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Abstract

This article reports preliminary results from the design
and implementation of a visual object localization module
for mobile robots. The module takes an object-based ap-
proach to visual processing and relies on a preprocessing
step that segments objects from the image. By tracking the
size and the eccentricity of the objects in the image while the
robot is moving, the visual object localization module can
determine the position of objects relative to the robot using
the displacement obtained from its odometry. In localizing
the objects, the module is designed to combine the results
of two different techniques. The visual looming technique
measures the distance to an object using the change in the
size of the object on the image plane. This technique is to
be complemented by a variant of the triangulation technique
that can locate an object using the eccentricity of the object
when viewed from two different points. The module — with
the preprocessing algorithm — is being implemented to run
in real-time on a mobile robot.

Evaluation of the visual localization module is being
done in an integrated system introduced in this article. The
integrated system creates an environment for real-time eval-
uation of the module as well as other mapping and naviga-
tion algorithms for mobile robots.

1. Introduction

A robot’s ability to navigate successfully in unstructured
environments is often determined by the quality of its per-
ception, which in turn depends on the richness and reliabil-
ity of its sensors. Visual sensors can provide rich and high-
dimensional information about the environment. However,
high computational requirements and a lack of fast and ro-
bust visual algorithms have prevented extensive use of vi-
sual sensors in mobile robotics. Other sensors, such as
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sonar, have often been preferred to vision due to their sim-
plicity. Recently, new visual algorithms that can run in real-
time on mobile robot platforms have begun to emerge, mak-
ing visual processing useful as a tool for mobile robot navi-
gation [1, 7, 10, 13, 15].

Some visual navigation algorithms process each image
separately to extract navigational information. One exam-
ple is Horswill’s “visual sonar”, [10], which extracts from a
camera image the relative distance of obstacles on the floor.
Other algorithms [7, 15], use the principle of motion par-
allax [9] which states that a field of velocity vectors, also
known as optical flow, appears on the retina of a moving
agent. These algorithms work in the spatiotemporal do-
main, processing a sequence of images to extract and use
optical flow for navigation.

The major challenge in working with a sequence of im-
ages is that visual entities have to be tracked through the
sequence. This is done by solving the temporal correspon-
dence problem, i.e., matching corresponding entities be-
tween images. The entities can range from pixels to lines
and regions. The choice of the type of visual entity to be
tracked has important implications for the complexity of
the processing and the nature of the visual information to
be extracted. For example, although pixels provide a dense
representation of the scene, solving the temporal correspon-
dence problem becomes costly due to the number of pixels,
and tracking pixels over a long sequence of images is almost
impossible.

At the other extreme, some algorithms track larger visual
entities, such as lines and regions across multiple frames
[5]. Here the tracking becomes easier, but the initial seg-
mentation in each frame can be problematic. For instance,
the appearance of an object being tracked might change dra-
matically as a result of cast shadows or changes in viewing
perspective.

This project takes an object-based approach to visual
processing.  Object-based processing works in a low-
dimensional object space created by an algorithm that seg-
ments “objects” from the image. Objects are defined as re-
gions that can be segmented easily from the background.



Figure 1. The miniature robot Khepera
equipped with a color camera.

They may or may not correspond to actual objects in the
environment, and they usually depend on the segmentation
algorithm being employed. In the object space, objects are
represented by a set of features such as color, size and posi-
tion in the image.

The temporal correspondence problem, which is a diffi-
cult and computationally expensive problem to solve in the
pixel space, becomes simpler in the object space. Cheap and
robust tracking of objects leads to a longer tracking time and
opens up new possibilities for visual navigation of mobile
robots.

The visual object localization module and the techniques
being implemented in the module are discussed in the fol-
lowing section. Section 3 describes an integrated system
being developed for the real-time quantitative evaluation of
the module. A miniature Khepera robot, as shown in Fig. 1,
will be used as the robot platform. Then, preliminary results
of the module in the integrated system are presented. The
article concludes with a discussion of the module and the
integrated system.

2. Visual Object Localization Module

The main goal of the project is to build a complete vi-
sual module to localize objects using the on-board camera
as the robot moves in its environment. The change in the
size and the eccentricity ! of objects on the image due to the
displacement of the robot are combined with the amount
of displacement obtained through robot’s odometry for the
localization of objects. Localization of objects is impor-
tant not only for navigation, but also for the robot’s self-
localization, mapping, and other functions requiring knowl-
edge of the robot’s position in its environment.

The visual object localization module works in the ob-
ject space created by a preprocessing algorithm, as shown
in Fig. 2. It uses the position and the size of the bounding

!Eccentricity of an object is defined as the angle between the object and
the optical axis of the camera
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(b)

Figure 2. Preprocessing: (a) Two compact re-
gions (one is a red bottle on the table, the
other is a yellow block in the wall) are chosen
as objects. Bounding boxes of these objects
are drawn as white rectangles. (b) Output of
the preprocessing algorithm which can be re-
ferred to as an object-space representation
of the scene.

boxes of the objects to localize them. Ideally, the prepro-
cessing algorithm should be able to segment an unstructured
scene into objects using visual cues such as shape, texture,
edges and color in real-time. In the lack of a preprocess-
ing algorithm which can satisfy all these constraints for a
completely unstructured environment, one is forced to put
some structure into the environment to make the detection
and segmentation of objects easier.

In this project, objects are defined by patches of com-
pact colored regions in the image with no assumptions about
their color, size or shape. In particular, blocks of different
sizes and colors are inserted into the walls. The prepro-
cessing algorithm analyzes the scene for patches of compact
colored regions that can be segmented from the background
easily. The image is segmented into colored regions to cre-
ate a low-dimensional object representation of the scene.

The preprocessing algorithm runs in two phases. The
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Figure 3. Diagram of the visual looming re-
lationships in a camera-centered coordinate
frame.

image is subsampled and normalized in the first phase. In
the second phase, the pixels of the subsampled image are
clustered in the color (RGB) domain with a clustering algo-
rithm. Each cluster is also tagged with its bounding box on
the image and the number of pixels included in it. Clusters
that are neither too large nor too small and relatively com-
pact on the image are selected as objects worth tracking.
The bounding boxes of these objects are then fine-tuned in
the full-resolution image.

The module will combine and extend two different tech-
niques. The visual looming technique estimates the distance
to an object using the change in the projection size of the
object that results from known robot displacements. This
technique will be complemented by a variant of the trian-
gulation technique which can locate an object using the ec-
centricity of an object from two different positions. Cur-
rently, only the visual looming technique is implemented in
the module. Both techniques are described in the next two
subsections.

2.1. Visual Looming

Visual looming, the expansion of the projection size of
an object on the retina, is usually the indication of an ap-
proaching object. It is normally perceived as a threat for
a possible collision and is sufficient to elicit avoidance and
escape behaviors in animals [4].

Although its behavioral effects have been studied mainly
in psychology, looming also has interesting implications for
mobile robotics. Several independent studies have reported
the use of looming for obstacle avoidance [12] or for ex-
tracting the depth of an object [11, 16, 17]. In particular,
Raviv [14] has done an excellent quantitative analysis of
visual looming. He defined the looming of a point mathe-
matically and showed how this information can be used for
effective obstacle avoidance behavior.

The geometric relations shown in Fig. 3 assume that
camera is viewing an object of size h from two different
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positions, at distances d 4 and dp from the object. Note that
it is irrelevant whether the displacement between the two
positions is the result of camera movement or object move-
ment. In the rest of the discussion, it is assumed that objects
are stationary while the camera is moving. When the cam-
era is mounted on a mobile robot, the displacement Ad can
be obtained directly through the robot’s odometry.

Given a camera focal length f, the size of the projection
of the object onto the focal plane depends on the distance
between the object and the camera. In the case shown in
Fig. 3, pa and ppg, respectively, represent the size of the
projection of the same object at distances d4 and dg. Using
similar triangles, it can be easily shown that

Ad
pB—PA’

= —ppLd__
da = PByp—pa

dp = ~pa 1))

where Ad = dp — d4 denotes the net displacement. Since
pa, pp and Ad are all known, the initial and final distance
to the object can be computed using Eqn. 1 which is referred
to as the looming equation.

Some important observations can be made from the
looming equation.

1. The looming equation can be applied to vertical or hor-
izontal dimension of the projection independently.

2. The looming equation is independent of the implicit
parameters of the optical system, such as the focal
length, and the pixel size. However, calibration of the
camera is necessary to measure the eccentricity of the
object.

3. The looming equation is independent of the actual ob-~
ject size.

4. The range estimates have the units of displacement,
i.e., robot’s odometry. Therefore range estimates can
be considered as independent of the robot platform.

The looming geometry suggests that the displacement of
the robot be perpendicular to the object plane. This is re-
quired to prevent any foreshortening effects of the projec-
tion due to the displacement. Usually the object plane is
unknown, and the only acceptable type of displacement to
minimize foreshortening is towards or away from the ob-
ject. In most prior analyses and implementations, the loom-
ing technique is used when the robot is moving towards the
object. The only exception is Joarder and Raviv’s use of
looming for obstacle avoidance [12]. They used spherical
light bulbs as objects to eliminate the foreshortening effect.
The restriction on the type of displacement, or on the type
of the objects, is a major bottleneck for the looming as an
object localization technique.

A more careful look at the looming geometry, however,
reveals that the displacement has to be perpendicular only
to the dimension (horizontal or vertical) of the object being
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Figure 4. On a flat surface, vertical looming
can be used to localize an object under arbi-
trary displacements.

used by the looming technique. For instance, if the vertical
looming of the object is being used, then the displacement
must be perpendicular to the vertical dimension of the ob-
jectonly. In an indoor environment, usually the robot moves
on a flat ground and the objects stand vertical. In such an en-
vironment, though horizontal looming of objects is subject
to foreshortening, usually vertical looming of objects is not.
Vertical size (height) of the projection of an object depends
only on the distance between the observer and the object. It
is independent of the slant angle of the object with respect
to the robot 2. Therefore, use of vertical looming can relieve
the restrictions on the type of robot’s displacement.

Figure 4 sketches how vertical looming can be used to
localize an object when the robot makes an arbitrary dis-
placement. In the figure, the robot moves from point A4 to
point B making a net displacement of Ad. The object is as-
sumed to lie on a “assumed object plane” that is perpendic-
ular to the displacement. dpp, the distance to the assumed
object plane can then be computed using the looming equa-
tion. Finally the range of the object can be derived from

2Here, ‘projection size of an object’ is used in an ideal sense. If the size
of the bounding box is used as the projection size of the object, then the
vertical size of the projection of an object may not be independent of the
slant angle. However, the change in the vertical size due to the slant angle
depends on the shape of the objects, and is expected to be small for most
of the objects .
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Figure 5. An object can be localized on the
basis of its eccentricity at two different points
separated by a known displacement vector.

dpp using
dp = dppcosfp

where §p is the angle between the object and the displace-
ment vector from robot’s position.

This extension makes the looming a useful object local-
ization technique that can be employed on a freely moving
robot.

2.2. Running Fix Triangulation

Triangulation is a localization technique for determining
the location and orientation of a robot using three or more
beacons. It allows a robot to determine its location and ori-
entation by measuring the eccentricity of objects whose po-
sitions are known, [2, 6].

An interesting variation of triangulation is the run-
ning fix 3 triangulation technique proposed by Case [3].
The geometry of the running fix triangulation technique is
sketched in Fig. 5. The basic idea of the running fix is the
utilization of the angle or range obtained from a beacon at
a previous time step, by adding the displacement vector to
the position of the beacon. Case used the running fix trian-
gulation technique to determine the position and orientation
of a mobile robot using a single landmark.

3This is a known technique in celestial navigation and has been used
by sailors. By making successive measurements of a celestial body over a
period of few hours, one can estimate his latitude and longitude.



Two views of an object separated by a known displace-
ment vector can be used to localize the object. The ec-
centricity of the object in both views and the change in
the robot’s orientation are used to calculate the angles 64
and 6. The displacement vector derived from odometry is
combined with these angles to compute the object range as,

tan()B

dg = Ad

B cosf4(tanb4 +tandg)’
tanf,4

dg =

cosfp(tanfy + tanbpg)

Initial analysis suggests that visual looming and triangu-
lation can be complementary techniques for object localiza-
tion. When the robot is moving directly toward an object,
triangulation fails since the eccentricity remains unchanged,
whereas visual looming can localize the object by using the
change in the retinal size of the object. On the other hand
when the robot is moving on a curved path, triangulation is
expected to produce better localization than looming.

An important part of the project will be the evaluation
of the visual object localization module. The techniques to
be implemented in the visual localization module require
some assumptions and simplifications. For instance, the vi-
sual looming technique implicitly assumes navigation on a
flat surface and planar objects perpendicular to the ground.
The bounding box segmentation of objects neglects the ef-
fect of perspective when objects are slanted relative to the
robot’s line of sight. The triangulation technique implic-
itly assumes that the centroid of the object images corre-
sponds to the same point on the object at both points. A
complete theoretical analysis of these problems and others
is very difficult. Moreover there may and will always be un-
foreseen problems with these techniques. To obtain quan-
titative performance data under a variety of constrained or
unconstrained movements, the object localization module,
which combines looming and triangulation, will be evalu-
ated in the integrated system that will be discussed in the
next section.

3. Integrated system for the real-time evalua-
tion of the object localization module

Quantative evaluation of object localization methods has
been a difficult task in mobile robotics research. To evaluate
the performance of an object localization method, one has to
know not only the position of the robot, but also the position
of the object that is being localized. In typical localization
systems [2], the position of the robot is usually tracked us-
ing a number of active or passive beacons mounted in the
environment. The position of objects needs to be derived
from a model of the environment created through manual
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Figure 6. Sketch of the Integrated system.

measurements. However, the creation of an environment
model through manual measurements is time consuming. It
introduces an extra source of error into the system, and it
makes changes in the environment cumbersome to encode.

We have developed an integrated system for real-time
evaluation of object localization methods that does not need
an environment model. The integrated system is built us-
ing the setup sketched in Fig. 6. It consists of a modifi-
able, indoor-like environment for the miniature robot Khep-
era and an overhead camera mounted over the environment.
The integrated system is implemented on two desktop com-
puters running the Linux operating system. The computers
are connected via a local area network. Each computer is
equipped with a frame grabber. The overhead camera is
connected to both of the computers. One of the computers
uses the overhead camera to track the Khepera using a small
color marker on the robot. The position and the orientation
of the color marker, and hence of the robot, are computed
and then passed to the second computer. The second com-
puter is connected to the Khepera and its on-board camera.
The visual object localization module runs on this computer
to process the images coming from the Khepera’s on-board
camera.

The system creates an integrated view as shown in Fig. 7.
First the overhead view of the environment is grabbed as
the background. The position of the robot and the estimated
positions of the objects are then superimposed on this back-
ground. The position of the robot is tracked by the over-
head camera and drawn on the integrated view as a circle.
The estimations obtained from the object localization mod-
ule through the on-board camera are drawn in the integrated
view as rays emanating from the robot. Since the position
of each object is also visible in the integrated view, the per-
formance of the object localization method can be visually
and quantitatively evaluated.

In the next section, preliminary results from the evalua-

tion of the partially implemented visual object localization
module are presented and discussed.



Figure 7. Integrated view for the real-time vi-
sual and quantitative evaluation of the object
localization module. Here the object localiza-
tion module estimating the position of an ob-
ject, marked with a white rectangle, while the
robot is approaching.

4. Preliminary Evaluation of Object Localiza-
tion Module in the Integrated System

The integrated system provides a nice testbed for the
evaluation of the visual object localization module being
developed. The module is not fully implemented yet. Only
the basic looming algorithm is implemented to localize ob-
jects while the robot is moving towards an object, as shown
inFig. 7.

An important concern in the practical applicability of the
looming algorithm is its noise sensitivity. It can be seen
from Eqn. 1 that the looming equation is likely to amplify
any noise when the change in the projection size is small.
Therefore, it is important to know how different sources of
noise contribute to the range error.

The looming equation has two sources of noise: odo-
metric and visual. Odometric noise is the error, due to slip-
page and other factors, in measuring the displacement of the
robot. It is proportional to the distance traveled and usually
in the order of a few percent of the distance traveled on most
surfaces. Visual noise arises in measuring the projection of
the object on the focal plane, and is due mainly to pixel
quantization, object segmentation and optical distortion.

Sahin and Gaudiano [8], analyzed the noise sensitivity of
the looming equation. The analysis led to several important
observations about looming. First, error in the estimated
range is proportional to the distance, which means that —
other parameters being constant — measurements will get
better as the robot gets closer. Second, the range error is ini-
tially dominated by the noise in the projection size change,
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Figure 8. Range estimations of the looming
algorithm when the robot starts approaching
an object from two different distances.

whose effect decreases as the projection size change in-
creases.

The amount by which the projection size changes de-
pends jointly on the distance and on the size of the object: a
short movement toward a nearby small object may yield the
same projection size change as a longer movement toward a
distant large object. Therefore, rather than considering ab-
solute size and distance, it is most sensible to use the ratio
of the distance to the size of the object as a dimensionless
parameter to measure the error.

Figure 8 shows the results of an experiment demonstrat-
ing the performance of the looming algorithm when the
robot is approaching an object. The figure consists of two
parts. The upper part is a sketch of the experiment in which
the robot approaches an object from two different distances.
The object is shown as a thick vertical strip on the left of the
figure and the starting positions of the robot are drawn to the
right of the object.

The lower part of the figure plots the results of the ex-
periment: Estimated ranges to the object are plotted against
the actual distances. The axes are marked in units of object
size (height for this case) to make the results independent
of the size of the object or the actual distance to the object.
The left portion of the plot shows the results when the robot
starts approaching the object from a distance of 6.5 units.
It can be seen that range estimates gets into an acceptable
precision after moving one unit. The right portion of the
figure plots the range estimates when the initial distance is
twice as far (13 units). It takes almost 5 units of displace-
ment for the range estimates to get into the same precision
These results agree with the results of the theoretical noise
sensitivity analysis which is briefly summarized above.

The sudden jumps intermitted by slow variations are due
to the difference between the rate of processing in the mod-



ule, and the rate of communication with the robot.
5. Discussion

Within the frame of this work, the following claims can
be made:

e A preprocessing step can create a low-dimensional
object-space representation of the scene from the high-
dimensional visual data. The ‘complex’ visual sensor
can be transformed into a simpler sensor —output of
which is easier to handle~ with such preprocessing.

o The preprocessing can be done in real-time (at rates
close to frame rate) using standard hardware and cur-
rent color tracking algorithms. Also off-the-shelf hard-
ware designed to track arbitrary colors at frame rate are
available.

e The idea of automatic selection of colors that ‘worth’
to be tracked by the color tracking algorithm seems
promising. The current implementation of this idea for
the indoor-like environment seems to work in unstruc-
tured environments as well.

o Storing and matching of scenes becomes easier with
the low-dimensional object space representation. This
representation made it possible to track objects over a
long sequence of frames. It can also be promising for
the place recognition task with the on-board camera of
a mobile robot.

* Longer tracking of objects allows the robot to make
bigger displacements, resulting in larger changes in the
size and the eccentricity of objects. This reduces the
effect of noise on the visual object localization module
and allow it to make accurate localizations.

o The visual object localization module combines the
odometry information with the visual information to
localize objects.

¢ The localization information obtained from the visual
object localization module is labeled, i.e. it tells not
only that there is an object at a certain location, but it
also tells the color, etc., of the object. This can be very
helpful for navigation algorithms. Other range sensors,
like sonar, infrared or laser, lack this feature.

e The integrated environment is a useful tool for quanti-
tative evaluation of visual algorithms on the miniature
Khepera robot.
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6. Conclusion

This article introduced a visual object localization mod-
ule which takes an object-based approach to visual process-
ing. The module is designed to localize objects relative to
the robot, by tracking the change in the size and eccentric-
ity of their images. The techniques to be implemented in
the module were described. An integrated system for the
evaluation of the module was also introduced. Finally some
preliminary results from the evaluation of the partially im-
plemented module in the integrated system were presented.

The visual object localization module is close to com-
pletion. The integrated system will be used for quantitative
evaluation of the module for different cases. Though the in-
tegrated system is created for the evaluation of the module,
it can be used to evaluate other visual or nonvisual localiza-
tion and map creation methods as well.
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