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Abstract

This paper addresses the problem of building large-scale
maps of indoor environments with mobile robots. It proposes
a statistical approach that phrases the map building problem
as a constrained maximum-likelihood estimation problem,
for which it devises a practical algorithm. Experimental
results in large, cyclic environments illustrate the appropri-
ateness of the approach.

1 Introduction

The problem of acquiring maps in large-scale indoor envi-
ronments has received considerable attention in the mobile
robotics community. The problem of map building is the
problem determining the location of entities-of-interest (such
as: landmarks, obstacles) in a global frame of reference (such
as a Cartesian coordinate frame). To build a map of its envi-
ronment, a robot must know where it is. Since robot motion
is inaccurate, the robot must solve a concurrent localization
problem, whose difficulty increases with the size of the en-
vironment (and specifically with the size of possible cycles
therein).

This paper investigates a specific version of the map build-
ing problem, in which the robot can observe landmarks
(which have to be mapped). It presents an algorithm for
landmark-based map acquisition and concurrent localiza-
tion, which is based on a statistical account on robot mo-
tion and perception. Our approach poses the problem of
map building is as a maximum likelihood estimation prob-
lem, where both the location of landmarks and the robot’s
position have to be estimated. Likelihood is maximized un-
der probabilistic constraints that arise from the physics of
robot motion and perception. Following [6, 15, 16], the
high-dimensional maximum likelihood estimation problem
is solved efficiently using the Baum-Welch (or alpha-beta) al-
gorithm [13]. Baum-Welch alternates an “expectation step”
(E-step) and a “maximization step” (M-step). In the E-step,
the current map is held constant, the probability distributions
are calculated for past and current robot locations. In the
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M-step, the most likely map is computed based on the esti-
mation result of the E-step. By alternating both steps, the
robot simultaneously improves its localization and its map.
The probabilistic nature of the estimation algorithm makes
it considerably robust to ambiguities and noise, both in the
odometry and in perception. It also enables the robot to
revise past location estimates as new sensor data arrives.

The paper also describes some experimental results ob-
tained with a RWI B21 robot in several indoor environments.
In our experiments, a human operator manually chose an in-
distinguishable set of landmarks, and informed the robot (via
button press) of the presence or absence of a landmark. One
of the environments contains a cycle of size 60 by 25 me-
ter, which has been mapped successfully despite significant
odometric error. The approach has been integrated into a
conventional method for building occupancy grid maps [18],
for which results are reported as well.

2 The Probabilistic Model

This section describes our probabilistic model of the two
basic aspects involved in mapping: motion and perception.
These models together with the data (see next section) define
the basic likelihood function, according to which maps are
built.

2.1 Robot Motion

Let ¢ and &’ denote robot locations in z-y-6 space, and let
u denote a control (motion command), which consists of a
combination of rotational and translational motion. Since
robot motion is inaccurate, the effect of a control « on the
robot’s location & is modeled by a conditional probability
density

P(¢'u,€) (1)

which determines the probability that the robot is at location
&', ifitpreviously executed control v at location§. P(&'|u, &)
imposes probabilistic constraints between robot positions at
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Figure 1: Probabilistic model of robot motion: Accumulated uncertainty
after moving as shown: (a) 40 meter, (b) 80 meter.
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Figure 2: Probabilistic model of robot perception: (a) uncertainty after
sensing a landmark in 5 meter distance, (b) the corresponding map.

differentpointsintime. If P(¢) isthe probability distribution
for the robot’s location before executing an control «,

) = (PO POE @
is the probability distribution after executing that control.
Figure 1 illustrates the motion model. In Figure 1a, the
robot starts at the bottom location (in a known position),
and moves as indicated by the vertical line. The resulting
probability distribution is shown by the grey values in Figure
la: The darker a value, the more likely it is that the robot
is there. Figure 1b depicts this distribution after two motion
commands. Of course, Figure 1 (and various other figures
in this paper) show only 2D projections of P(¢), as P(&) is
three-dimensional.

2.2 Robot Perception

Our approach assumes that the robot can observe landmarks.
More specifically, we assume that the robot is given a method
for estimating the type, the relative angle and an approximate
distance of nearby landmarks. For example, such landmarks
might be Choset’s “meet points” [3] (see also Kuipers’s and
Mataric’s work [7, 10]), which correspond to intersections
or dead ends in corridors and which can be detected very
robustly.

In our probabilistic framework, landmarks are not neces-
sarily distinguishable; in the most difficult case, landmarks
are entirely indistinguishable. It is also assumed that the per-
ceptual component is erroneous—the robot might misjudge
the angle, distance, or type of landmark. Thus, the model of
robot perception is modeled by a conditional probability:

P(ol¢, m). 3)

Here o denotes a landmark observation, and m denotes the
map of the environment (which contains knowledge about
the exact location of all landmarks). P(o|¢, m) determines
the likelihood of making observation o when the robot is at
location & according to the model m.

The perceptual model imposes probabilistic constraints
between the map, m, and the robot’s location, £. According
to Bayes rule, the probability of being at & when the robot

observes o is given by

P(ol¢, m) P({|m)
J P(ol¢’,m) P(&'|m) d¢’
= 1 P(ol¢§,m) P({|m) (4)

Here P(&|m) measures the probability that the robot is at
& prior to observing o and 7 is a normalizer that ensures
that the left-hand probabilities in (4) sum up to 1. Equation
(4) implies that after observing o, the robot’s probability of
being at ¢ is proportional to the product of P(£|m) and the
perceptual probability P(o|&, m).

Figure 2a illustrates the effect of Equation (4) for a simple
example. Shown there is the distribution P(£]o, m) that
results, if the robot initially has no knowledge as to where it
is (i.e., P(&|m) is uniformly distributed), and if it perceives
a landmark approximately 5 meters ahead of it, in a world
m that contains exactly two indistinguishable landmarks.
This world is shown in Figure 2b. The circles in Figure 2a
indicate that the robot is likely to be approximately 5 meter
away from a landmark—although there is a residual non-
zero probability for being at other location, since the robot’s
perceptual routines might err.

P(lo,m) =

3 Maximum Likelihood Estimation

The key idea is to build maps from data by maximizing
the likelihood of the map under the data. The data is a
sequence of control interleaved with observations. Without
loss of generality, let us assume that motion and perception
are alternated, i.e., that the data available for mapping is of
the form

d = o T=0 ) oMY (5)
T denotes the total number of steps.

The estimation algorithm alternates two different estima-
tion steps, the E-step and the M-step. In the E-step, proba-
bilistic estimates for the robot’s locations at the various points
in times are estimated based on the currently best available
map (in the first iteration, there is none). In the M-step, a
maximum likelihood map is estimated based on the locations
computed in the E-step. The E-step can be interpreted as a



localization step with a fixed map, whereas the M-step imple-
ments a mapping step which operates under the assumption
that the robot’s locations (or, more precisely, probabilistic
estimates thereof) are known. lIterative application of both
rules leads to a refinement of both, the location estimates and
the map. This algorithm can be shown to converge to a local
optimum in likelihood space.

3.1 The E-Step

In the E-step, the current-best map m and the data are used to
compute probabilistic estimates P (¢()|d, m) for the robot’s

position¢® att =1,..., 7. P(¢®]d, m) can be expressed
as product of two terms
P(£|d, m) (6)
PEDM . o® m) PED)u® . o) m)
:Océt) ::ﬁ?)
Both terms, Ozg ) and ﬁ , are computed separately, where

the former is computed orward in time and the latter is com-
puted backwards in time. The reader should notice that the
computation of the a-values is a version of Markov local-
ization, which has recently been used with great success by
various researchers [1, 6, 12, 17]. The (-values add addi-
tional knowledge to the robot’s position, typically not cap-
tured in Markov-localization. They are, however, essential
for revising past belief based on sensor data that was received
later in time, which is a necessary prerequisite of building
large-scale maps.

Computation of a-values: Since initially, the robot is as-

sumed to be at the center of the global reference frame, Ozél)
is given by a Dirac distribution centered at (0, 0, 0):

{ Lire = 0,00)

M _
7If£l7é( )

X

P(EW|d,m)

All other a( are computed recursively:

= 7 POYEY, m)
[ PO g0) a7 agtd (g)

(t)
e

Here 7 is a normalizer that ensures that the resulting prob-
abilities sum up to 1. A detailed derivation of (8), which
follows directly from (2) and (4), can be found in [19].
Computation of the 3-values: The computation of ﬁ(t) is
completely analogous, but backwards in time. The initial

62T), which expresses the probability that the robot’s final

position is ¢ is uniformly distributed (JBET) does not depend
on data). All other -values are computed in the following

o [ PleH10, )

P(O(t+l)|€(t+l)’m) 6ét+l)d£(t+l) 9)

The derivation of this equation is analogous to that of the

a-values. The result of the E-step, a t) ﬁ , IS an estimate
of the robot’s locations at the various pomts |n time ¢.

3.2 The M-Step

The M-step computes the most likely map based on the prob-
abilities computed in the E-step.

Without loss of generality, we assume that there are n
different types of landmarks (for some value n), denoted
l1,...,l,. Theset L = {l1,...,1,, L} is the set of general-
ized landmarks types, which includes /., the “no-landmark.”
A probabilistic map of the environment is an assignment of
probabilities P(mqy, = {) for { € L, where (z, y) is a loca-
tion measured in global coordinates, and m., is a random
variable that corresponds to the generalized landmark type at
(z,y). The M-step computes the most likely map under the

assumption that agt) . 6§” accurately reflects the likelihood

that the robot was at £(*) at time ¢.
Following [13], the maximum likelihood map is computed
according to the weighted likelihood ratio

# of times { was observed at (z, y)

P(mgy =l|d) = - -
(may = Uld) # of times something was observed (z, y)

which is obtained by

Z/ (may = 1o, £0)) a8 dg®)

(10)
ZZ/ mxy =0 |O t)) aét)ﬁét) df(t)
t=11l'eL
where
P(omgy = 1,6Y)
P My :lo(t)a (t) = Y 11
(May | ¢\) Zl'()|my_l'f)()

While these equations look complex, they basically amount
to a frequentist maximum-likelihood estimation. Equation
(10) counts how often the generalized landmark [ was ob-
served for location (z, ), divided by the number some gener-
alized landmark was observed for that location. Each count is
weighted by the probability that the robot’s was at a location
& where it could observe something about (z, y). Frequency
counts are maximum likelihood estimators. Thus, the M-step
determines the most likely map from the position estimates
computed in the E-step. By alternating both steps, both the
localization estimates and the map are gradually improved
(see also [13]).



4 Efficiency Considerations

In our implementation, all probabilities are represented by
discrete grids. Thus, all integrals are replaced by sums in
all equations above. Maps of size 90 by 90 meter with a
spatial resolution of 1 meter and an angular resolution of 5°
were used throughout all experiments reported here (unless
otherwise noted). Our implementation employs a variety of
“tricks” for efficient storage and computation:

e Caching. The motion model P(&|u,&’) is computed in
advanced for each control in d and cached in a look-up
table.

e Exploiting symmetry. Symmetric probabilities are
stored in a compact manner.

e Coarse-grained temporal resolution. Instead of esti-
mating the location at each individual micro-step, loca-
tions are only estimated if at least one landmark has been
observed, or if the robot moved 20 meter. In between,
position error is interpolated linearly.

e Selective computation. Computation focuses on loca-
tions ¢ whose probability P(¢) is larger than a threshold:
P (&) must be larger or equal to .001 maxg: P(&').

o Selective memorization. Only a subset of all probabili-
ties are stored for each P (&), namely those that are above
the threshold described above. This is currently imple-
mented with a generalized version of bounding boxes.

These algorithmic “tricks” were found to lower memory re-
quirements by a factor of 2.98-108 (in our largest experiment)
when compared to a literal implementation of the approach.
The computation was accelerated by a similar factor. The
resulting algorithm does not work in real-time; however, all
maps shown in this paper were produced in less than an hour
on a low-end PC.

5 Results

The approach was tested using a B21 mobile robot, manu-
factured by Real World Interface, Inc. Data was collected
by joy-sticking the robot through its environment and using
odometry (shaft encoders) to re-compute the corresponding
control. While joy-sticking the robot, a human chose and
marked a collection of significant locations (which roughly
corresponded to the meet-points described in [3, 7]), and in-
formed the robot by pressing a button every time the robot
crossed a landmark location. To test the most difficult case,
we assumed that the landmarks were generally indistinguish-
able.

Figure 3a shows one of our datasets, collected in our
university buildings. The circles mark landmark locations.
What makes this particular environment difficult is the large
circular hallway (60 by 25 meter). When traversing the

Figure 3: (a) Raw data (2,972 controls). The box size is 90 by 90 meters.
Circles indicate the locations where landmarks were observed. The data
indicates systematic drift, in some of the corridors. The final odometric
error is approximately 24.9 meter. (b) Occupancy grid map, constructed
from sonar measurements.
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Figure4: (a) Maximum likelihood map, along with the estimated path of the
robot. (b) Occupancy grid map constructed using these estimated locations.

circle for the first time, the robot cannot exploit landmarks to
improve its location estimates;thus, it accumulates odometric
error. As Figure 3a illustrates, the odometric error is quite
significant; the final odometric error is approximately 24.9
meter. Since landmarks are indistinguishable, it is difficult
to determine the robot’s position when the circle is closed
for the first time (here the odometric error is larger than 14
meter). Only as the robot proceeds through known territory
it can use its perceptual clues to estimate where it is (and
was), in order to build a consistent map.

Figure 4a shows the maximum likelihood map along with
the estimated path of the robot. This map is topologically
correct, and albeit some bents in the curvature of the corri-
dors (to avoid those, one has to make further assumptions),
the map is indeed good enough for practical use. This result
demonstrates the power of the method. In a series of ex-
periments with this data set, we consistently found that the
principle topology of the environment was already known
after two iterations of the Baum-Welch algorithm; after ap-
proximately four iterations, the location of the landmarks
were consistently known with high certainty.

The result of the estimation routine can be used to build
more accurate occupancy grid maps [4, 11]. Figure 4b shows
an occupancy grid map constructed from sonar measure-
ments (using a ring of 24 Polaroid sonar sensors), using the
guessed maximum likelihood positions as input to the map-
ping software described in [18]. In comparison, Figure 3b
shows the same map using the raw, uncorrected data. The
map constructed from raw data is unusable for navigation,
whereas the corrected map is sufficient for our current navi-
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Figure 5: (a) A second data set (2,091 controls, box size 90 by 90 meter),
and (b) occupancy grid map, constructed from sonar measurements.
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Figure 6: (a) Maximum likelihood map, along with the estimated path of
the robot, and (b) the resulting occupancy grid map.

gation software.

Figures 5 and 6 show results obtained in a different part of
the building. In this run, one of the corridors was extremely
populated, as the “fuzziness” of the occupancy grid map
suggests. The floor material in both testing environments
consisted of carpet and tiles.

Figures 7 and 8 show results obtained in the National
Museum of American History, obtained in preparation for
an upcoming robot exhibition. During data collection, the
robot suffered a final odometric error of 70 meters and 180
degrees. This dataset was first pre-filtered by a recently
developed routine for self-calibrating of kinematic models
[14], then processed using the algorithm described in this
paper. The final result is a accurate map. No experiments
were performed using the raw dataset.

More results can be found in [19].

6 Related Work

Over the last decade, there has been a flurry of work on map
building for mobile robots (see e.g., [2, 8, 18]). As noticed
by Lu and Milios [9], the dominating paradigm in the field
is incremental: Robot locations are estimated as they occur;
the majority of approaches lacks the ability to use sensor
data for revising past location estimates. A detailed survey
of recent literature on map building can be found in [18].
The approach proposed there, however, is also incremental
and therefore incapable of dealing with situations such as the
ones described in this paper.

L

Figure 7: Dataset collected in the National Museum of American His-
tory (Smithsonian Institution, Washington, DC). The dataset contains 50
landmark observations and 2,667 controls. The final odometric error is ap-
proximately 70 meters and 180 degree; the two marked locations (arrows)
are actually identical.

Figure 8: Mapping result, after first compensating for systematic rotational
drift and then applying the algorithm described here. This map is approxi-
mately 85 meters long.

Recently, several groups have proposed algorithms that
revise estimates backwards in time [5, 6, 15, 9]. These ap-
proaches are similar to the one proposed here in that they use
similar statistical methods for constructing maps. They differ
in the way the represent locations and maps. The approaches
in [6, 15] use Hidden Markov Models as their baseline rep-
resentation, which make it difficult to embed geometry in a
mathematically correct way. The approaches in [5, 9], on the
other hand, represent locations of the robot and the obstacles
using Kalman filters. While those approaches can generate
maps with floating-point accuracy, they are limited in their
ability to represent ambiguities. As a result, the odometric



error must be quite limited.

7 Discussion

This paper proposed a probabilistic approach to building
large-scale maps of indoor environments with mobile robots.
It phrased the problem of map building as a maximum like-
lihood estimation problem, where robot motion and percep-
tion impose probabilistic constraints on the map. It then
devised an efficient algorithm for maximum likelihood es-
timation. Simplified speaking, this algorithm alternates lo-
calization and mapping, thereby improving estimates of both
the map and the robot’s locations. Experimental results in
large, cyclic environments demonstrate the appropriateness
and robustness of the approach.

The basic approach can be extended in several interesting
directions.

The current approach is “passive”, i.e., it does not restrict
in any way how the robot is controlled. Thus, the approach
can be combined with one of the known sensor-based explo-
ration techniques. One possibility, which has not yet been
implemented, would be to combine the current approach with
Choset’s sensor-based covering algorithm [3].

Our current implementation also relies on humans to iden-
tify landmarks. While this is reasonable when mapping an
environment collaboratively with a human, it is impracti-
cal if the robot is to operate autonomously. The lack of a
landmark-recognizing routine is purely a limitation of our
current implementation, not of the general algorithm. For
example, Choset’s sensor-based covering algorithm [3] au-
tomatically detects and navigates to so-called meet-points.
Meet-points correspond to intersections, corners, and dead-
ends (see also [7]). We conjecture thata combined algorithm,
using Choset’s approach for exploration and meet-point de-
tection and our approach for mapping, would yield an algo-
rithm for fully autonomous exploration and mapping.
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