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Abstract

This report is dedicated to serve as a thesis proposal. It describes the state of
the art of the observer motion estimation using a camera. The mathematical
model of the camera is given, the epipolar geometry as a fundamental tool
dealing with two images is presented, the ego-motion algorithm using point
correspondences is explained. The more continuous approach employing
an optical flow is also sketched. Previous works dealing with panoramic
(omnidirectional) vision is overviewed.

As an original contribution, we present foundations of panoramic stereo
vision by presenting the analysis of epipolar geometry for panoramic cam-
eras. We show that the panoramic cameras with convex hyperbolic or
parabolic mirrors, so called central panoramic cameras, allow the same
epipolar geometry as perspective cameras. We work out the model of image
formation by a central panoramic camera. It is shown that the epipolar
curves in central panoramic images are conics and their equation is derived.
The approach for designing a perspective camera—hyperbolic mirror system
is also sketched. The theory is demonstrated by a simulated experiment
which corroborates the conclusions drawn from the theory.

Finally, the thesis plan is outlined.

keywords: computer vision, robot vision, omnidirectional vision, panoramic
vision, motion analysis, stereo vision.



Chapter 1

Panoramic cameras, are they
useful?

Autonomous mobile robots are one of the important areas of applications
of computer vision. A vehicle that can navigate without human supervi-
sion has many advantages in wide area of applications, providing access to
hazardous industrial environments for instance. The tasks required for suc-
cessful autonomous navigation by a mobile robot can be broadly classified
as (1) sensing the environment; (2) building its own representation of the
environment; (3) locating itself with respect to the environment; and (4)
planning and executing efficient routes in this environment. Our research
refers to the first and third task.

Our research is primarily motivated to develop an efficient tool for es-
timation of a mobile robot’s position. Many approaches emerged recently
dealing with. Some of the different sensors considered by previous researches
are visual sensors (both monocular and binocular stereo), infrared sensors,
ultrasonic sensors, and laser range finders. We deal with visual sensors in
our research.

The standard visual sensor is TV camera. The perspective, sometimes
called pinhole, mathematical model is usually used to describe such a cam-
era. However, when a perspective camera is used for estimation of robot
position, several principal problems emerge. The camera has a limited field
of view. It is well known that motion estimation algorithms cannot, in some
cases, well distinguish a small pure translation of the camera from a small
rotation. An example is a translation parallel to the image plane and a rota-
tion around an axis perpendicular to the direction of the translation [5]. The
confusion becomes dominant when depth variation in the scene are small or
if the field of view is narrow.

The confusion can be overcome if a camera with large field of view is
used [5]. Ideally one would like to use a panoramic camera which has com-
plete 360° field of view and sees to all directions. It can be imagined as a
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pinhole camera with a spherical imaging surface (instead of planar one as
it is usual) centered at the focal point of the pinhole camera. Panoramic
camera can, in principle, obtain correspondences from everywhere indepen-
dently of the motion direction. The uncertainty of the motion estimation will
therefore also become independent from the direction of motion. The above
intuitive reasoning has been corroborated by the result of Brodsky et al. [4]
who shows that the motion estimation is almost never ambiguous if the
spherical imaging surface is assumed.



Chapter 2

Task formulation

Out intention is to propose an efficient visual sensor for mobile robots with
appropriate algorithms for estimation of a robot motion.

The algorithm for motion estimation from a pair of perspective images
has to (1) find the corresponding points, (2) estimate the Fundamental ma-
trix describing the epipolar geometry, (3) calibrate the camera, and (4) de-
compose the Fundamental matrix into a translation and rotation. All these
steps were extensively studied in the past and new algorithms improving
older ones still appear. We describe the principles of this approach in the
chapter 3.

Motion estimation from panoramic images solves similar problems. It
requires to

1. design a practical panoramic camera with a simple mathematical model,
2. propose a method for its calibration,

3. develop the epipolar geometry for panoramic images, and

4. work out an algorithm for motion estimation.

Panoramic stereo vision also needs efficient search for the correspondences
in panoramic images which calls:

5. for the analysis of the shape of the epipolar curves in order to con-
straint the location of corresponding points and for

6. the study of epipolar alignment of the panoramic images in order to
speed up the search.

Overview of the works most related to panoramic vision is given in the
section 3.5. Our new contribution to panoramic, sometimes called omnidi-
rectional, vision is described in the chapter 4.



Chapter 3

State of the art

This chapter covers the fundamentals of ego-motion estimation from con-
secutive images. It consists of five main parts.

1. We describe the mathematic model of the perspective camera in sec-
tion 3.1. Perspective (pinhole) camera is mostly used for capturing
images in computer vision.

2. Epipolar geometry is the fundamental tool dealing with two images.
Section 3.2.

3. We briefly describe an ego-motion estimation approach using two views
in section 3.3.

4. Having very dense sequence of consecutive images, an approach using
optical flow can be used. Fundamentals are given in the section 3.4.

5. Panoramic cameras that have emerged recently are described in the
section 3.5. Our most recent results in this field are mentioned, too.

3.1 Perspective camera and its model

Since the goal of our work is to develop methods for performing metric
measurement from images, we have to define accurate quantitative model of
the used cameras. We can build a geometric model of the pinhole camera
as indicated in Figure 3.1. It consists of the retina, or projection plane,
plane in which the image is formed through an operation called perspective
projection: an optical center C, located at distance f, the focal length of the
optical system is used to form the image u in the retina of the 3-D point X
as the intersection of the line CX with the retina. The optical azis is the
line going through the optical center C' and perpendicular to retina, which
it pierces at a point c.
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Retina

FocalPlane
Figure 3.1: The mathematical model of the perspective (pinhole) camera.

The coordinate system (C,z,y, z) is called the standard coordinate sys-
tem of the camera. In the retina, we introduce the image coordinate system
(c,u,v). From Figure 3.1 it is clear that the relationship between image
coordinates u,v and 3-D space coordinates X = [z,v, 2|7 can be written as

f u v
L =2=C 3.1
L2y (31)
which can be rewritten linearly as
U f 00 T
Vi=|0 f 0 v, (3.2)
S 0 01 z

where u = U/S, v = V/S if S # 0. If § = 0, the corresponding point [u, v]”
lies in infinity. This relationship can be rewritten in matrix form as

1
u=_MX. (3.3)

The perspective camera camera can be considered as a system that performs
a linear projective transformations from the projective space P3 into the
projective space P2.
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Now, we describe how the matrix M changes when the retina system is
transformed. We will introduce intrinsic camera parameters, called calibra-
tion parameters. The transformation is illustrated in Figure 3.2. The new
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Figure 3.2: Projection plane. The transformation from image coordinates

into pixel coordinates.

system into which the image coordinates u, v are to be transformed need not
to be orthogonal. Let the scale between u and ¢, be denoted k, resp. k,
be the scale between v and ¢,. First, the coordinate system is skewed and
scaled. Second, it translates, since the coordinate system (c,u,v) has the

origin in the principal point. From Figure 3.2 follows

_ kv
T = sin(6) Do,
cos ()
= kyu— kyv———=
G wt = RSy

Equations (3.4)(3.5) can be rewritten in a matrix form as

Qu
Q= | g | =Hu
1

The 3 x 3 matrix H is given by

ky ky cl?t(ﬁ) quo
H = 0 sinq()ﬂ) Qvo

0 0 1

According to the equation (3.3) we have

1
q=-HMX.
z

Qug-

(3.7)
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Introducing matrix K, we can finally write
1
q=-KX. (3.9)
z

With regard to equations (3.7)(3.8), the matrix K can be written as

fky kycot(0) gug
K=| 0 Sif;’“(;) o | - (3.10)
0 0 1

The parameters f, ky, ky, 0, quo and g,y do not depend on the position and
orientation of the camera in the space, and they are thus called intrinsic
ones.

This is a reconstruction problem. Recovering of the translation between
views is the ego-motion problem, which we deal with.

3.2 Epipolar geometry for perspective cameras

Epipolar geometry is the fundamental mathematical tool for dealing with
pair of images. Epipolar geometry of two perspective cameras [6, 14], see
Figure 3.3, assigns to each point q; in one image an epipolar line 1 in the
second image. All epipolar lines in each image intersect in the epipoles e;
and e,. Using geometry, the epipolar line can be defined as

Figure 3.3: The epipolar geometry of two perspective cameras.

i =qiAey, (3.11)

where the symbol A denotes cross product. This equation can be rewritten
in a matrix form as

11 = B(el)ql' (312)
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The vector 1; is perpendicular to the line joining points e; and q; and the
points on this line satisfy 1;x = 0. Since the epipolar lines 1; and 1, are
coplanar, the transformation between them is collineation, defined by 3 x 3
matrix A.

1, = Al. (3.13)

Association of equations (3.13) and (3.12) together, leaves us:

l = AB(e,)a1 = Qqu- (3.14)

The mathematical expression of the epipolar geometry

@ Qa1 =0, (3.15)

says that the vector t connecting the centers of the cameras C; and Cy
is coplanar with the corresponding vectors q; and qo. @) represents the
fundamental matriz [6].

3.3 Estimation of robot motion

Suppose we have two or more images of one scene captured by a camera
from different viewpoints. The two views case is sketched in Figure 3.3. We
want to estimate the displacement between cameras. If the camera fixed on
the mobile robot this problem is the same as the estimation of robot motion.
Given two images, the estimation process encompasses two main problems.

1. For an image point in the first image, we have to decide which point
in the second image corresponds to it. Correspond means that they
are the images of the same physical point. This is the correspondence
problem.

2. Given the number of corresponding points, we want to estimate the
displacement between positions of the cameras. This is the ego-motion
problem.

Many works dealing with these problems have emerged recently. The cor-
respondence problem is one of the most essential ones in computer vision.
An approach based on the recovering the epipolar geometry is presented
in [24], related software called image-matching is available free on web?.
A linear algorithm for scene reconstruction and ego-motion estimation was
firstly described in [13]. An extensive work dealing with ego-motion and es-
timation of uncertainty is [21]. We developed a method how the uncertainty
in the motion parameters can be predicted knowing uncertainty in camera
calibration [20].

1h‘l‘.tp ://www.inria.fr/robotvis/personnel/zzhang/softwares.html
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world
scene

camera 2

finding

UEu=0

Essential matrix computation

factorization
into motion parameters
R, t

Figure 3.4: The relative displacement of the cameras can be computed from
the pairs of corresponding points.

We briefly sketch the approach for the ego-motion estimation. Let the
motion between two positions of the camera be given by the rotation ma-
trix R and the translation vector t. Let u; and uy be normalized image
coordinates of corresponding point in the first resp. second image. Then
the coplanarity constraint of vectors t, u; and us can be written in the
coordinate system of the second camera as:

ul R(t Auy) = 0. (3.16)

Introducing the antisymmetric matrix S

0 —t, t,
S=|t 0 —t |, (3.17)
~ty ty O

we can rewrite the coplanarity constraint (3.16) in matrix form as
T —
u; Eu; = 0. (3.18)

Matrix £ = RS stands for the essential matriz. The essential matrix E
can be used here instead of a fundamental matrix @), since vectors u; are
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metric entities. Several methods for essential matrix estimation have been
published recently [6, 11, 13, 21]. We proposed an efficient approach for
essential matrix computation in [17]. Knowing E the motion parameters R
and t can be recovered using method [10], for instance.

3.4 Ego-motion via optical flow

In the previous section we discussed the problem of motion estimation from
point correspondences, which technique treats the images as a samples of
the scene taken at discrete times. Having very dense sequence of images,
we can determine the optical flow. Optical flow is the velocity field in the
image plane that arises due to projection of moving patterns in the scene
onto the image plane [1, 9]. Since we do not work with the optical flow in
our research, only basic equations are given here.

We denote by [1,9]7 the velocity of the image point [u,v]”, which is
the projection of the space point [z,v,2]T. By the geometry of perspective

projection, we have
[“]:i[x]. (3.19)
v z |y

To change equation (3.19) into optical flow equation, we take time derivatives
of both sides:
[9];%[@—%]. (3.20)
v 22| 2y —yz

Solving equation (3.19) for z,y and substituting into equation (3.20) yields
the fundamental optical flow equation:

IR | —

z

Now suppose we observe an N-point optical flow field {[u,, vn, T, 9n]7 1Y,

of a corresponding set of unknown three-dimensional points, all of which are
assumed to be moving with the same but unknown velocity [4,, 2]7. Then
up to a multiplicative constant, the position of all points and their common
velocity can be determined from the optical flow solving set of equations
(3.21) [1]. When the scene points are rigid and the camera moving, then the
estimated velocity is equals to the velocity of the camera (ego-motion).

3.5 Panoramic cameras

Since the using of panoramic cameras is the main topic of our recent research
we mention almost all works yet emerged.
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Though other researchers have already realized that the use of panoramic
cameras improves motion estimation, no attention has been paid to devel-
oping the epipolar geometry of panoramic cameras. The most related works
by others are by Benosman [3], Yagi [22, 23], and by Southwell [16]. Benos-
man uses two 1024 x 1 line cameras rotating around a vertical axis. He gets
two panoramic images but does not calculate epipolar geometry since the
corresponding features lie trivially in the same column. The disadvantage is
in complicated construction of the sensor. Yagi [22] developed a panoramic
camera with a conic mirror. He uses it for detection of an azimuth of vertical
lines. He integrates an acoustics sensor with the optical one and finds the
trajectory of a mobile robot. In [23] he uses a hyperbolic mirror, however he
detects swiveling motion analyzing an optical flow and develops no epipolar
geometry. Southwell [16] proposes an idea of the stereo with one camera and
concentric double lobed mirror but he does not present solid mathematical
background.

There is also a number of works [7, 8, 12, 15] and most recently [2],
which use panoramic cameras for fast visualization of a complete surround-
ings of the observer or as a source of images in order to construct a scene
representation for virtual reality.

Ishiguro [12] describes how to create panoramic representation from im-
ages captured by a single swiveling camera. Fleck [7] studies several imaging
models using wide-angle imaging geometry which can be used to create a
panoramic image covering a hemisphere. Nayar [15] uses orthographic cam-
era looking on the convex hyperbolic mirror. Orthographic camera is the
limited case of the pinhole one when the focal length f goes to the infinity;
all optical rays are parallel to the optical axis.

The most related work is the most recent by Baker and Nayar [2]. They
describe various mirrors on which the perspective camera looks for preserv-
ing the unique center of projection. They also do the study on the defocus
blur problem.

We proposed a new epipolar geometry for central panoramic cameras
[19]. Extended version of this submitted paper with more theory about the
design of useful mirror is [18].



Chapter 4

Our original contribution

This chapter describes our most recent research results. It gives the foun-
dations of panoramic stereo vision by presenting the analysis of epipolar
geometry [6, 14] for panoramic cameras and explains how to design a real
panoramic vision sensor. It has been primarily motivated by looking for an
improvement of the motion estimation from a pair of images [6, 11, 13, 21]
but its results are also applicable for structure from panoramic stereo images.

4.1 Central panoramic cameras

The cameras based on convex mirrors seem to be the most practical ones.
They offer large field of view (approx. 360° x 150°), instant image acquisition
(video rate), compact design, cheap production, and the freedom to choose
the shape of the mirror in order to obtain a nice mathematical model of the
camera.

4.1.1 Shape of the mirror

A panoramic camera with a mirror, Figure 4.1, consists of a perspective
camera looking into a convex mirror. The ray p; going from (or coming
into) the camera is reflected by the mirror into a ray p). Each ray p has to
pass through the focal point F' of the perspective camera. Reflected rays p’
can but need not to intersect themselves at the same point. Figure 4.1(a)
shows a panoramic camera with a spherical mirror. In this case, the reflected
rays do not intersect at the same point. Figure 4.1(b) shows the hyperbolic
mirror where all the reflected rays intersect at the focal point of the mirror
F'. The focal point of the camera, called center of projection, coincides with
the second mirror focal point F. Figure 4.1(c) shows the parabolic mirror.
Reflected rays p, p!, intersect themselves in the focal point F' however the
second focal point F' moves to infinity thus the orthographic projection has
to be used.

12
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(a) Spherical mirror. (b) Hyperbolic mirror. (c) Parabolic mirror.
The reflected optical The reflected optical The reflected optical
rays do not intersect in rays intersect in the fo- rays intersect in the
a unique point — spher- cal point of the hyper- focal point of the
ical aberration. boloid. paraboloid when ortho-
graphic projection is

assumed.

Figure 4.1: Three mirrors.

Here we focus to the case when all reflected rays intersect at a single
point, further called the center of projection. Panoramic cameras which
posses this property shall be called central panoramic cameras. Among all
panoramic cameras the central ones are important because:

1. The shape of the mirror is uniquely defined by the requirement that
both rays p and p' intersect in the point F' and F’, respectively.

2. Standard epipolar constraint can be used, i.e. the translation vector
t between F| and Fj, see Figure 4.3, is coplanar with the vectors Xj,
and Xpo. The model of the panoramic camera can be in this case
decomposed into a central projection from 3-D space onto a curved
surface of the mirror and a central projection from the surface of the
mirror into the image plane.

4.1.2 Model of a panoramic camera with a hyperbolic mirror

Figure 4.2 shows the composition of a perspective camera with a hyperbolic
mirror. The camera center C' coincides with the focal point of the mirror F'.
The perspective camera can be modeled by an internal camera calibration
matriz K which relates pixel coordinates q = [gy, gy, 1] to the normalized
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image coordinates u = [u,v,1]7:
u=Klq, (4.1)

This matrix K encompasses first three columns of matrix K, see equation
(3.10). See [6] for more information about camera calibration.

rtap

Xh

2e

L

Figure 4.2: The geometry of the mirror and the camera.

The hyperbolic mirror is defined in the “mirror coordinate system”,
which is centered at the focal point F’, by the equation

5 — =

a b2

1, (4.2)
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where a, b are parameters of the mirror. The image formation can be ex-
pressed as a composition of the coordinate transformations and projections.
We want to find relationship between point X in world coordinates and the
camera point q in pixels. The derivation of the image formation is omitted
here, details can be found in [18]. Complete model can be concisely written
as

q~ KRc (f(RM(X —tum)) R (X —tr) — tc), (4.3)

where ~ denotes equality up to similarity, R¢,tc characterize the transfor-

mation between the mirror coordinate system and the camera frame, Rz, t s

denote transformation between the world and the mirror frame and where

F(Rap(X — tar)) is given by the following nonlinear function of a vector
— T.

vV = [U15U27v3] .

b*(evs + al|v]|)

b2v2 — a?v? — a?

F(v)

ok (4.4)
There are 6 external calibration parameters (3 for tj; and 3 for Rjs) and 9
internal parameters (two for the mirror, two for the rotation R¢, and 5 for
K). The matrix R¢ has only two free parameter as it is used to model the
angle between the image plane and the axis of the mirror.

In order to establish the equations of epipolar geometry, it is necessary
to find the vector X}, for each image point q. The formula for computing
X}, from pixel coordinates q reads as:

X, = F(REK 'q)REK 'q + te, (4.5)

where F(RLK'q) is given by equation (4.4).

4.1.3 Design of a useful hyperbolic mirror

The shape of the real mirror has to be designed carefully since there are
two main requirements: (1) The whole camera—mirror system has to be as
compact as possible since it is to be used on a mobile robot, (2) the spatial
angle of view has to be very close to whole sphere. This angle « is defined
by

s h—2e
= — t 4.6
@ 2+aan< o ), (4.6)

where h is the distance between camera center C and the top of the mirror
and r¢,p, is the radius of the mirror rim, Figure 4.2, value of which has to be
determined by a designer. Using mirror equation (4.2), h can be computed

as
2
h— 1 4 Ltop A7
=e+ta +b2' (4.7

It is obvious that « is a function of a,b. In order to achieve good resolution,
the projected mirror rim has to occupy the whole image. This requirement
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determines projected radius r, in normalized image coordinates. A designer
draws up values 74, and r,. Then the height h from equations (4.6)(4.7)
can be computed as

h="or (4.8)

Ty
Knowing h, the ratio a/b can be determined from equation (4.7). The max-
imum of angle « increases with increasing a/b. However the size (height)
of the mirror increases as well. A compromise is necessary. The ground for
the constraint 2 < a/b < 3 can be found in [18].

4.2 Epipolar geometry for panoramic cameras

The epipolar geometry of central panoramic cameras, see Figure 4.3, related
by the translation t pointing from F] to Fj and the rotation R relating the
coordinate systems of the mirrors, assigns to each point X, a curve on the
second mirror. Points Xp1, Xpo and vector t are coplanar. We can rewrite

projection
plane

camera projection center \ )
c1

Figure 4.3: The epipolar geometry of two panoramic cameras with hyper-
bolic mirrors.

this coplanarity in the coordinate system of the second camera as
thR(t A Xhl) =0. (49)

Introducing the antisymmetric matrix S containing elements of t, see equa-
tion (3.17), we can rewrite the coplanarity constraint (4.9) in matrix form
as

X, TEXp, = 0. (4.10)

Matrix E = RS stands for the essential matriz.
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The epipolar curves are conics since they are intersections between planes
and the quadratic surface (hyperboloid in our case). Each epipolar plane
intersects the mirror in a planar conic. This conic is then projected into
another conic to the image plane by a central (perspective) projection. To
a point qp in the first image a conic in the second image

Q3 A2(E,q1) @2 =0 (4.11)

is assigned. The matrix As(FE,q) is in general case a nonlinear function
of the essential matrix F, point qi, and the calibration parameters of the
panoramic cameras and the mirrors.

All epipolar conics pass through two points which are images of the
intersection of mirrors with the line FjFj. Therefore there are usually two
epipoles, denoted e; and €] resp. ez and €}, in Figure 4.3. The epipoles can
degenerate into one double epipole if the camera is translated along the axis
of the mirror.

After intensive derivation, see [18], the equation (4.11) can be rewritten
as

a} K TRcBRLK 'qo =0, (4.12)
leaving us with Ay = K- TRcBRLK L.
—45%a%e? + p?b* pgb* psb?(—2e? + b?)
B = pgb* —452a%e? + ¢t qsb?(—2¢2 + b?) (4.13)
psb?(—2e% +b%)  qsb?(—2€? + b?) s2b*

is a nonlinear function of a, b, and
[p,g,s]" = B(F(REK 'a)REK 'au + to), (4.14)

where F(RLK 'q) is defined by equation (4.4). The equation (4.12) defines
the curve on which the projected corresponding point has to lie and it is
indeed an equation of a conic as alleged by equation (4.11).

Using the epipolar geometry The epipolar geometry presented above
can be used similarly as using perspective cameras. Finding correspon-
dences is the one reason to use it. Once the epipolar geometry between
two panoramic images is established the search for correspondences is nicely
reduced to 1 degree of freedom problem. At least 8 correspondences are
needed to solve essential matrix linearly (4.10), using method [11], for in-
stance. Knowing essential matrix £ we can compute epipolar conic for each
point of interest in the first image, on which conic the corresponding point
has to lie. Then we can employ an iterative algorithm to establish epipolar
geometry and to find correspondences more robustly [24].

Let the essential matrix E be robustly estimated, from equation (4.10).
Recall that £ = RS, where R is rotation matrix and matrix S contains
elements of the translation vector t. The motion parameters R and t can
be recovered using the approach described in [10], for instance.
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4.3 Experiments

We present a simulated experiment with a synthetic scene rendered by POV-
ray software package' as our hyperbolic mirror has been manufactured just
at December 1997. We did tests with the “bar” scene taken from SCED
package?. A pair of panoramic images is shown in Figure 4.4. We can see

Figure 4.4: Left: A pair of panoramic images with three marked points.
Right: Epipolar conics pass through the corresponding points.

three points of interest in the top image and the epipolar conics passing
through the corresponding points in the bottom image. Epipolar conics
intersect themselves on the y-axis, since the normalized displacement is t =
[0,1,0]7 for this pair.

4.4 Summary

This chapter has presented the foundations of epipolar geometry for panoramic
cameras and the approach to design a useful hyperbolic mirror. We have
shown that panoramic cameras using convex hyperbolic or parabolic mir-
rors, so called central panoramic cameras, can be decomposed into two cen-
tral projections and therefore allow the same epipolar geometry as perspec-
tive cameras. We have defined the model of image formation by a central
panoramic camera. It has been shown that epipolar curves are conics and
their equation was derived. The theory has been demonstrated by a simu-
lated experiment.

"http://www.povray.org
2http://http.cs.berkeley.edu/~schenney/sced/sced.html



Chapter 5

Thesis plan

My thesis will deal with mobile vehicle position estimation from panoramic
camera. The plan is to propose a compact theory of the problem and verify
it on real experiments.

There are many opened questions. Namely, the influence of changing
resolution in the field of view has to be studied. It is a question how lower
resolution will affect the quality of motion estimation. The epipolar align-
ment of central panoramic images can be further worked out so that the
corresponding epipolar curves have the same equations in both images.

The experiments with real data have to be carried out. Special care
needs to be paid to finding out an automatic calibration and adjustment
method for real mirrors and perspective cameras.

To prepare my PhD thesis I will further work on

1. the alignment (rectification) of the panoramic images,
2. the development of useful adjustment and calibration method,

3. the analysis of the reliability of using central panoramic cameras in-
stead of perspective ones.
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