
Chapter 1

Randomized Robot Navigation Algorithms

Piotr Berman
�

Avrim Blum
y

Amos Fiat
z

Howard Karlo�
x

Adi Ros�en
{

Michael Saks
k

Abstract

We consider the problem faced by a mobile robot

that has to reach a given target by traveling through

an unmapped region in the plane containing oriented

rectangular obstacles. We assume the robot has no prior

knowledge about the positions or sizes of the obstacles,

and acquires such knowledge only when obstacles are

encountered. Our goal is to minimize the distance the

robot must travel, using the competitive ratio as our

measure.

We give a new randomized algorithm for this prob-

lem whose competitive ratio is O(n
4

9 logn), beating the

deterministic
(
p
n) lower bound of [PY], and answer-

ing in the a�rmative an open question of [BRS] (which

presented an optimal deterministic algorithm). We be-

lieve the techniques introduced here may prove useful in

other on-line situations in which information gathering

is part of the on-line process.

1 Introduction

Robotics applications often require that a robot move

through an obstacle-�lled region to reach a speci�ed

target. Usually the robot is given freedom as to

what route to follow, and we wish to minimize the

distance traveled. Two very di�erent problems arise

�Computer Science Dept., Penn State University, University

Park, PA 16802. berman@shire.cs.psu.edu
ySchool of Computer Science, Carnegie Mellon University,

Pittsburgh, PA 15213-3891. Supported in part by NSF National

Young Investigator grant CCR-9357793 and a Sloan Foundation

Research Fellowship. avrim@cs.cmu.edu
zDept. of Computer Science, Tel-Aviv University, Tel-Aviv

69978, Israel. fiat@math.tau.ac.il
xCollege of Computing, Georgia Institute of Technology, At-

lanta, GA 30332-0280. Research supported in part by NSF grant

CCR-9319106. howard@cc.gatech.edu
{Dept. of Computer Science, Tel-Aviv University, Tel-Aviv

69978, Israel. adiro@math.tau.ac.il
kDepartment of Mathematics, Rutgers University, New

Brunswick, NJ 08903. Supported in part by NSF contract CCR-

9215293 and by DIMACS, which is funded through NSF grant

STC{91{19999 and the NJ Commission on Science and Technol-

ogy. saks@dimacs.rutgers.edu

from these situations, depending on the prior knowledge

the robot has about the region. If the robot knows the

positions of the obstacles in the region, the problem

is a computational question of computing a short,

sometimes the shortest, path avoiding the obstacles to

reach the target (see [La, Sh]). Such situations may arise

if the robot is traveling on a factory
oor that bears no

changes over time, or if we have a map of the region to

be traversed.

A very di�erent problem arises when the robot

has no a priori information about the obstacles that

lie ahead (for instance, if the factory
oor changes

frequently, or the robot is placed in a completely new

region). We model this situation by assuming that

the robot knows the location of the target and its own

absolute position, but that it only acquires knowledge

about the obstacles as it contacts them. Our aim,

nonetheless, is to minimize the distance the robot

travels.

In recent years, several theoretical papers have

studied problems of this second type in which the robot

has no prior knowledge of the positions of the obstacles

[PY, BRS, BC, BBFY]. Because the situation examined

is \on-line" in nature, in the sense that the robot must

make decisions without knowing what lies ahead, it is

natural to use the competitive ratio [ST] to evaluate

the performance of a strategy. In particular, we would

like to minimize the ratio between the distance traveled

by the robot and the length of the shortest start-to-

target path in that scene. The competitive ratio is the

worst case ratio achieved over all scenes having a given

Euclidean source-target distance.

A particularly interesting scenario, that embodies

many of the key issues that arise, is the case that all

obstacles are axis-parallel rectangles. In fact, it is of-

ten convenient (and nearly equivalent [BRS, BBFY]) to

further simplify and assume that the goal is just to ad-

vance some number of units forward in the x direction

(i.e., the target is an in�nite vertical \wall"). For ei-

ther version, it is not hard to see that the simple strat-

egy of greedily moving towards the target and going

1

2 BERMAN ET AL.

greedily around any obstacles encountered has compet-

itive ratio �(n), where n is the Euclidean source-target

distance and we de�ne our units so that all obstacles

have length and width at least one. Similar greedy

strategies fare equally poorly. Blum, Raghavan, and

Schieber [BRS], however, gave a more clever determinis-

tic algorithm that achieves a competitive ratio ofO(
p
n)

for both the \wall" and point-to-point problems. This

matches an
(
p
n) lower bound that had been proven

by Papadimitriou and Yannakakis [PY], closing the gap

for deterministic algorithms. [BRS] posed the question

of whether randomized algorithms might be able to do

better.

In this paper, we break the deterministic �(
p
n)

barrier by describing a new randomized navigation al-

gorithmwhose competitive ratio isO(n
4

9 logn), thus an-

swering the open question of [BRS] in the a�rmative.

We also show (details in the full paper) that randomiza-

tion provably helps in the 3-dimensional version of the

problem, giving an O(n2=3��)-competitive algorithm.

While the new ratio admittedly provides only a

small reduction in the exponent over the determinis-

tic results, we believe the robot navigation problem is

particularly intriguing from the point of view of ran-

domization for the following reason. Unlike on-line sce-

narios such as the k-server [MMS] or metrical task sys-

tem [BLS] problems, in the robot navigation setting one

has missing information about the past (obstacles closer

to the start than the robot's current position but that

were not actually touched by the robot) as well as the

future. The path that one takes determines the infor-

mation that one receives. What this means is that one

cannot easily determine the optimal cost from the start

to other points at the current \level" (x coordinate),

which is something used by standard randomized on-line

algorithms [FKLMSY]. This is somewhat like a paging

problem in which the algorithm is only told about the

page faults and not the \hits". In fact, for that version

of the paging problem it has been shown that random-

ization provably does not help [Ch].1 We believe that

our methods are the �rst in the framework of competi-

tive analysis to show how randomization can be usefully

1The paging result holds even when there is exactly one

more page than slots in fast memory. This can be viewed as a

navigation-like problemby thinking of each page as representinga

y-coordinate, and the page not in fast memory as the y-coordinate

of the robot. A request to a page corresponds to an obstacle at

that y-coordinate. Key di�erences, however, are (1) the paging

problem has a uniform, not linear, cost metric, (2) the paging

problem is assumed to go on inde�nitely whereas the navigation

problem has a �xed ending point at x = n, and (3) in the

navigation problem one can \back up" if desired, though our

algorithm does not do so.

employed when information gathering is part of the on-

line process.

The best lower bound known for randomized navi-

gation algorithms is
(log logn) [KRR], and this lower

bound is based on the simpler case in which positions

of all obstacles with x-coordinate less than that of the

robot are revealed as the robot travels. An obvious open

question is whether the best competitive ratio achiev-

able is something like O(logn) as is suspected to be the

correct answer for that simpler case, or whether there

is an
(nc) lower bound.

To provide intuition for some of the di�culties in

using randomization for navigation, in the appendix

we prove that any randomized strategy that fails to

explicitly keep track of its x-motion (the deterministic

strategy of [BRS] falls into this category) has an
(
p
n)

lower bound.

1.1 Related Theoretical Work

In addition to theoretical work on robot navigation

in unknown environments, mentioned above, several

additional papers on robot motion planning use the

measure of competitive ratio to evaluate performance.

The problems addressed include search problems, where

a robot has to �nd some entity in an unknown location

[BCR, KRT, Kl], and exploration problems, where a

robot has to gain full information of the region, by

going along a path from which it can observe all the

boundaries de�ning the region [DKP, Kl].

2 Preliminaries

2.1 The Model

We consider the setting of a planar region containing

axis-parallel rectangular obstacles. All sides of the

obstacles have length at least 1 and the obstacles do

not overlap. We treat the robot as a point particle that

cannot pass through obstacles but may squeeze between

two adjacent ones. Thus one cannot \combine" abutting

rectangles to make a more complicated obstacle. We

refer to a legal path through the region as an obstacle-

free path.

For the wall problem, the robot has to travel from its

starting point s = (0;0) to a point of its own choosing

having x-coordinate equal to n (i.e., to a point on an

in�nite vertical \wall" at x = n). For point-to-point

navigation, the robot has to reach one given point t,

rather than a point of its choosing on the in�nite wall.

The point t must not, of course, reside in the interior of

any of the obstacles.

We assume that the robot has no prior knowledge

of the positions or sizes of any of the obstacles and

acquires knowledge about an obstacle only when it

RANDOMIZED ROBOT NAVIGATION ALGORITHMS 3

hits the obstacle (a tactile robot). We further assume

that when the robot hits an obstacle it also knows the

direction, up or down, to the nearest corner. Using

the techniques of Baeza-Yates, Culberson, and Rawlins

[BCR] this last assumption can be eliminated by adding

only a multiplicative constant factor to the cost of the

algorithm.

A scene S is an obstacle-�lled region together with

a target wall or point. We parameterize the scenes by

the Euclidean distance between the start-point and the

target. The set S(n) is the set of scenes in which this

distance is n � 1. Given a strategy R for the robot and a

scene S, we denote by R(S) the distance traveled by the

robot until it reaches the target in scene S. When the

strategy is randomized, R(S) is a random variable. We

de�ne a path to be Manhattan if it consists only of line

segments parallel to either of the coordinate axes. We

denote by OPT(S) the length of the shortest Manhattan

obstacle-free path from the starting point to the target

in the scene S. It is not hard to see that restricting the

shortest path to be Manhattan increases its length by

only a constant factor.

The competitive ratio [ST] of a strategy R for S(n)
is

C(n) = sup
S2S(n)

E[R(S)]

OPT(S)
;

the expectation is over the random choices made by the

algorithm during its execution. We wish to minimize

this ratio (as a function of n).

When the on-line algorithm is randomized, it is

important to specify the power of the adversary against

which it competes [BBKTW]. The above de�nition

implies an oblivious adversary, which has to commit

to a scene before the on-line strategy starts to move

the robot. In other words, the adversary knows the

strategy that controls the robot, but cannot see the

random choices it takes.

Throughout this paper, we refer to the x direction

as \horizontal" and the y direction as \vertical". We

also use the terms right, left, up, and down to refer

to the positive-x, negative-x, positive-y, and negative-y

directions respectively. Finally, we use width to refer to

length in the horizontal direction and height to refer to

length in the vertical direction.

2.2 Sweeps

We use in our algorithms a notion of a sweep [BRS] (also

called a fence [BC]).

Let a < b. A corridor is the region f(x; y)ja � y �
bg, and it is said to be de�ned by [a; b].

A (y1; y2)-sweep with threshold � is the following

simple strategy to be employed by a robot currently at

a point with y-coordinate y1. Let C be the corridor de-

�ned by [y1; y2] (so the robot is at the bottom edge of

C). At a generic time during the sweep, the robot is

either freely moving rightward (horizontally), or, after

colliding with an obstacle during its rightward horizon-

tal motion, it is moving around the obstacle. When a

collision occurs, the robot considers the distance to the

nearest corner. If the distance to the nearest corner is at

most � , then the robot \goes around" the obstacle, �rst

moving to the nearest corner, then moving horizontally

to the right edge of the obstacle, and then moving up

or down back to a point with the same y-coordinate as

the point of impact. (This happens even if the robot

temporarily has to leave the corridor C.) The total ver-

tical distance traveled in going around the obstacle in

this case is at most 2� . Otherwise (the distance to the

nearest corner exceeds �), the robot just travels upward

until it reaches the upper-left corner of the obstacle, at

which point it reverts to moving horizontally rightward.

This process continues until an instance of the second

case occurs which would involve going to or past the line

y = y2. At this point, the robot stops at the line y = y2
(the top of C), and starts a version of the same pro-

cess, but this time moving downward in the second case

instead of upward. That is, it \goes around" obstacles

whose impact point is within � of the nearest corner,

and goes downward when it hits other obstacles, until

it hits the bottom edge y = y1 of the corridor. We call

this entire procedure one full sweep. Notice that if there

is a single obstacle extending across the entire corridor

then even a full sweep may make horizontal progress 0.

The crucial fact about a full sweep is:

Claim 2.1. Suppose a full sweep begins at (x1; y1)

and ends at (x2; y1). Suppose also there is no obstacle

which both extends across the entire corridor and whose

left edge is on the line x = x2. Then, any path P be-

ginning at x-coordinate x1 and ending at x-coordinate

x2 and lying entirely within C must have vertical cost

at least � in the region x1 < x < x2.

When the corridor in which the sweep is performed is

clear, we sometimes abuse notation and do not indicate

it.

When the robot, located in C, wants to perform

sweeps in corridor C, it may not be at the bottom

of C. In this case, it �rst moves greedily rightward,

moving downward whenever touching an obstacle, until

it reaches the boundary y = y1.

3 The Algorithm

In this section we describe our randomized algorithm

for the wall problem: i.e., the problem of advancing a

given distance n in the positive x direction. In Section

4 BERMAN ET AL.

4 we show how this algorithm is easily converted to

a point-to-point navigation algorithm with the same

competitive ratio, using the techniques of [BRS].

3.1 The high level

The algorithm described below has the property

that at all times, the robot either moves horizontally

in the positive x-direction, or vertically. Thus, its cost

along the x-axis is exactly n. It what follows we refer

by cost to the distance moved vertically. We prove

our competitive ratio with respect to this cost, both

for our algorithm and the optimum path. Clearly this

competitive ratio is an upper bound on the competitive

ratio when both horizontal and vertical motion are

considered, as both our algorithm and the optimal path

have cost exactly n for horizontal motion.

Our algorithm will run in stages. In stage i we

maintain a window of height 2Wi, which includes all

points with y-coordinate between �Wi and Wi. In each

stage the robot moves only within the window. The

Wi's satisfy Wi = 2Wi�1 for all i > 1, so Wi = 2i�1W1.

To de�ne W1, the algorithm moves rightward from the

origin until it hits the �rst obstacle. W1 is twice the

distance from the point of impact to the nearest corner

of that obstacle. We continue to run new stages, with

progressively larger and larger windows, until we reach

the wall. Let OPT be the cost incurred for vertical

motion by the shortest (Manhattan) path.

In the next sections we will describe the interesting

parts of the algorithm (namely, what it does during

a stage) and prove the following key properties of the

algorithm.

1. The cost in stage i is O(Wi � n
4

9 logn).

2. For large enough n, and for each i such that Wi >

OPT, the probability that the robot reaches the

wall by the end of stage i is at least 3=4.

Based on the above two key properties it is easy to prove

the following theorem.

Theorem 3.1. The Algorithm is O(n
4

9 logn)-

competitive.

Proof. De�ne W0 = W1=2. Note that W0 � OPT by

the de�nition ofW1. Let j be such thatWj�1 � OPT <

Wj. Therefore the expected cost of the algorithm is at

most a constant times

j�1X
i=1

Wi � n
4

9 lgn+

1X
i=j

(1=4)i�jWi � n
4

9 lgn:

Using

j�1X
i=1

Wi < 2Wj�1 and

1X
i=j

(1=4)i�jWi < 2Wj�1;

it follows easily that

j�1X
i=1

Wi � n
4

9 lgn +

1X
i=j

(1=4)i�jWi � n
4

9 lgn

< 4Wj�1(n
4=9 lgn)

� (4n4=9 lgn)OPT:

2

3.2 A Stage

3.2.1 Overview and intuition

We will think of the algorithm as competing against an

adversary who takes the shortest path. The �rst idea of

the algorithm is to divide the window into corridors of

some height h. The algorithm's goal is to either force

all corridors to be expensive, in the sense that if the

adversary starts in some corridor i then it is expensive

for it to remain inside it, or else �nd some cheap

corridor(s) to stay in. A good notion of \expensive"

is cost
(h), since at that point it becomes cheaper for

the adversary to leave its corridor than to stay inside.

In fact, by de�ning the corridors using a random o�set,

there is a reasonable chance that the adversary starts

near the middle of some corridor, and so having all

corridors be expensive provides a lower bound on the

adversary's cost.

The standard deterministic way to force a corridor

to be expensive is to perform a sweep inside it. But, this

can be expensive for the algorithm too. So, in order to

more cheaply estimate a corridor's cost, we would like

instead to sample it at a random x-interval. To do this

without incurring too much cost ourselves, we can pick

a random starting corridor and then visit corridors in

consecutive order, with wrap-around, until we return

to our original one. At �rst glance, one might try to

do this by staying inside each corridor until a given

amount of e�ort is spent, and then going on to the next

corridor. The problem with this approach, however,

is that the adversary can \funnel" the algorithm into

a known location by appropriately placing obstacles.

Therefore, instead we want to visit each corridor for

a �xed x-distance, which we call a �eld, before going on

to the next one. This ensures that we visit each corridor

at a random �eld.

Some technical di�culties with this general plan are

that if a corridor is very expensive we might have to

RANDOMIZED ROBOT NAVIGATION ALGORITHMS 5

leave it before we are done with the �eld; or if it happens

again, we might have to leave a corridor before we have

even started. These issues are dealt with in the details

of the algorithm.

At the end of our round trip through the corridors,

some corridors will be marked as expensive and some

not. We then repeat the process for the cheap corridors.

As the number of cheap corridors decreases, in order to

pay for our �xed cost of visiting all of them (there is no

guarantee the cheap corridors are near to each other),

we will make the �eld widths correspondingly longer.

We continue this process until all corridors are marked

expensive.

When the process completes we have shown that the

adversary had to pay cost
(h) (if it started near the

middle of some corridor). We want a bound of
(Wi),

so we just repeat the process (with new random o�sets)

�(Wi=h) times.

In our terminology, one round trip through the

corridors is a \subphase", and a sequence of subphases

until all corridors are marked expensive is a \phase",

which is repeated �(Wi=h) times in a stage.

3.2.2 Details

We now formally de�ne the algorithm in stage i. We

make use of a few positive parameters L, �, and r.

Optimizing inequalities that result from the algorithm

yields L = n
4

9 , � = n
2

3 , and r = n�
1

9 .

Recall that in stage i the algorithm maintains a

window f(x; y)j � Wi � y � Wig, and the robot

moves only within this window. De�ne h = Wi=L
1

2

(this is the corridor height discussed above). A stage

consists of d32Wi=he phases which in turn are divided

into subphases.

At the beginning of a phase we choose a real vertical

o�set O in the interval [0; h] uniformly at random. We

then de�ne at most 2dWi=he + 1 corridors using this

o�set, all of which (except possibly the two extreme

ones) have height h. The corridors are [�Wi;�Wi+O],

[�Wi+O;�Wi+O+h], [�Wi+O+h;�Wi+O+2h],

and so on, until the last corridor whose upper boundary

is at Wi.

At all times, a corridor is in exactly one of three

states: active, inactive, or useless. We use the term

non-active to refer to corridors which are either inactive

or useless. (\Non-active" is the negation of \active";

\inactive" is not.) Intuitively, active corridors are cheap

and inactive and useless corridors are those that have

been found to be expensive in di�erent ways.

At the beginning of a phase all corridors are active.

During the execution of a subphase some corridors may

be marked inactive and some may be marked as useless.

Unless we reach the wall, we continue to run subphases

of the same phase, as long as at least one corridor

is active. Once all corridors have become non-active

(either inactive or useless), we start a new phase with

all corridors active again.

A subphase is de�ned over a vertical strip of width �

(an x-distance �). Denote by aj , 1 � aj � 2dWi=he+1,

the number of corridors that are active at the beginning

of the jth subphase. We partition the vertical strip of

width � into aj disjoint vertical strips of equal width.

This splits each corridor into aj �elds. (A �eld, unlike

a corridor, is a (bounded) rectangle. It has bounded

width and height, while a corridor has in�nite width.) If

we look only at the aj active corridors at the beginning

of a subphase (they may not be contiguous, of course),

then the �elds of the active corridors form an aj � aj
checkerboard. We choose a corridor C among the aj
active corridors uniformly at random to be the �rst

corridor. Starting from the leftmost �eld in that random

corridor, we de�ne a diagonal by considering the second

�eld in the next highest active corridor D above C, the

third �eld in the next highest active corridor E above D,

etc., wrapping around to the lowest active corridor when

there are no more active corridors above. This de�nes

a \diagonal" in the aj � aj checkerboard of �elds in the

active corridors. (Of course, most or all of a �eld may

lie in one big obstacle.) Our algorithm's goal is to move

along this diagonal to get a \random" sample of all the

active corridors.

We now de�ne how the robot behaves during a

subphase. At all times in a subphase, except during the

\�ll-up" process at the end described below, the robot

has in mind a desired �eld F which is one of the �elds

on the diagonal. At any point in time the robot will be

either: (1) inside the desired �eld doing sweeps with a

small threshold, or (2) inside the corridor containing the

desired �eld, but to the left of the �eld, doing sweeps

with a much larger threshold, or (3) attempting to move

between corridors towards the corridor containing the

desired �eld. When we are within the desired �eld we

perform sweeps with threshold �1 = r � (Wi=L) within

its corridor. If we are in the corridor to the left of

the desired �eld, moving towards the �eld, we perform

sweeps within the corridor with threshold �2 = Wi=L.

We will call the sweeps outside and to the left of the

desired �eld big-� sweeps, since their threshold �2 is

much larger than �1, the threshold for the little-� sweeps

in the desired �elds.

When the subphase starts, the desired �eld is the

initial �eld on the diagonal. To reach a desired �eld,

the algorithm performs a �nd-�eld procedure: It takes

a greedy path in which it moves right if possible and

moves either up or down (whichever brings it closer

to the corridor in which the desired �eld lies) if it

6 BERMAN ET AL.

cannot move right. If it so happens that the robot's

x-coordinate passes the right edge of the desired �eld

before its corridor is reached, then the robot simply

updates the desired �eld to be the next one on the

diagonal and continues the procedure. Otherwise, the

robot stops when it enters the corridor of its desired

�eld.

After the corridor C of the desired �eld is reached,

then as described above there are two main cases that

determine the robot's behavior. The �rst case is that

the robot is actually in the desired �eld F . In this

case, the robot greedily moves to the bottom of C and

starts �1-sweeps (little-� sweeps) within F , until either

d1
r
� (L

1

2 =aj)e full little-� sweeps have been completed

in the �eld, or else the right side of the �eld has been

reached. In the former case we declare the current

corridor to be inactive. In either case, once we have

�nished, we run the �nd-�eld procedure to get to the

(corridor of the) next �eld in our list.

The second case is that the robot is in the corridor

C of the desired �eld F , but to the left of the start of F .

In this case the robot greedily moves to the bottom of C

and starts �2-sweeps (big-� sweeps) within the corridor,

until either the left end of F is reached, or we have

completed L
1

2 full big-� sweeps in that corridor counted

over the whole phase (not just the subphase). In the

latter case we declare C to be useless, and then run the

�nd-�eld procedure to reach the next desired �eld. Note

that by properties of the sweep, a corridor is useless only

if the cost of any path lying entirely within the corridor

is at least Wi=L
1

2 = h.

One �nal case is that the robot has no more \desired

�elds" but does not reach the right edge of the subphase

strip. This can happen if the last �eld F on the diagonal

is marked either inactive or useless before its right edge

is encountered (which is the same as the right edge of

the subphase). This is a separate case because there is

no \next �eld" to go to. We call this the \�ll-up" case.

What the robot does now is this: it greedily moves up

(as in �nd-�eld) to the nearest non-useless corridor|

that corridor may either be active or inactive (note that

it could be the corridor in which the robot already is)|

and performs �2-sweeps in this corridor until either the

right edge of the subphase is reached or else the corridor

can be marked as useless. In the latter case we again

greedily move upwards (with wrap-around) to the next

non-useless corridor and repeat this procedure. If all

corridors are marked useless before the right edge of the

subphase is reached, then the phase ends.

3.3 Analysis of a Stage

We start with a technical claim that we later use.

Claim 3.1. Let a1 � a2 � . . . � al�1 > 0 be in-

tegers. De�ne al = 0. Then
Pl�1

j=1(aj � aj+1)=aj �
1 + lna1.

The simple proof is omitted.

We �rst prove the following lemma. Note that this

bound is a deterministic bound.

Lemma 3.2. The cost of the algorithm in stage i is

O(Wi � n
4

9 logn).

Proof. We analyze below the cost of the algorithm

along the y direction. We partition it into several parts.

1. The cost incurred while performing procedure �nd-

�eld is O(Wi), for each subphase. This covers

also the greedy moving costs for the \�ll-up" case,

and it also includes the cost, for each corridor,

of moving to the bottom of the corridor to start

sweeping (with either threshold, either before �ll-

up or during it).

All subphases cover a distance � along the posi-

tive x direction, except for possibly the last one in

a phase. Thus, there are at most n=� subphases

of full-length, and at most 32L
1

2 additional \trun-

cated" subphases (because there are at most 32L
1

2

phases in a stage). Clearly, in one stage the robot

can cover at most a distance of n along the x di-

rection; therefore, the total of these costs, over all

subphases in the stage, is O(Wi �(n=�+L
1

2)), which

is o(Wi � n
4

9 logn).

2. Next we consider the cost incurred while perform-

ing little-� sweeps in a �eld in the case that we

do not mark its corridor inactive. Consider sub-

phase j of a certain phase. Denote by aj the

number of corridors that are active at the begin-

ning of that subphase. Each �eld in that sub-

phase has width �=aj . The cost in the �eld is

O((�=aj)
rWi

L + [L
1

2 =(ajr)]Wi=L
1

2). The �rst term

is the cost of going around the at most �=aj obsta-

cles which are hit within �1 of the nearest corner

(�1 = rWi=L). The second is the cost of doing at

most dL
1

2 =(ajr)e full sweeps in a corridor of height

h = Wi=L
1

2 . This gives a cost of O(rWi

L
+ Wi

r�
)

per unit of advance along the positive x direction

because there are �=aj units of horizontal motion

while traversing a �eld which is not marked inac-

tive. Thus we have a total of this type of cost

in the stage of O(nrWi

L
+ nWi

r�
), using the trivial

bound of n on the horizontal distance covered in a

stage. Using the values L = n4=9, � = n2=3, and

r = n�1=9, this quantity is O(Win
4=9 + Win

4=9),

RANDOMIZED ROBOT NAVIGATION ALGORITHMS 7

which is o(Win
4=9 logn).

3. We now consider the cost incurred while performing

little-� sweeps in �elds when we do mark the

corridor inactive. The reason the analysis above

fails here is that in this case we may not reach

the end of the �eld and so we cannot guarantee an

advance of �=aj in the x-direction. Instead, we use

the fact that any corridor will be marked inactive

at most once in a phase.

The number of corridors marked inactive in sub-

phase j is at most aj � aj+1. Therefore in

subphase j the cost of this portion is O((aj �
aj+1)[(�=aj)

rWi

L +[L
1

2 =(ajr)]Wi=L
1

2]). If the phase

ends after S subphases, the portion of this cost in

the phase is

O

0
@

SX
j=1

(aj � aj+1)[(�=aj)
rWi

L
+

Wi

(ajr)
]

1
A ;

which is

O

0
@Wi � (�r=L+ 1=r) �

SX
j=1

((aj � aj+1)=aj)

1
A :

By Claim 3.1 this is O((logL)Wi � (�r=L + 1=r))

since a1 � 2dL
1

2 e + 1. Because there are at most

32L
1

2 phases in a stage, the total of this type of cost

in the stage is O(L
1

2Wi logL � (�r=L+1=r)), which

is O(Win
1=3 logn) and hence o(Win

4=9 logn).

4. The cost incurred in movement during the big-�

sweeps. This is the motion in the corridor of the

chosen �eld, but to its left, and that of the big-�

sweeps of �ll-up.

� For each of the at most 32L
1

2 phases and for

each of the at most 2dL
1

2 e + 1 corridors, the

robot makes at most L
1

2 big-� sweeps before a

corridor is declared useless. Each sweep costs

2h = 2Wi=L
1

2 for motion that does not \go

around" obstacles (i.e., when obstacles are not

hit within �2 of the nearest corner). Thus, for

each phase, this cost is O(WiL
1

2). For the

whole stage it is O(Wi � L).

� When colliding with an obstacle within �2 of

its nearest corner, we \go around" it, and re-

turn to a point of the same y-coordinate as

that of the impact point. We must total the

cost incurred going around obstacles. The re-

gions in which we run the �2-sweeps in a sub-

phase are below or above �elds of corridors

that we mark as non-active in the same sub-

phase. (This is true both for the �2-sweeps to

the left of the desired �eld and for the �ll-up

procedure.) Thus, the number of such regions

is at most aj � aj+1, the number of corridors

that are declared non-active in the subphase.

The width of a �eld is �=aj. Thus in subphase

j of a certain phase, for this portion of the

work, we pay O((aj � aj+1) � (�=aj) �Wi=L),

since �2 = Wi=L. In a phase this sums to

O(Wi � (�=L) logL) by Claim 3.1, and this is

O(Wi � (�L�
1

2 logL)), because of the at most

32L
1

2 phases in a stage.

Plugging in our values of � and L yields a total cost

for big-� sweeps of O(Win
4=9 logn).

Adding together the four costs yields a total cost of

O(Win
4=9 logn). 2

We now prove the second property of the algorithm

in a stage, namely:

Lemma 3.3. Let OPT denote the optimal cost, and

let i be such that Wi > OPT. Then, for large enough n,

with probability at least 3=4 the robot reaches the wall

by the end of stage i.

To prove the above lemma we need several de�ni-

tions and Lemma 3.4. First, �x an optimal Manhattan

source-target path Q. It is not hard to see that without

loss of generality we may assume that the path never

goes in the negative x direction. We call a path with

that property non-x-decreasing.

De�nition. For an interval I , open, closed, or half-

open, let the weight of I be the sum of the lengths of

all vertical segments in Q with x-coordinate in I.

De�nition. In some (random) execution of the algo-

rithm, suppose a phase starts with the robot at point

(xs; ys). When the (random) phase ends, let (xf ; yf)

denote the position of the robot. We say the phase is

good if the weight of (xs; xf] is at least (1=2)(Wi=L
1

2),

or if xf = n (we hit the wall).

Lemma 3.4. Let i be such that Wi > OPT, and

consider any phase of this stage. Whenever and wher-

ever the phase starts, the probability that it will be good

is at least 1=4.

Proof. Let (xs; ys) denote the position of the robot

when the phase starts, and (xf ; yf) its position when

the phase ends.

De�ne b0; b1; b2; ::: by bj = xs + (j � 1)�. The jth

subphase, if it exists, starts on the line x = bj�1 and

8 BERMAN ET AL.

ends on the line x = bj (unless it hits the wall or the

phase ends). Let wj be the weight of (bj�1; bj).

Choose a least x0f � xs such that the weight of

(xs; x
0

f] is at least (1=2)(Wi=L
1

2), taking x0f = n if

no such x0f exists. Let us say that a failure occurs if

xf < x0f ; we will prove that the probability of a failure

is at most 3=4. This implies that the probability that

the phase is good is at least 1=4.

Consider the section P of Q starting on the line

x = xs and ending on the line x = x0f . If a failure

occurs, then either (a) P leaves the corridor C in which

it starts, or (b) P does not leave C between x = xs
and x = x0f , yet xf < x0f anyway. Let us denote the

probability that P leaves C by s. (The randomness

here is in the random o�set which de�nes C.)

Since x0f is minimal, the weight of the open interval

(xs; x
0

f) is at most (1=2)(Wi=L
1

2). Since at the begin-

ning of the phase the robot chooses at random the o�set

of the corridor-boundaries in the range [0;Wi=L
1

2] (i.e.,

at least twice the weight), the probability that P crosses

a boundary is at most 1=2. Thus s � 1=2.

Now we must bound the probability that (b) P does

not leave C between x = xs and x = x0f , yet xf < x0f .

Since P does not leave C between x = xs and x = x0f ,

there cannot be any obstacle extending above and below

C whose left edge is on the line x = xs, or to the right

of this line and strictly to the left of the line x = x0f .

Suppose the phase ends with xf < x0f . Because

the phase ended, all corridors must have been made

non-active. This includes corridor C. Corridor C

cannot be declared useless since by Claim 2.1, if C is

declared useless then any path, such as P , which starts

at x = xs and ends strictly to the right of the line

x = xf and stays within C, must have vertical cost

at least L
1

2 � �2 = L
1

2 �Wi=L = Wi=L
1

2 in the interval

(xs; xf), and this is more than the cost of P in the

interval (xs; x
0

f). Thus we can conclude that, when the

phase ended, C is not marked useless. This implies both

that the phase ended when the robot reached the end of

a width-� strip of some subphase (as opposed to in the

middle of such a strip), and that corridor C has been

declared inactive.

We consider the probability that C becomes inac-

tive during some subphase j such that bj � x0f (such

a subphase begins at x = bj�1 and ends at x = bj).

De�ne wj to be the weight of (bj�1; bj). We argue

that the probability that C becomes inactive in sub-

phase j is at most wjL
1

2 =Wi. This follows since if we

make C inactive then we have made at least 1
r (L

1

2 =aj)

full small-� sweeps in the chosen �eld of C. Claim

2.1 implies that the weight of the open interval de-

�ned by the vertical boundaries of the �eld is at least

[1rL
1

2 =aj] � [rWi=L] = Wi=(L
1

2 aj). Within subphase j,

there can be at most wjL
1

2 aj=Wi such �elds of weight

at leastWi=(L
1

2 aj) in the corridor C. In C, the uniform

random choice performed at the beginning of a subphase

is also a uniform random choice of the �eld to visit in

C. Therefore, the probability that we mark the corridor

inactive within the subphase is the chance that one of

those at most wjL
1

2 aj=Wi �elds out of the aj �elds is

chosen. This probability is at most wjL
1

2 =Wi.

Conditioning on the fact that P lies entirely in C,

let R be the event that C is marked inactive before x0f
and Rj the event that C is marked inactive in subphase

j, for j such that bj � x0f . Then R = [Rj and

P [Rj] � wjL
1

2 =Wi; where wj is the weight of (bj�1; bj).

Thus,

P [R] �
X
j

P [Rj]

�
X
j

wjL
1

2 =Wi

= (L
1

2 =Wi)
X
j

wj

< (L
1

2 =Wi)[(1=2)(Wi=L
1

2)]

=
1

2
:

Here we used
P

j wj <
1
2
Wi=L

1

2 , because the weight of

(xs; x
0

f) is assumed to be less than 1
2
Wi=L

1

2 .

To conclude, the probability that P does not leave

C is 1� s. If P does not leave C, then the conditional

probability that xf < x0f is at most 1=2. It follows that

the probability that P doesn't leave C and xf < x0f
is at most (1 � s)(1=2). Therefore, the probability of

failure is at most s (the probability that P leaves C),

plus (1 � s)(1=2) (an upper bound on the probability

that P stays in C and xf < x0f). But s � 1=2 implies

that s + (1� s)(1=2) � 3=4. 2

We can now prove Lemma 3.3. The only way a

stage can fail to reach the wall is that there are fewer

than 2L
1

2 good phases of the 32L
1

2 in the stage, since

if there were at least 2L
1

2 good phases in the stage,

the optimal cost in those 2L
1

2 good phases would be at

least 2L
1

2 [(1=2)Wi=L
1

2] = Wi > OPT: Considering the

phases as a series of Bernoulli trails, we have m = 32L
1

2

trials, each of which has, regardless of what happened

in the past, probability at least 1=4 of being good.

We want to upper-bound the probability of having

fewer than 2L
1

2 = am = (1=16)m successes. Di�erent

phases are not independent, but since each is good

with probability at least 1=4 regardless of the past, our

chance of failure is at most what it would be if they were

independent and each had probability exactly 1=4 of

RANDOMIZED ROBOT NAVIGATION ALGORITHMS 9

being good (e.g., see [GS], p.490). We use the following

Cherno� bound (cf. [HR]) to bound the probability of

this event

Pr[S � am] � [(
p

a
)aea�p]m :

As p � 1=4, we have

Pr[S � am] � [(
p

a
)aea�p]m

� [(
1

a
)aea�

1

4]m

= [161=16 � e�3=16]m

= [161=16 � e�3=16]32L
1

2

:

Since 161=16 � e�3=16 < 1, this is less than 1=4 for large

enough L
1

2 , i.e., large enough n. 2

4 Point-to-Point Navigation

We can use our randomized algorithm for the wall

problem to obtain a randomized algorithm with the

same competitive ratio for point-to-point navigation,

using a technique from [BRS]. Thus, our point-to-point

algorithm is also provably better than any deterministic

algorithm. For the sake of completeness, we sketch

below the [BRS] technique. Let us say that the robot

has to reach the point t = (nx; ny) from s = (0; 0), and

let n = maxfnx; nyg.
The robot takes a greedy \move rightwards if possi-

ble, else up" path towards t until it reaches some point

s0 = (xs0 ; ys0) such that either xs0 = nx or ys0 = ny.

Assume without loss of generality that ys0 = ny. The

robot now uses the wall-problem algorithm to reach a

point on the in�nite line x = nx; say it reaches (nx; y0).

Without loss of generality assume that y0 � ny. The

robot now takes a greedy \move down if possible, else

left" path from (nx; y0) until its y-coordinate equals

ny. The fact that our wall-problem algorithm is non-x-

decreasing guarantees that this new greedy path reaches

a point (x0; ny) with x0 � xs0 . The greedy (monotone)

path connecting (x0; ny) and (nx; y0) is now used to

run the room-problem algorithm of [BRS, BBFY] (cf.

[BRS], Theorem 5). We can now prove:

Theorem 4.1. There is a randomized point-to-

point navigation algorithm with competitive ratio of

O(n
4

9 logn).

Proof Sketch. Denote by OPT the length of the

optimal path from s to t. Clearly OPT � n. Also,

there exists a path from s0 to the \wall" x = nx
of length at most n + OPT. Therefore, invoking our

randomized algorithm for the wall problem, the robot

goes along a path of expected length O(OPT � n
4

9 logn).

Furthermore, by the same arguments as in the proof

of Theorem 3.1, the expected distance jy0 � nyj is

O(OPT). Therefore the expected distance traveled

by the robot when applying the deterministic room-

problem algorithm isO(OPT�logn) (cf. [BRS] Theorem
5, [BBFY]). In addition the robot took several greedy

paths of total length O(n). Thus the total expected

distance the robot travels is O(OPT � n
4

9 logn). 2

5 Navigating in Three Dimensions

Using the same general techniques as for the

2-dimensional case, we also have an O(n2=3��)-

competitive randomized algorithm for robot navigation

in three dimensions (omitted due to space considera-

tions). The lower bound for deterministic robot naviga-

tion algorithms in three dimensions is
(n2=3).

References

[BCR] R.A. Baeza-Yates, J.C. Culberson, and G.J.E. Rawl-

ins. Searching in the Plane. Information and Compu-

tation, 1993.

[BBFY] E. Bar-Eli, P. Berman, A. Fiat, and P. Yan. On-

line Navigation in a Room. In Proc. 3rd ACM-SIAM

SODA, 1992.

[BBKTW] S. Ben-David, A. Borodin, R.M. Karp, G. Tar-

dos, and A. Wigderson. On the Power of Randomiza-

tion in Online Algorithms. In Proc. of the 22nd Ann.

ACM Symp. on Theory of Computing, pp. 379{386,

May 1990.

[BC] A. Blum, P. Chalasani. An On-line Algorithm for

Improving Performance in Navigation. In Proc. 34th

IEEE Annual Symp. on Foundations of Comp. Science,

pp. 2{11, 1993.

[BRS] A. Blum, P. Raghavan, and B. Schieber. Navigating

in Unfamiliar Geometric Terrain. In Proc. 23rd ACM

STOC, 1991.

[BLS] A. Borodin, N. Linial, and M. Saks. An optimal online

algorithm for metrical task systems. In Proc. 19th

Annual ACM Symposium on Theory of Computing, pp.

373-382, 1987.

[Ch] P. Chalasani. Online Performance-Improvement Algo-

rithms. Ph. D thesis. CMU tech report CMU-CS-94-

179. August 1994.

[DKP] X. Deng, T. Kameda, and C. Papadimitriou. How

to Learn an Unknown Environment I: The Rectilinear

Case. Tech. Report CS-93-04, Dept. of Comp. Science,

York University.

[FKLMSY] A. Fiat, R.M. Karp, M. Luby, L.A. McGeoch,

D.D. Sleator, and N.E. Young. Competitive Paging

Algorithms. Journal of Algorithms, 12:685{699, 1991.

[GS] Y. Gurevich and S. Shelah. Expected computation

time for Hamiltonian path problem. SIAM J. Comput,

16(3) pp. 486{502, 1987.

[HR] T. Hagerup, and C. R�ub. A Guided Tour of Cherno�

Bounds. Information Processing Letters 33 (1990), pp.

10 BERMAN ET AL.

305{308.

[Kl] J. Kleinberg. On-Line Search in a Polygon. In Proc. 5th

ACM-SIAM SODA, pp. 8{15, 1994.

[KRR] H. Karlo�, Y. Rabani, and Y. Ravid. Lower Bounds

for Randomized k-Server and Motion-Planning Algo-

rithms. SIAM Journal on Computing 23 (1994), 293-

312.

[KRT] M. Kao, J. Reif, and S. Tate. Searching in an Un-

known Environment: An Optimal Randomized Algo-

rithm for the Cow-Path Problem. In Proc. 4th ACM-

SIAM SODA, pp 304{313, 1993.

[La] J. -C. Latombe. Robot Motion Planning, Kluwer Aca-

demic Publishers, Boston, 1991.

[MMS] M.S. Manasse, L.A. McGeoch, and D.D. Sleator.

Competitive algorithms for on-line problems. Journal

of Algorithms, 11, pp. 208{230, 1990.

[PY] C. Papadimitriou, and M. Yannakakis. Shortest

Paths Without a Map. Theoretical Computer Science,

84(1991), pp. 127{150.

[Sh] M. Sharir. Algorithmic motion planning in robotics,

Computer 22, March 1989, pp. 9{20.

[ST] D.D. Sleator and R.E. Tarjan. Amortized E�ciency of

List Update and Paging Rules. Communication of the

ACM, 28(2) pp. 202{208, 1985.

6 Appendix: A lower bound for \x-oblivious"

strategies

Let us say that an algorithm is x-oblivious if whenever

it is possible for the robot to move in the positive x

direction, the robot does so and does not keep track of

the x-distance moved. In other words, the memory of

the robot may be thought of as a list of events of the

form:

\First I hit an obstacle extending from y1 to

y01, then I moved up around it, then I moved

forward, then I hit an obstacle extending from

y2 to y
0

2, then I moved down around it, then I

moved forward, etc."

For instance, the deterministic algorithm presented in

[BRS] can be viewed as acting in this manner. We show

here that any x-oblivious randomized strategy cannot

beat the deterministic lower bound.

Theorem 6.1. Any x-oblivious randomized algo-

rithm for the wall problem has competitive ratio
(
p
n).

Thus, to take advantage of randomization, one must

explicitly keep track of one's x-coordinate (which our

algorithm does).

Proof. Consider a \complete brick pattern" of ob-

stacles each having width 1 and height h = 2
p
n.

Speci�cally, in a complete brick pattern there are ob-

stacles with lower left corner at each point of the form

(i; (i=2+ j)h), for all integers i; j, with 0 � i � n. Now,

pick some random j 2 f�2
p
n; . . . ;�1; 0;1; . . . ; 2

p
ng

and remove all but every
p
n-th obstacle whose center

lies on the line y = j
p
n. In other words, out of the n=2

obstacles originally in existence with center at y = j
p
n,

only
p
n=2 are left and they are equally spaced. Notice

that in this scene there exists an O(n)-length path from

the start to the wall. We prove this de�nes a hard case

for the algorithm.

Since the adversary's (randomized) strategy is �xed,

by standard min-max arguments we may assume that

the algorithm is deterministic. Let P be the path

taken by the algorithm on the original complete brick

pattern (before obstacles were removed). Since the

algorithm always moves rightward when possible, the

path P hits exactly n obstacles in the complete brick

pattern, and in fact we may think of P as a sequence

of n letters (u; u; d; d; d; u; d; . . .) indicating whether the

algorithm moves up or down at each obstacle. Consider

now the new obstacle scene (the one in which some

obstacles have been removed). Because the algorithm is

x-oblivious, its sequence of up/down motions is exactly

the same as for the complete brick pattern, only it

may �nish earlier depending on how often it reaches y-

coordinate j
p
n. Because j was picked randomly from

4
p
n choices, we expect the algorithm to visit that y-

coordinate only
p
n=4 times in path P . Thus, in the new

pattern, the expected \free" x-motion by the algorithm

is at most (
p
n=4)(2

p
n) = n=2, and the algorithm's

expected cost remains �(n3=2), which is �(
p
n) times

the optimal cost. 2

