resulting FVP,
in the (v, @) space, is shown in Figure 6(b), where the
velocity limit constraints and the two obstacle constraints
define the convex subset which guarantees that the robot
can move without collision. The velocity to reach the goal
in a free environment is represented by the point ug,,.

We can observe that the minimization problem

1 2
ninf, =2 Ju-u,.|
subject to the obstacle constraints

+wk X RP)-n< d-d,
(vm + ok X)-n_édi~d
is a minimal distance calculation problem between the
FVP and the reference point u,,,. The solution to this
problem is represented by the point u*, which is the

closest point on the polygon to wu,, To solve this
problem, we use a fast minimal distance calculation

5

2060

algorithm, developed by S. Zeghloul and P. Rambaud
[18].

@ i b
Figure 6. (a) Obstacle configuration, (b) Feasible velocities
polygon

The variation of the configuration vector is then
calculated using the solution vector, u*, as follows:
cos® O
Aq; = At|sin® O lu*
0 1
The first module of the path planner, called
reaching the goal, is define by the following iterative
process:

(i) compute the reference velocity wug,y, using the
exponential control law ;

(ii) build the FVP, by mapping the obstacles in the
influence zone as linear constraints over the robot’s
velocities ;

(iii) solve the optimization problem by minimal distance
calculation ;

(iv) apply of vector u*.

700

600

O 500
400

300

200

100

0

0.00 20.00 40.00

(a) ®)
Figure 7. (a) A simple example, (b) Distance function V(z)

This module allows the robot to solve simple
situations where the obstacles configuration does not
create local minima points. An example is shown in Figure
7. While the robot uses the solution u*, the “distance”
function:

1, 1,

V(z) = 54 + > o

is strictly decreasing, since the robot is continuously

approaching to the goal. This property is used in the
second module to solve the dead-lock situations.

When the solution of the optimization problem,
u¥, is located at the origin of the plan (v, ®), the robot
cannot continue to move using the reaching the goal
module. This condition corresponds to a dead-lock
situation. In this circumstances, the second module, called
boundary following, is applied.

2061

6. «Boundary following » module

The “boundary-following” module and its
interaction with the reaching the goal module have been
inspired by the Bug algorithm [9]. The module uses the
FVP representation and the value of the distance function
to allow the robot to follow the obstacle boundary in order
to escape from the dead-lock.

According to the location of u* on the FVP,
there are two kinds of dead-lock situations: the single-
obstacle dead-lock, which occurs when u* is located over
one constraint of the FVP, and the two-obstacles dead-
lock, when u* is located at a vertex of the FVP, as
described in Figure 8(a) and Figure 8(b) respectxvely

| <

(@)
4w
O ayx K3
-V i
JEfconstraint given by
e object B
object A 5y at v
Constraint given by
object A
U0
object B
- mmu
(b)
Figure 8. (a) Single-obstacle dead-lock, (b) Two-obstacles dead-
lock

Regardless of the number of obstacles involved
in blocking situation, the solving process is the same for
both cases. When a dead-lock situation is detected (u*=0),
the current value of the distance function, Ve, is
recorded and the two adjacent vertices to u*, sg and s, are
identified. The position of the blocking obstacles, with
respect to the robot’s current position, defines which
obstacle constraint will be chosen to surround them, and
which of the vertices sz and s; will be used.

Thereafter, the method tracks the evolution of the
chosen constraint on the FVP and applies the velocities
represented by the chosen vertex. This allows the robot to
follow the boundary of the blocking obstacle at a distance
greater than or equal to d,.

While the robot is surrounding the obstacles, the
value of the distance function is continuously compared
with V. Because the distance function is a measure of
« distance » between the robot and the obstacle, when the
value of the distance function is lower than Vi, the
robot has found a point over the convex obstacle boundary
that is closer to the goal than the dead-lock point. At this
moment, the robot leaves the boundary following module

in order to continue to move to the goal using reaching
the goal module.

It is possible that, while the robot is following the
obstacle boundary, the chosen vertex converges to the
origin of the (v, w) plan. This means that a new obstacle
prevents the robot from following the obstacle boundary.
When this occurs, the method simply switches from the
followed constraint to the new one. Therefore, the robot
will surround the new obstacle.

To illustrate the two modules and their

interaction, let’s consider the situation shown in Figure 9,

with an initial distance value V(z)=299.08:
Robot

0

Viz) = 299.08

Goal
Figure 9. A "dead-end" example

As shown in Figure 10, the robot, using reaching
the goal module, will move towards the final position
following a stable trajectory, until this trajectory is
blocked by an obstacle. This situation is detected as a
dead-lock condition (u*=0) and the current value of the
distance function, Vyox=52.43, is recorded:

V(2) = Vi = 52.43

, Goal

Figure 10. Dead-lock situation

Thereafter, the vertices sz and s; are identified.
Because the blocking obstacle is located at the left of the
robot, the chosen vertex is sg since it allows the robot to
turn to the right. The method will track the evolution of
the followed constraint and will apply the velocities
represented by s.

In the situation shown in Figure 11, the followed
vertex sg has converged to the origin of the (v, w) plan,
thus the robot has found a new blocking obstacle. The
method switches the followed constraint, and continues to
surround the new object, using the new vertex sg’. Every
time that the chosen vertex converges to zero, the method
switches the followed constraint, so the robot can
surround the blocking obstacles, as shown in the Figure
12.

followed
Constraint

V(z)=57.76

- D 5,

Goal
Figure 11. Switching followed constraint

V(z) = 203.03

L Goal « Goal
Figure 12. Surrounding obstacles

When the current value of the distance function is
lower than the dead-lock value, Vi, the planner leaves
the boundary following module and uses the reaching the
goal module, until the goal is reached (cf. Figure 13).

The Figure 14 shows the evolution of the
distance function for the whole trajectory. We can observe
that, when the robot is using reaching the goal module,
the distance function is a stable exponential curve as
consequence of the exponential control law. We can also
observe that the switching point from reaching the goal
module to boundary following module is a local minimum
in the evolution of the distance function. The other local
minima do not represent dead-lock situations since in the
boundary following module the vector wg,, is not
considered to determinate the robot’s velocity.

The resulting trajectory is a sequence of reaching
the goal and boundary following intervals. By
construction, for every boundary following interval the
final value of the distance function is lower than the initial
one (Vyoek). Furthermore, the distance function is strictly
decreasing in the reaching the goal intervals. If the
boundary following intervals are finite, we can affirm that
the distance function converges to zero. Thus, the robot

‘reaches the final position.

It is important to note that the two modules are
based on the feasible velocities polygon only, which is
built from the distance information between the robot and
the obstacles, thus the method is well adapted for a robot
equipped with distance sensors, as ultrasonic sensors. The
proposed path planner has been implanted on a real
mobile robot (RoboSoft Robuter) and the results are very
satisfactory.

2062

Switching
point

Vi(z)= Vo= 0.00

Goal

‘Reaching |
“the goal. .

150.01

100.0f .

100 20t Ans ans &t &Nt 701 RAY ant

Figure 14. Distance function

7. Conclusion

In this paper, a new collision free path planner
for nonholonomic mobile robots has been presented. This
planner is composed by two modules. The first module
allows the robot to continuously approach the goal
position while avoiding the obstacles, following a stable
reference trajectory obtained from an exponential control
law which considers the nonholonomic property. In order
to avoid the collisions, a similar approach to the one
proposed in [15] is used: the objects in the influence zone
are mapped as linear constraints over the robot’s velocity
space, forming the Feasible Velocities Polygon. The
collision free trajectory is obtained by minimizing the
deviation of the current robot’s trajectory from the
reference trajectory, under the obstacle constraints. This
minimization problem is solved by a minimal distance
calculation in the velocity space, between the FVP and the
point describing the goal velocity.

The second module is activated when a dead-lock
situation is detected by the first module. The module uses
the FVP representation to escape from the blocking
condition, by following the obstacle boundary and
evaluating the distance to the goal. The results show that
the proposed path planner gives a solution in almost all
cases where the classical local methods fail. The
computing times are very short, which allows the
implantation of the proposed method for real-time
application. The path planner has been implanted on a
commercial mobile robot and experimental tests have
been successfully performed.

References

[1] T. Balch and R. Arkin, “Avoiding the past: a simple but
effective strategy for reactive navigation,” IEEE, pp. 678-
685, 1993.

[2] J. Barraquand et al., “Numerical potential field techniques
for robot path planning,” Procs. Inter. Conf. Adv. Robotics,
pp. 1012-1017, Pisa, ltalie, 1991.

[3] F. Garcia and R. Mampey, “Mobile robot planning by
reasoning both at itinerary and path levels,” IEEE Int. Conf.
Adv. Robotics, pp. 1074-1080, Pisa, Italie, 1991.

[4] Y. H. Liu and S. Arimoto, “Proposal of tangent graph and
extended tangent graph for path planning of mobile robots,”
Procs. Robotics and Automation, pp. 312-317, 1991.

[5] S. S. Iyengar et al., ‘Robot navigation algorithms using
learned spatial graphs,” Robotica, pp. 93-100, 1986.

[6] D. W. Cho et al., “Experimental investigation of mapping
and navigation based on certainty grids using sonar sensors,”
Robotica, pp. 7-17, 1993, vol. 11.

[7] T. Shibata and T. Fukuda, “Coordinative behavior by genetic
algorithm and fuzzy in evolutionary multi-agent system,” pp.
760-765, IEEE, 1993.

[8] W. Tianmiao and Z. Bo, “Time-varing potential field based
« perception-action » behaviors of mobile robot,” Procs.
IEEE Int. Conf. Rob. Autom., pp. 2549-2554, 1992.

[9] T. Skewis and V. Lumelsky, “Experiments with a mobile
robot operating in a cluttered unknown environment,”
Procs. Int. Conf. Rob. Autom., pp. 1482-1487, 1992.

[10] M. Wolfensberger and D. Wright, “Synthesis of reflexive
algorithms with intelligence for effective robot path
planning in unknown environments,” SPIE Mobile Robots,
pp. 70-81, 1993.

[111 J. Borenstein and Y. Koren, “The vector field histogram -
Fast obstacle avoidance for mobile robots,” IEEE Trans.
Robot. Autom., pp. 278-288, 1991, vol. 7.

[12] Y. Maeda, “Collision avoidance control among moving
obstacles for a mobile robot on the fuzzy reasoning,” 1990.

[13] B. Beaufrere and S. Zeghloul, “A mobile robot navigation
method using fuzzy logic approach,” Robotica, pp. 437-448,
1995.

[14] G. Ramirez and S. Zeghloul, “Path planning for a
nonholonomic wheeled mobile robot in cluttered
environments,” Proc. of the 4th Japan-France Congress on
Mechatronics, volume 1, pp. 337-342, 1998.

[15] B. Faverjon and P. Tournassoud, “A local based apporach
for path planning of manipualtors with high number of
dregrees of freedom,” IEEE Procs. Int. Conf. Robot. Autom.,
pp- 1152-1159, 1987.

[16] R. W. Brockett, “Asymptotic stability and feedback
stabilization,” Differential Geometric Control Theory, pp.
181-208, Birkhauser, 1983.

[17] O.). Sordalen and C. Canudas, “Exponential control law
for a mobile robot: extension to path following,” Procs.
IEEE Int Conf. Rob. Autom., pp. 2158-2163, 1992.

[18] S. Zeghloul and P. Rambeaud, “A fast algorithm for
distance calculation between convex objects using the
optimization approach,” Robotica, pp. 355-363, 1996.

2063

