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Decoupled Stochastic Mapping
John J. Leonard and Hans Jacob S. Feder

Abstract—This paper describes decoupled stochastic mapping
(DSM), a new computationally efficient approach to large-scale
concurrent mapping and localization (CML). DSM reduces the
computational burden of conventional stochastic mapping by
dividing the environment into multiple overlapping submap
regions, each with its own stochastic map. Two new approximation
techniques are utilized for transferring vehicle state information
from one submap to another, yielding a constant-time algorithm
whose memory requirements scale linearly with the number of
submaps. The approach is demonstrated via simulations and
experiments. Simulation results are presented for the case of an
autonomous underwater vehicle (AUV) navigating in an unknown
environments with 110 and 1200 features using simulated obser-
vations of point features by a forward look sonar. Empirical tests
are used to examine the consistency of the error bounds calculated
by the different methods. Experimental results are also presented
for an environment with 93 features using sonar data obtained in
a 3 by 9 by 1 m testing tank.

Index Terms—Autonomous underwater vehicles, mapping, mo-
bile robots, navigation.

I. INTRODUCTION

T HE objective of concurrent mapping and localization
(CML) is to enable a mobile robot to build a map of an

unknown environment while concurrently using that map to
navigate. CML has been a central research topic in the field
of mobile robotics due to its theoretical challenges and critical
importance for many different types of robot applications [1],
[5], [22], [24]. A key stumbling block in the development and
implementation of new methods for CML has been the map
scaling problem—the increase of computational complexity
with the size of the operating environment of the mobile robot.

The primary cause of map-scaling complexity in CML is the
requirement of representing correlations between the error es-
timates of the vehicle and all the features in the map [18]. The
optimal algorithm that retains all correlations [24] encounters
a computational burden [22], whereis the number of
features. (In general the Kalman filter is , but the neces-
sary computations for CML can be reduced to ; because
the features are assumed to be stationary, the plant model Jaco-
bian matrix is sparse [22].) Real-time performance becomes
impossible for environments with more than a few hundred fea-
tures. The correlations arise because the locations of neither the
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vehicle nor the features are ever known precisely. If a mobile
robot uses an observation of an imprecisely known target to up-
date its position, the resulting vehicle position estimate becomes
correlated with the feature location estimate. Likewise, corre-
lations are introduced if an observation taken from an impre-
cisely known position is used to update the location estimate of
a geometric feature in the map. Previous work has shown that
methods which neglect these correlations will fail [8].

An alternative is to attempt to bound the correlations.
Uhlmann and colleagues introduced a tool for CML state
estimation called covariance intersection (CI) that produces
consistent error estimates in situations where correlation infor-
mation between states is unknown [15], [27]. The methods for
CML implemented with CI maintain consistent error bounds,
but may not provide an effective solution because the error
bounds can be too conservative.

Notable recent research which has examined the map-scaling
complexity issue in CML includes work by Guivant and Nebot
[14] and Davison [10], who have implemented strategies for op-
timization of the computations entailed in the full covari-
ance solution. These authors have shown methods to reduce the
number of times that the full update must be performed.
Newman has analyzed the convergence properties of the covari-
ance matrices in CML and developed techniques for the scaling
problem based on the use of relative maps [23].

The idea behind our work is to split the map into multiple
globally-referenced submaps, each with its own vehicle track,
and to maintain all correlations within a submap. The motiva-
tion is to achieve good performance by computing multiple par-
tial solutions in parallel, and to avoid the computational burden
that is entailed by computing one complete solution. The key to
accomplishing this is the development of appropriate techniques
for transitioning from one submap to another.

Several previous researchers have used multiple local maps
in a CML algorithm. Betgé-Brezetzet al. [4] used multiple
local maps to isolate odometry errors. Bulata and Devy intro-
duced a hybrid local map method for incremental construction
of feature-based and topological models from laser range data
[6]. Chong and Kleeman used multiple local maps to address
the issue of map scaling for indoor mobile robots using a novel
sonar array that can identify plane and corner features from
a single vantage point [9]. Our work is different because all
the submaps in our DSM approach areglobally-referenced.
This circumvents the potentially difficult and time-consuming
problem of matching multiple local maps.

The motivating application for our work is to enable
autonomous underwater vehicles (AUVs) to navigate in un-
structured environments without relying ona priori maps
or acoustic beacons. Navigation is essential for successful
operation of underwater vehicles in a range of scientific,
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commercial, and military applications. Accurate positioning
information is vital for the safety of the vehicle and for the
utility of the data it collects. The error growth rates of inertial
and dead-reckoning systems available for AUVs are usually un-
acceptable. Surfacing for the global positioning system (GPS)
resets is often impossible or undesirable, and the deployment
of an acoustic transponder network is often expensive and
impractical. Navigation algorithms based on existing maps
have been proposed, but sufficiently accuratea priori maps are
often unobtainable. The goal of our work is to provide methods
by which an AUV can build a map of an unknown marine
environment and use that map concurrently for navigation.

The stochastic mapping approach assumes that distinctive
features of the environment can be extracted from sensor data
and represented as points in an appropriate parameter space.
Other types of representations are possible and have been em-
ployed with success in land and marine robot systems. For ex-
ample, Thrun [25], [26] has demonstrated highly successful nav-
igation of indoor mobile robots using a combination of grid-
based [12] and topological [16] modeling. Our hypothesis is that
in many marine environments, salient features can be found and
reliably extracted using state-of-the-art processing techniques,
enabling a feature-based approach to CML. Feature extraction
is not addressed in this paper; our simulations and experiments
assume that measurements of point features are provided. In re-
lated work, we have demonstrated CML via postprocessing of
real data from a US Navy forward looking sonar, for a situation
where well-defined point-like objects could be readily detected
[17].

The structure of the paper is as follows. Section II introduces
our notation and summarizes conventional full covariance
stochastic mapping. Section III describes decoupled stochastic
mapping (DSM), in which the environment is represented in
terms of multiple overlapping submaps. Section IV presents
two different approximation methods for transitioning between
submaps, cross-map relocation and cross-map updating.
These methods enable a constant-time algorithm without
introducing complex data association requirements. Section V
uses the cross-map vehicle relocation transition technique to
describe single-pass DSM, which is a constant-time algorithm
for large-scale CML which achieves temporal convergence
but not spatial convergence. Section IV describes multipass
DSM, which uses a combination of cross-map updating and
cross-map relocation to achieve a method that is both spatially
and temporally convergent. Sections VII and VIII analyze
the performance of the two new methods for scenarios with
110 and 1200 features, respectively. Section IX illustrates the
performance of multipass DSM for an experiment with real
data from a gantry robot taking data from a testing tank. Finally,
Section X discusses our conclusions.

II. STOCHASTIC MAPPING

The current state-of-the-art in feature-based approaches to
CML is characterized by nearest-neighbor techniques for data
association and use of the extended Kalman filter (EKF) for
state estimation [7], [11], [22], [24]. From the titles of two sem-
inal papers on CML by Smith, Self, and Cheeseman [24] and

Moutarlier and Chatila [22], we refer to this class of feature-
based methods for CML as stochastic mapping (SM). Stochastic
mapping considers CML as a variable-dimension state estima-
tion problem in which the size of the state space is increased
or decreased as features are added or removed from the map.
As the robot moves through its environment, it uses new sensor
measurements to perform two basic operations: 1) adding new
features to its state vector and 2) updating concurrently its esti-
mate of its own state and the locations of previously observed
features in the environment.

Stochastic mapping algorithms for CML use the EKF to
recursively compute a state estimate
at each discrete time step, where and

are the estimated robot and feature
locations, respectively. Based on assumptions about lineariza-
tion and data association, this estimate is the approximate
conditional mean of

where designates the set of all measurement obtained up
through time . Associated with this state vector is an estimated
error covariance, , which represents the errors in the robot
and feature locations, and the cross-correlations between these
states

...
...

...
...

(1)

The estimate error covariance matrix is an approximation
to , the actual mean squared error of the estimate at time,
which is defined by

(2)

The state-estimate covariance that is associated with the
state estimate will be consistent if the matrix
is positive definite

(3)

or equivalently

(4)

A theoretical proof of consistency is not possible for any
stochastic mapping technique that uses nonlinear plant and/or
measurement models, or in problems where data association
uncertainty (spurious measurements and/or ambiguities in the
correspondence of measurements) is present. All practical mo-
bile-robot navigation and mapping applications are character-
ized by these difficulties, and so empirical consistency tests
must be relied upon to assess the validity of a stochastic map-
ping solution. Consistency in this context means that “the state
errors should be acceptable as zero mean and have magnitude
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commensurate with the state covariance as yielded by the filter
[3]”. This can be ascertained using standard statistical tests,
such as examination of the square of the normalized estimation
error , as illustrated in Sec-
tion VIII below.

In our implementation, the AUV senses features in the
environment through range and bearing measurements. Esti-
mates of feature locations from different vantage points are
fused together to build a map, and concurrently, the feature
location estimates are used to update the robot position. We
denote the vehicle’s state by to
represent the vehicle’s east position, north position, heading,
and speed, respectively. The state of featureis represented by

. The dynamic model used in the algorithm
simulates an AUV equipped with control surfaces and a single
aft thruster for propulsion, moving at a nominal forward
speed of 2.5 m/s. The control input to the vehicle is given
by a change in heading, , and speed, , of the vehicle to
model changes in rudder angle and forward thrust, that is,

. Thus, the dynamic model of the AUV, ,
is given by

(5)

where is a white, Gaussian random process indepen-
dent of , with magnitude dependent on the control input

.
The observation model for the system is given by

(6)

where is the observation vector of range and bearing mea-
surements. The observation model, , defines the (nonlinear)
coordinate transformation from state to observation coordinates.
Data association is performed using a logic-based approach in
innovation space. This approach incorporates sensor uncertainty
as well as the uncertainty in the vehicle’s state. That is, for all
measurements that can potentially be associated with feature
, the innovation, , and the innovation matrix, , are con-

structed and the closest measurement within the gate defined by
the Mahalanobis distance

(7)

is chosen as the most likely measurement of that feature. Under
the assumption that the measurement model noise is Gaussian,
(7) will have a -distribution. Thus, for a system of 2 degrees
of freedom (the and positions of the feature), the true mea-
surement of the feature, if detected, would fall within a
gate with 99% probability.

New feature tracks are incorporated into the system state
vector by use of a logic-based track initiator that is similar
in spirit to [2], with the difference that the vehicle’s position
uncertainty is also taken into account. In this approach, all
measurements that have not been associated with a track (fea-
ture) over the last time steps are stored. At each time step,
a search for clusters with more than measurements
are performed. When such a cluster is found, a new track is
initiated and the feature is integrated into the system state
vector and system error covariance. A cluster is defined as one

Fig. 1. Overview of stochastic mapping.

measurement from each time step that falls within the gate
define by (7).

Once tracks are initiated, data association is performed by
finding the single sonar return closest to each track [2]. It is as-
sumed that a sonar return originates from not more than one fea-
ture. After the closest return to each feature is found, this return
is gated with the estimated feature position. While the general
problem of data association is exponentially complex, in this
paper, we assume that nearest neighbor association strategies
can be performed in constant time, and the primary source of
computational complexity is from the requirement to represent
the off-diagonal terms in the covariance matrix.

In some situations, it is useful to incorporate a track dele-
tion capability as part of the data association process. In general,
track deletion will be necessary for mapping in dynamic envi-
ronments (where features might move or disappear [19]). For
the current paper, we utilized a simple track deletion strategy
that checks for consistency of the estimated features. That is,
if the 95% error bounds for a feature estimate overlap by more
than a certain percentage, (set at 30%), with another feature’s
95% error bounds, the feature with the smallest error bound is
deleted. This causes the system to remove tracks for features that
are physically too close to each other for reliable data associa-
tion. In general, track deletion must be performed with caution
as good tracks may be erroneously discarded.

Fig. 1 shows a flow-chart representation of the structure of
the augmented stochastic mapping algorithm. We will refer
to the implementation of the stochastic mapping algorithm
with the addition of logic-based track initiation and deletion
and nearest-neighbor data association as augmented stochastic
mapping (ASM).

III. D ECOUPLEDMAPPING

The full covariance SM algorithm computes a single state
estimate and associated covariance matrix which containall
features encountered thus far during a mission, encountering

computational complexity. This makes it impossible
to apply SM in situations with more than a few hundred
features. In decoupled stochastic mapping, we compute mul-
tiple partial solutions, each consisting of a state vector for
the vehicle and a subset of the features in the environment

and an associated estimate error covariance matrix
. For each solution, there is an associated submap region
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. The number of feature
estimates associated with submap is. Each submap contains
state estimates for only a subset of the features of the
environment. The submap regions are chosen such that the
union of the submap regions completely cover the portion of
the environment in which the vehicle travels. In this paper, the
physical size of all submaps are the same, and their physical
location is implicitly determineda priori. The size is set based
on an assumed knowledge of the density of features, so that

is kept to a reasonable value and real-time performance is
possible. More advanced, adaptive strategies for map location
and sizing could be utilized. In the strategy employed here, a
new submap is created and initialized when the vehicle moves
out of the current submap. The submaps overlap slightly in
order to prevent excessive map switching.

At any given time, one submap is the “active” submap, and the
other submaps are “inactive”. The active submap is the earliest
created submap region that contains the current estimated ve-
hicle position. New submaps are created when the vehicle exits
the active submap and enters a region for which no submap ex-
ists. When the vehicle enters a region for which one or more
submaps exist, the earliest created submap that contains the new
vehicle position becomes the new active submap, and vehicle
state estimate information is transitioned from the previously
active submap to the newly active submap.

The concept of creating a new, globally referenced submap
when the computational cost of the current map has become suf-
ficiently high is relatively straightforward. But one challenging
issue to consider is: can we reuse old submaps and thus be able
to move between submaps in a manner such that consistent error
bounds are maintained and temporal convergence is achieved?
A second, more difficult issue is to consider spatial convergence:
can the information gained from mapping one submap be passed
on and exploited to achieve global reduction of errors?

In evaluation of the various possible strategies for tran-
sitioning between submaps, a variety of criteria need to be
considered.

• Computation time: how does the computational burden
scale with the number of features in the environment?

• Theoretical consistency: can the error covariances com-
puted by the algorithm be shown mathematically to be
consistent?

• Empirical consistency: do the error covariances com-
puted by the algorithm pass tests of consistency based on
the distribution of normalized squared errors [2] of the es-
timates?

• Temporal convergence: within a given submap region, do
the error bounds converge, or slowly increase with time?

• Spatial convergence: do the error bounds obtained in dif-
ferent submaps converge to the same level, or do the errors
increase for submaps that are further from the origin?

• Data association complexity: do the methods incur a high
degree of data association complexity when transitions be-
tween submaps occur?

Based on these criteria, we have examined a wide range of tran-
sition strategies. In this paper, we next present two new ap-
proximation techniques, cross-map relocation and cross-map

updating, that enable large-scale CML to be performed with
constant-time algorithms. The next two sections describe these
two techniques.

IV. A PPROXIMATION TECHNIQUES FORTRANSITIONING

BETWEEN SUBMAPS

To illustrate the two-map transition strategies, let us assume
that the vehicle is currently in submapand is entering submap

, which already exists. Let designate the submap
robot state estimate and designate the submap robot
state estimate. Let us consider an environment which consists
of two sets of features, designated byand . Let designate
the set of features that are mapped in submapand let desig-
nate the set of features that are mapped in submap. In general,
some of the featuresmapped in submap might also be con-
tained in the set of features that are contained in submap.
The state estimate of the vehicle and all the features of submap

are described by and covariance by , in analogy
with (1)

(8)

Similarly, let and define submap

(9)

Suppose that the robot leaves submapat time step . At
this time, the state estimate for the robot is and the robot
state estimate covariance is . The state estimate for the
features in submap is and the associated covariance
matrix is . The joint state estimate, , for the robot
and the set of features is

(10)

and the associated joint covariance matrix is

(11)

From time steps through , no state estimates for
submap are computed. During this time, submapis active.
At time step , where , the robot transitions from submap

back into submap . At this point, the state estimates for the
robot and the feature locations in submapare given by

(12)

and the associated joint-covariance matrix for submapat time
is

(13)
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A. Cross-Map Vehicle Relocation

The cross-map relocation step transitions the vehicle state in-
formation from submap back into submap as follows:

(14)

with associated covariance matrix

(15)

The vehicle state estimate in submapat time is obtained by
using the current vehicle state estimate from submapand the
feature state estimate from submapfrom time step . The cur-
rent vehicle covariance from submapis added to the vehicle
covariance for submap from time , and the vehicle-to-fea-
ture correlation and feature covariance terms for submapare
left unchanged.

The intuitive appeal of this strategy is that, if the error bounds
for the features in submap were consistent at time, and
the features are static, then the feature covariance in
submap at time will also be consistent. If the error bounds
for the vehicle in submap at time are consistent, then ,
the vehicle covariance for the vehicle in submap, will also be
consistent. However, the complete submap is consistent
only under the assumption that the vehicle-to-feature correlation
terms have not changed from time steps through .
Empirical consistency tests must be relied upon to verify the im-
pact of this approximation. See [20] for a detailed discussion of
this issue.

An alternative strategy that avoids this approximation about
the cross-correlation terms is to perform state projection and
dead-reckoning sensor measurement updates in submapat
each time step during the period when it is inactive. For the
linear-Gaussian case with perfect data association, provably
consistent error bounds can be obtained at the expense of
either an algorithm or a great increase in data association
complexity. In related research, we have examined a variety of
nonapproximate alternative transition strategies, with encour-
aging results.

B. Cross-Map Vehicle Updating

The goal of cross-map updating is to bring more accurate
vehicle estimates from submaps that were created earlier to
submaps that were created later, to facilitate spatial conver-
gence. (If each submap is given an integer ID based on the
sequence in which it is initiated, then submaps that are created
later will have a higher ID number than submaps that were
created earlier. Hence we refer to submaps created earlier
as “lower” submaps, and submaps created later as “higher”
submaps.) It consists of two steps, (1) de-correlation (denoted
by ) and (2) EKF updating (denoted by ). First, the
vehicle state estimate for submapis randomized, the vehicle

covariance for submap is greatly inflated, and the feature
covariance for submap is doubled

where designates a random value uniformly distributed over
the region defining submap and designates a covariance
much larger than the size of submap. Second, the vehicle state
estimate from submap , , is used as a measurement,
with covariance , in an EKF to update the vehicle position
in submap . This is summarized by the following equations:

where is the 4 by matrix .
To explain the intuition behind this strategy, it is useful to

first consider several strategies which are unsuccessful for one
reason or another. The first idea one might consider is to simply
replace the vehicle state estimate for submapwith the state
estimate from submap , , and to replace the
corresponding vehicle covariance submatrix, .
The problem with this approach is that the submapcovariance
matrix can no longer be guaranteed to be positive definite; such
a replacement violates the physical meaning of a covariance ma-
trix and thus violates the consistency of the submap.

A second idea that overcomes this would be to use the
machinery of the EKF to perform the update—that is, to use the
vehicle location estimate from submapas a measurement of
the vehicle location in an EKF that uses the vehicle covariance
in submap , , as the assumed measurement noise in
the Kalman filter update equations for submap. While this
strategy maintains positive semi-definiteness, it violates the
independence assumptions of the Kalman filter and produces
overconfident estimates of both the vehicle locations and the
features. Because the vehicle location estimates and

are not independent, using as a measurement
of the vehicle position results in some information being
used twice. In addition, due to the correlations between the
vehicle and the features in submap, performing a vehicle
update measurement in this way also updates the locations
of the feature states in submap, and greatly reduces their
error covariances, even though no new information about the
locations of these features has been obtained.

To amend this, we can negate the effect of using vehicle loca-
tion information twice by setting to a completely random
position within the submap and inflating the vehicle covariance

by a large amount. After the Kalman update, the re-
sulting vehicle state estimate is effectively replaced by ,
its covariance becomes and the correlation terms
between the vehicle and features are greatly reduced. The as-
sumption is that the great inflation of the vehicle state estimate
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before the update serves to “de-correlate” the vehicle estimate
in submap from its feature location estimates.

We are still left, however, with the fact that the mapfea-
ture states have been updated and the corresponding features
covariances greatly reduced, despite the addition of no new in-
formation about their locations. This can be rectified by adding
thea priori map feature covariance to thea posteriori
feature covariance after the Kalman update. The resulting co-
variance must be positive semi-definite and the updated feature
covariance can be shown to bound the a priori feature
covariance . Because the Kalman gain is independent of

, it is equivalent to multiply by two before the Kalman
update.

In this way, improved vehicle location information is trans-
ferred from submap to submap , and subsequent measure-
ments of the features in submapallow the accuracy of submap

to be improved. This technique is an approximation because,
even though consistency can be demonstrated for the vehicle
and feature covariances after the update, if they were consistent
before, the consistency of cannot be guaranteed. In a
similar manner to cross-map relocation, assumptions must be
made about the cross-correlation terms. Again, empirical con-
sistency tests will be vital to verify the performance of an imple-
mentation of the technique, as shown in our simulation results
below.

Having two tools for passing vehicle state information
between submaps, cross-map vehicle relocation and cross-map
vehicle updating, we now move on to define two concurrent
mapping and localization algorithms that utilize these methods.
The first one is single-pass decoupled stochastic mapping,
which is suitable for missions in which maximum accuracy
is desired after only a single transit through the environment.
The second method is labeled multipass decoupled stochastic
mapping. Multipass DSM is more suitable when the vehicle
will be able to make repeated passes through its environment,
improving the accuracy of its map with each pass.

V. SINGLE-PASS DSM ALGORITHM

The purpose of single-pass decoupled stochastic mapping is
to achieve the highest accuracy possible based on one traversal
of the environment. For this reason, new submaps are initialized
with some of the feature state estimates for the previously active
submap. This slows the growth of position uncertainty from one
submap to another.

These features are calledcorrespondence features. In the ex-
perimental results in this paper, the correspondence features are
chosen based on their proximity to the new submap, to slow
the growth of spatial errors. Because these features are known
more accurately, the vehicle is able to produce a more accurate
map than without the existence of these features. As a result, the
uncertainty grows more slowly than if these features were not
included when creating a submap.

To be more precise, let us assume that we are moving out of
submap and are about to create submap. From submap
we have and , which for clarity, can be separated
into the states and estimate for the vehicle, denoted by subscript

Fig. 2. Structure of the single-pass decoupled stochastic mapping algorithm.
The stochastic mapping (SM) algorithm structure is outlined in Fig. 1.

, correspondence features, denoted by subscript, and the re-
maining features, denoted by subscript. That is

(16)

Then, map is created from and in the following
way:

(17)

A block diagram of the single-pass decoupled stochastic map-
ping algorithm is shown in Fig. 2.

VI. M ULTI-PASS DSM ALGORITHM

The purpose of multipass decoupled stochastic mapping is to
have a method where the global error of a submap can be re-
duced by revisiting the submap. The reduction of global uncer-
tainty of a submap is obtained by utilizing cross-map vehicle
updating. Again, it should be noted that this canonly be per-
formed to a submap that was createdlater in time. For the in-
stances when the vehicle travels back to a submap that was cre-
ated earlier in time, cross-map vehicle relocation is employed
just as in single-pass DSM. In order for cross-map vehicle up-
dating to be applicable, correspondence features are not initial-
ized. Thus, if the vehicle is moving out of submapto create
submap , submap is only created from the vehicle state es-
timate of submap . That is, using the same notation as in (16)

(18)

As there are no correspondence features used in multipass
DSM, the feature states between submaps are independent in
the sense that their estimates do not share any measurements.
However, there will likely be features in adjacent maps that are
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Fig. 3. Algorithm structure for the multipass DSM method. In contrast with
single-pass DSM, two different map transition strategies are used. Cross-map
vehicle relocation is used when transitioning from maps created later to maps
created earlier, and cross-map vehicle updating is used when transitioning from
maps created earlier to maps created later. Also, in multipass DSM, the submap
regions do not overlap, although different submaps can possess estimates of the
same environmental features that are independent (in the sense that they do not
share any measurements).

represented in both submaps. It should be noticed that the fea-
ture states of a map will be (weakly) dependent on all earlier
maps because a map is always initiated with the vehicle esti-
mate and state from the earlier map upon creation of the later
map. For this reason, cross-map vehicle updating can only be
performed to a later map, and not the reverse. A block diagram
of the multipass DSM algorithm is shown in Fig. 3.

VII. EXPERIMENTAL COMPARISONBETWEENDSM AND FULL

COVARIANCE STOCHASTIC MAPPING

The simulation parameters are based on the characterization
of an AUV equipped with a forward look electronically scanned
sonar. The AUV is assumed to be given a differential GPS reset
at the start of the mission, thus providing an initial position un-
certainty of a few meters. In each scenario, false measurements
are generated by assuming that the number of spurious returns
has a poisson distribution with an expected value of. The range
and angle of the spurious returns are uniformly distributed over
the field of view of the sonar. The probability of detection of
features is set to . Sonar measurements and dead
reckoning measurements are obtained at 1 Hz. In these simula-
tions, the physical boundaries of the submaps were set to be 525
by 525 meter squares. This size was chosen so that, given the
feature density, the number of features in each submap would
generally be less than 50. Further, they are placed so that the
boundaries overlap by 25 m. This was done to prevent excess
transitions between submaps when the vehicle moves along the
boundary between two submaps. This also prevents the genera-
tion of excess submaps for missions in which the vehicle travels
close to the boundaries of the survey area.

To compare each DSM method with the full covariance SM
algorithm, simulations were performed for a scenario with 110
features randomly distributed over a 1– km by 1-km area, in the
presence of clutter and dropouts. The desired path of the AUV
and the true feature locations are shown in Fig. 4.

Fig. 4. (a) The desired survey path of the vehicle and the location of the 110
randomly distributed point features (crosses). The vehicle starts at(0; 0) meters
and follows the path of the arrows. (b) The submap partition of the survey area
as generated by the two DSM algorithms.

Fig. 5. Errors and3� bounds produced by full covariance SM (top),
single-pass DSM (middle), and multipass DSM (bottom) surveys of the region
shown in Fig. 4. The error is the difference between the true and the estimated
vehicle position.

The top two plots of Fig. 5 show the position errors of the
vehicle versus time and the error bounds for full covariance
SM. On the first pass through the environment, the uncertainty
grows as the vehicle is furthest from the origin, and then de-
creases when the vehicle returns close to the origin. On subse-
quent traversals, the error bounds are reduced.

For each of the two DSM algorithms, the survey area is par-
titioned into four submaps. Each submap bounds a 525 m by
525 m square region. Fig. 4 shows the location of the submaps
as generated by the DSM algorithm. The numbers signify the
order in which submaps were created.

The middle plots of Fig. 5 show the position errors for
single-pass DSM. As with the full covariance algorithm, the
position uncertainty of the vehicle grows as the distance from
the starting point increases. Further, after the first pass through
the survey path, the full covariance SM and the single-pass
DSM results look very similar and achieve close to the same
error bounds. The crucial difference between the methods
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Fig. 6. (a) The desired survey path of the vehicle in the 3 km by 3 km survey
area with 1200 features. (b) The partition of the survey area into 36 submaps. (c)
The true feature positions (marked by ’�’) and the estimated feature positions
(marked by ’+’) and3� error ellipses for the long duration multipass DSM run.

is that SM estimates the correlations between all features,
while single-pass DSM only estimates the correlations within
submaps. The full covariance method is able to exploit all the
correlations and thus reduce the global error at all locations.
Single-pass DSM is unable to reduce the global uncertainty of
submaps below the uncertainty upon creation of the submap.
This can be seen from the “steps” in the north and east
bounds after the completion of the first pass through the survey
area (that is, after the first 2 h of the mission).

The bottom plots of Fig. 5 show the position errors of the
vehicle versus time and the bounds for the survey performed
by multipass DSM. The multipass errors resemble the results for
full covariance SM more than the results from single-pass DSM.
Clearly, the vehicle does better after the first pass through the
survey area (that is, after about 2 hours) than before. Thus, the
algorithm is capable of reducing theglobal error everywhere
and not only locally in the submaps, as for single-pass DSM.
However, one can see that the error bounds are slightly smaller
than those of full covariance SM. This raises the concern that
multipass DSM might become somewhat overconfident. This
issue is discussed again below for an example with 36 submaps,
where the consistency of the error bounds is improved when the
path followed by the vehicle is varied.

VIII. L ARGE-SCALE SIMULATION RESULTS

Next, we will demonstrate results using single-pass DSM and
multipass DSM for surveying a large-scale environment with
1200 features for a mission duration of over 100 hours, sam-
pling at a rate of 1 Hz. Fig. 6 shows the desired path of the AUV
through the 3 km by 3 km survey area, the partition of the survey
area into submaps, and true and estimated positions of the fea-
tures in the survey area for the multipass DSM simulation shown
in Fig. 6.

Fig. 7. Position errors,3� bounds (top), and normalized mean squared error
(bottom) for a 36 submap single-pass DSM survey of the area given in Fig. 6.
The horizontal dashed line drawn at the value 13.3 in the bottom plot indicates
the 99% error level [3].

Fig. 8. Position errors,3� bounds (top), and normalized mean squared error
(bottom) for a 36 submap multipass DSM survey of the area given in Fig. 6. The
horizontal dashed line drawn at the value 13.3 in the bottom plot indicates the
99% error level [3].

Fig. 7 shows plots of the position errors of the vehicle versus
time and the bounds when using single-pass DSM for the
survey area of Fig. 6. In this simulation, the vehicle completed
11 laps of the survey path. The position uncertainty of each
submap grows as a function of submap number.

Figs. 8 and 10 show the position errors of the vehicle versus
time when using multipass DSM for two different survey paths.
In Fig. 8, the vehicle follows the survey path indicated in Fig. 6,
whereas in Fig. 10 the vehicle follows an alternating survey path
that rotates the path given in Fig. 6 by 90 degrees after each com-
plete circuit of the environment. This path is shown in Fig. 9.

The multipass DSM shows a considerable improvement over
single-pass DSM in the long run as the survey area is revisited.
However, during the first pass through the survey area, the max-
imum uncertainty when using multipass DSM is more than 30%
higher than the result when using single-pass DSM. Single-pass
DSM should be used when the survey area is to be traversed
only once and multipass DSM should be used if one anticipates
multiple traversals of the environment.

The normalized squared state errors [3] for the vehicle state
estimates are also shown in Figs. 7, 8 and 10. The normalized
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Fig. 9. Alternating survey path for second 36 submap multipass DSM survey.
The path given in Fig. 6 is rotated by 90 degrees after each complete circuit
of the environment. The first two cycles through the environment result in the
following submap transition sequence:1; 2; 3; . . ., 36, 25, 24, 13, 12, 1, 12, 13,
24, 25, 36, 35, 26, 23, 15, 11, 2, 3, 10, 15, 22, 27, 34, 33, 32, 29, 20, 17, 8, 5, 6,
7, 18, 19, 30, 31.

Fig. 10. Position errors,3� bounds (top), and normalized mean squared error
(bottom) for a 36 submap multipass DSM survey of an environment with 1200
features with the same conditions as in Fig. 8, except using the alternating survey
strategy shown in Fig. 9. With the alternating transition sequence, improved
normalized squared errors are obtained.

Fig. 11. The testing tank and robotic positioning system used in the underwater
sonar experiments. 93 fishing bobbers were randomly positioned in the tank and
used as features for testing the DSM algorithm.

squared errors are reasonably well-behaved for the single-pass
DSM run. However, Fig. 8 indicates when the same repetitive
survey path is used with multipass DSM, the amount of normal-
ized squared errors falling outside the 99% error bounds is unac-
ceptably high. However, this situation improves tremendously
when the vehicle follows an alternating survey path, as illus-
trated by the mission shown in Fig. 10. When the vehicle is able
to observe each feature from many different survey directions,
the normalized errors are very well-behaved. Further research is

Fig. 12. Top:Desired path and the location of 93 features for the experiment.
Middle: All sonar returns processed during the experiment, referenced to the
true sensor location. (Returns originating from the tank walls were discarded.)
Bottom: Actual path of the sensor and estimated feature locations with3� error
ellipses.

Fig. 13. Position errors,3� bounds (top) and normalized mean squared error
(bottom) for the robot position for multipass DSM experiment in the testing
tank.

necessary to characterize the effect of the vehicle trajectory on
bias accumulation.

IX. TESTING TANK EXPERIMENT

We now present a simple multipass DSM experiment for fur-
ther investigation of the approach. The parameters for the mis-
sion were chosen so as to simulate an AUV scaled down by
a factor of 100. A 500-kHz mechanically scanned sonar was
mounted on a robotic positioning system and scanned over a

sector at each sensing location. Each scan took approxi-
mately 2 min. The testing tank is shown in Fig. 11.

In the experiment, 93 fishing bobbers were used as features
and were randomly placed in the testing tank as shown by the
crosses in Fig. 12. The sonar returns from the tank walls were
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discarded by time gating. The sonar trajectory was set to per-
form a lawn-mower path starting at the lower right corner of the
tank and moving toward the left. The estimated result from the
DSM algorithm was compared to the true position of the sonar
as obtained from position encoders on the robotic positioning
system. The entire mission lasted about 1250 time steps. The
resulting position estimate errors and the normalized squared
state errors for the experiment are shown in Fig. 13.

X. CONCLUSION

This paper has presented a new, computationally efficient
method for large-scale CML and demonstrated its performance
through simulations and experiments. The single-pass and mul-
tipass DSM algorithms yield performance that is comparable
to full covariance stochastic mapping, while maintaining con-
stant computational requirements. Further work is necessary
to explore the limits of the approximations employed by the
cross-map relocation and cross-map updating submap transi-
tion strategies. For example, the normalized squared errors of
multipass DSM are too large when a repetitive survey path is
followed (Fig. 8), but are quite good when an alternating survey
path is followed (Fig. 10). The results are encouraging, however,
because they demonstrate successful stochastic mapping on a
scale an order of magnitude larger (in terms of number of fea-
tures) than any results previously published using a stochastic
mapping approach. Using either method, the CPU and memory
requirements are independent of the size of the map. The hard
disk storage requirements of the method scale as where

is the number of features states per submap andis the total
number of features.

Of the alternatives to the EKF that have been applied to CML,
most are not computationally feasible for large-scale environ-
ments. A variety of techniques have been developed which em-
ploy numerical techniques to compute , the proba-
bility density function of the actual state conditioned on all the
measurements obtained up through time. Such methods can
entail prohibitive computational requirements for moderately
sized problems. The current state-of-the-art in this type of ap-
proach is represented by Thrun’s work on real-time CML using
particle filtering [25] using laser scanning data on land mobile
robots. Julier and Uhlmann have used Covariance Intersection
to perform CML with over 100 000 features [15]. CI, however,
can be overly conservative. In the future, it would be interesting
to perform a side-by-side experimental comparison of CI and
DSM.

Any method based on Kilman filtering can be expected to en-
counter difficulties when angular errors grow very large, causing
difficulties with linearization. We expect that the DSM tech-
nique should perform well in situations with small angular er-
rors and a relatively high density of features (at least a few fea-
tures visible at any given time). For situations with very poor
proprioceptive sensors and a sparse environment, large angular
errors would accumulate and it would be very difficult to main-
tain consistent, globally referenced error bounds. In this case,
an approach using multiple local maps might be the only option.
Empirical testing with careful ground-truth information will be

necessary to define the limits of the approach for a given type
of vehicle and sensor suite. Gibbenset al. [13] have presented
a closed-form solution for the single-degree of freedom CML
problem with linear models and observation of every feature at
every time step. This solution can provide insights into some of
the convergence properties of CML for a given combination of
vehicle, sensors, and environment.

It is anticipated that the general strategy of temporal and spa-
tial partitioning can be useful in the investigation of more com-
plex issues of the concurrent mapping and localization problem,
such as map maintenance in dynamic environments, improved
resolution of data association ambiguity, relocation, recovery
from errors, and cooperative mapping and navigation by teams
of mobile robots.

The problem of reliably extracting features from sensor data
remains an important outstanding issue for the realization of
CML in more complex and natural environments. In related re-
search, we have developed a technique called delayed decision
making that can be useful for performing CML with composite
features and in situations with high data association ambiguity
[21]. The results in this paper considered only point features.
Some interesting issues arise when considering long linear fea-
tures (such as corridors or trenches) that would span multiple
submaps. In our approach, features that are near the bound-
aries between submaps get mapped multiple times, in different
submaps. In general, the question of how to combine the infor-
mation across different submaps, while maintaining consistent
error bounds, remains open.
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