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Decoupled Stochastic Mapping

John J. Leonard and Hans Jacob S. Feder

Abstract—This paper describes decoupled stochastic mapping vehicle nor the features are ever known precisely. If a mobile
(DSM), a new computationally efficient approach to large-scale robot uses an observation of an imprecisely known target to up-
concur:etr_lt m?pbplng andflocahzantpn (ICMtL)'hDStM reduces tht? date its position, the resulting vehicle position estimate becomes
gﬁ,r%ﬁ)#ga ;ﬁga en\tli:oﬁﬂweont Cl(r)]?g eﬂq'&g;es g\/ceﬁsp:ginrgaglrﬂ)nrgapy co_rrelated v_vith the fea?ure location e_stimate. Likewise,_corre-
regions’ each with its own stochastic map. Two new approximation lations are introduced if an observation taken from an Impre-
techniques are utilized for transferring vehicle state information cisely known position is used to update the location estimate of
from one submap to another, yielding a constant-time algorithm g geometric feature in the map. Previous work has shown that
whose memory requirements scale linearly with the number of methods which neglect these correlations will fail [8].
submaps. The approach is demonstrated via simulations and . ; .
experiments. Simulation results are presented for the case of an AN alternative is to attempt to bound the correlations.
autonomous underwater vehicle (AUV) navigating in an unknown Uhlmann and colleagues introduced a tool for CML state
environments with 110 and 1200 features using simulated obser- estimation called covariance intersection (Cl) that produces
vations of point features by a forward look sonar. Empirical tests ~ consistent error estimates in situations where correlation infor-
are used to examine the consistency of the error bounds calculated mation between states is unknown [15], [27]. The methods for
by the different methods. Experimental results are also presented . . o L
for an environment with 93 features using sonar data obtained in CML 'mplememeq with Cl ma'r'ta'n COUS'Stent error bounds,
a3 by 9 by 1 m testing tank. but may not provide an effective solution because the error

. . bounds can be too conservative.
Index Terms—Autonomous underwater vehicles, mapping, mo- . . .
bile robots, navigation. Notable recent research which has examined the map-scaling
complexity issue in CML includes work by Guivant and Nebot
[14] and Davison [10], who have implemented strategies for op-
|. INTRODUCTION timization of the computations entailed in t&¥n?) full covari-

HE objective of concurrent mapping and localizatio@nce solution. These authors have shown methods to reduce the

(CML) is to enable a mobile robot to build a map of affumber of times that the fuld(n?) update must be performed.
unknown environment while concurrently using that map tyewman has analyzed the convergence properties of the covari-
navigate. CML has been a central research topic in the fieddce matrices in CML and developed techniques for the scaling
of mobile robotics due to its theoretical challenges and criticBfoblem based on the use of relative maps [23].
importance for many different types of robot applications [1], The idea behind our work is to split the map into multiple
[5], [22], [24]. A key stumbling block in the development anddlobally-referenced submaps, each with its own vehicle track,
implementation of new methods for CML has been the m&#d to maintain all correlations within a submap. The motiva-
scaling problem—the increase of computational complexit{pn is to achieve good performance by computing multiple par-
with the size of the operating environment of the mobile robotial solutions in parallel, and to avoid the computational burden

The primary cause of map-scaling complexity in CML is théhat is entailed by computing one complete solution. The key to
requirement of representing correlations between the error @scomplishing this is the development of appropriate techniques
timates of the vehicle and all the features in the map [18]. Tii@r transitioning from one submap to another.
optimal algorithm that retains all correlations [24] encounters Several previous researchers have used multiple local maps
aO(n?) computational burden [22], whereis the number of in @ CML algorithm. Betgé-Brezetet al. [4] used multiple
features. (In general the Kalman filter@(n?), but the neces- local maps to isolate odometry errors. Bulata and Devy intro-
sary computations for CML can be reduced6n?); because duced a hybrid local map method for incremental construction
the features are assumed to be stationary, the plant model J&¢deature-based and topological models from laser range data
bian matrixF is sparse [22].) Real-time performance becomd§]. Chong and Kleeman used multiple local maps to address
impossible for environments with more than a few hundred fethe issue of map scaling for indoor mobile robots using a novel
tures. The correlations arise because the locations of neitherspgar array that can identify plane and corner features from

, _ _ _ a single vantage point [9]. Our work is different because all
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commercial, and military applications. Accurate positioninyloutarlier and Chatila [22], we refer to this class of feature-
information is vital for the safety of the vehicle and for thdased methods for CML as stochastic mapping (SM). Stochastic
utility of the data it collects. The error growth rates of inertialnapping considers CML as a variable-dimension state estima-
and dead-reckoning systems available for AUVs are usually uien problem in which the size of the state space is increased
acceptable. Surfacing for the global positioning system (GP&) decreased as features are added or removed from the map.
resets is often impossible or undesirable, and the deploym@stthe robot moves through its environment, it uses new sensor
of an acoustic transponder network is often expensive amgtasurements to perform two basic operations: 1) adding new
impractical. Navigation algorithms based on existing mapeatures to its state vector and 2) updating concurrently its esti-
have been proposed, but sufficiently accuramiori maps are mate of its own state and the locations of previously observed
often unobtainable. The goal of our work is to provide methodsatures in the environment.

by which an AUV can build a map of an unknown marine Stochastic mapping algorithms for CML use the EKF to
environment and use that map concurrently for navigation. recursively compute a state estimafg] = [%,.[k]* x[k]T]*

The stochastic mapping approach assumes that distinctiteeach discrete time stefp where x,.[k]7 and x,[k]T =
features of the environment can be extracted from sensor dgtglk|* ... xx[k]T]T are the estimated robot and feature
and represented as points in an appropriate parameter splxations, respectively. Based on assumptions about lineariza-
Other types of representations are possible and have been gom and data association, this estimate is the approximate
ployed with success in land and marine robot systems. For eonditional mean op(x[k]|Z*)
ample, Thrun[25], [26] has demonstrated highly successful nav-
igation of indoor mobile robots using a combination of grid- x[k] ~ E [p (x[k]|2")]

based [12] and topological [16] modeling. Our hypothesis is thabJe k desi h ¢ all btained
in many marine environments, salient features can be found reZ"® designates the set of all measurement obtained up

reliably extracted using state-of-the-art processing techniqués’ ugh t'm.df' Asszmat(;q \r':"th this state ;]/ector 'S an er;s t|matt;[ed
enabling a feature-based approach to CML. Feature extractﬁfﬁorfcova”a}nce?[ Jw 'g r:epresentst ele.rrorstljnt €ro Et
is not addressed in this paper; our simulations and experime‘zr\'igj eature locations, and the cross-correlations between these

assume that measurements of point features are provided. irefates

lated work, we have demonstrated CML via postprocessing of P..[k] Pk
real data from a US Navy forward looking sonar, for a situation P[k] = Py.[k] Psrlk]
where well-defined point-like objects could be readily detected P.k] Pualk] - Pk

[17]. . o P[] Pulk] - Pix[]
The structure of the paper is as follows. Section Il introduces = i ] _ ) 1)

our notation and summarizes conventional full covariance : : : :

stochastic mapping. Section Il describes decoupled stochastic Pni[k] Pni[k] -+ Pyn[k]

mapping (DSM), in which the environment is represented I'[Jhe estimate error covariance matkk] is an approximation

terms of multiple oyerla_ppmg submaps. Sec.t!on. v presen{gp[k], the actual mean squared error of the estimate attime
two different approximation methods for transitioning between

X ‘which is defined by

submaps, cross-map relocation and cross-map updating.

These methods enable a constant-time algorithm without Plk] = E [{x[k] — %[k]}{x[k] — %[k]}"] . )

introducing complex data association requirements. Section V

uses the cross-map vehicle relocation transition technique torhe state-estimate covarianB@k] that is associated with the

describe single-pass DSM, which is a constant-time algorithgtate estimat&[%] will be consistent if the matri®[k] — P[k]

for large-scale CML which achieves temporal convergenggpositive definite

but not spatial convergence. Section IV describes multipass

DSM, which uses a combination of cross-map updating and Plk]-P[k] >0 ?3)

cross-map relocation to achieve a method that is both spatially

and temporally convergent. Sections VII and VIII analyz&' equivalently

the performance of the two new methods for scenarios with

110 and 1200 features, respectively. Section IX illustrates the {g”% g”f [[]ZH - {;”[[Z]] g”f [[]ZH >0. (4

performance of multipass DSM for an experiment with real fr 7f fr 5i

data from a gantry robot taking data from a testing tank. Finally, A theoretical proof of consistency is not possible for any

Section X discusses our conclusions. stochastic mapping technique that uses nonlinear plant and/or

measurement models, or in problems where data association

uncertainty (spurious measurements and/or ambiguities in the

correspondence of measurements) is present. All practical mo-
The current state-of-the-art in feature-based approachesiie-robot navigation and mapping applications are character-

CML is characterized by nearest-neighbor techniques for déad by these difficulties, and so empirical consistency tests

association and use of the extended Kalman filter (EKF) fonust be relied upon to assess the validity of a stochastic map-

state estimation [7], [11], [22], [24]. From the titles of two semping solution. Consistency in this context means that “the state

inal papers on CML by Smith, Self, and Cheeseman [24] ardrors should be acceptable as zero mean and have magnitude

Il. STOCHASTIC MAPPING
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commensurate with the state covariance as yielded by the filter
[3]". This can be ascertained using standard statistical tests,
such as examination of the square of the normalized estimation
error{x[k] — x[k]}TP[k]~* {x[k] — %[k]}, as illustrated in Sec-
tion VIII below.

In our implementation, the AUV senses features in the
environment through range and bearing measurements. Esti-
mates of feature locations from different vantage points are | feature integration |
fused together to build a map, and concurrently, the feature
location estimates are used to update the robot position. We  controf
denote the vehicle’'s state by, = [z, % ¢ v]* to input
represent the vehicle’s east position, north position, heading,
and speed, respectively. The state of feailiserepresented by rig 1. overview of stochastic mapping.

x; = [z; w;]*. The dynamic model used in the algorithm
simulates an AUV equipped with control surfaces and a single i o
aft thruster for propulsion, moving at a nominal forwardneasurement from each time step that falls within the gate

speed of 2.5 m/s. The control inputto the vehicle is given define by (7). L o
by a change in headingdi, and speedsv, of the vehicle to ane trac_ks are initiated, data association is perform_ed by
model changes in rudder angle and forward thrust, that [g]dmg the single sonar return_closest to each track [2]. It is as-
uk] = [6¢ 6v]T. Thus, the dynamic model of the AU¥( ), sumed that a sonar return originates from nof[more than.one fea-
ture. After the closest return to each feature is found, this return
is gated with the estimated feature position. While the general
x[k + 1] = f(x[k], u[k]) + dx(ulk]) (5) problem of data association is exponentially complex, in this
paper, we assume that nearest neighbor association strategies
wheredy (u[£]) is a white, Gaussian random process indepegan be performed in constant time, and the primary source of
dent ofx[0], with magnitude dependent on the control inputomputational complexity is from the requirement to represent
ulk]. the off-diagonal terms in the covariance matfix
The observation modéi( ) for the system is given by In some situations, it is useful to incorporate a track dele-
. tion capability as part of the data association process. In general,
zlk] = h(x[F]) +d, ©6) track deletion will be necessary for mapping in dynamic envi-
wherez[k] is the observation vector of range and bearing meg2nments (where features might move or disappear [19]). For
surements. The observation mode,), defines the (nonlinear) the current paper, we utilized a simple track deletion strategy
coordinate transformation from state to observation coordinatéat checks for consistency of the estimated features. That is,
Data association is performed using a logic-based approachfithe 95% error bounds for a feature estimate overlap by more
innovation space. This approach incorporates sensor uncertafign a certain percentage, (set at 30%), with another feature’s
as well as the uncertainty in the vehicle’s state. That is, for &% error bounds, the feature with the smallest error bound is
measurements that can potentially be associated with featdgéeted. This causes the system to remove tracks for features that
i, the innovation,v;, and the innovation matrix§;, are con- are physically too close to each other for reliable data associa-

structed and the closest measurement within the gate definedip§. In general, track deletion must be performed with caution

data association

track initiation

SM update

is given by

the Mahalanobis distance as good tracks may be erroneously discarded.
_— Fig. 1 shows a flow-chart representation of the structure of
Vi8S v < (7)  the augmented stochastic mapping algorithm. We will refer

. . tp the implementation of the stochastic mapping algorithm
Is chosen as the most likely measurement of that feature. Undli, vo aqgition of logic-based track initiation and deletion

the a_ssumptlon;he_lt the measurement model noise is Gaussgl L nearest-neighbor data association as augmented stochastic
(7) will have ax“-distribution. Thus, for a system of 2 degree

of freedom (ther andy positions of the feature), the true mea?nappmg (ASM).

surement of the feature, if detected, would fall withiy & 9
gate with 99% probability.

New feature tracks are incorporated into the system stateThe full covariance SM algorithm computes a single state
vector by use of a logic-based track initiator that is similagstimate and associated covariance matrix which corghin
in spirit to [2], with the difference that the vehicle’s positiorfeatures encountered thus far during a mission, encountering
uncertainty is also taken into account. In this approach, &l(n?) computational complexity. This makes it impossible
measurements that have not been associated with a track (feaapply SM in situations with more than a few hundred
ture) over the lastV time steps are stored. At each time stegeatures. In decoupled stochastic mapping, we compute mul-
a search for clusters with more thah < N measurements tiple partial solutions, each consisting of a state vector for
are performed. When such a cluster is found, a new tracktige vehicle and a subset of the features in the environment
initiated and the feature is integrated into the system statgk] and an associated estimate error covariance matrix
vector and system error covariance. A cluster is defined as dAgk]. For each solution, there is an associated submap region

I1l. D ECOUPLEDMAPPING
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R = {xb, 2t 4t 4t} The number of feature updating, that enable large-scale CML to be performed with

estimates associated with submapVis Each submap containsconstant-time algorithms. The next two sections describe these

state estimates for only a subset of thé features of the two techniques.

environment. The submap regions are chosen such that the

union of the submap regions completely cover the portion of

the environment in which the vehicle travels. In this paper, the

physical size of all submaps are the same, and their physical

location is implicitly determinee priori. The size is set based To illustrate the two-map transition strategies, let us assume

on an assumed knowledge of the density of features, so tHzat the vehicle is currently in submajpand is entering submap

N' is kept to a reasonable value and real-time performanceBs Which already exists. Let:![k] designate the submap

possible. More advanced, adaptive strategies for map locatiobot state estimate ark’ [k] designate the subma robot

and sizing could be utilized. In the strategy employed here state estimate. Let us consider an environment which consists

new submap is created and initialized when the vehicle movefstwo sets of features, designated pwndF'. Let f designate

out of the current submap. The submaps overlap slightly the set of features that are mapped in subrha@nd let/” desig-

order to prevent excessive map switching. nate the set of features that are mapped in subkhadp general,
Atany given time, one submap is the “active” submap, and t§éme of the featuref mapped in submag might also be con-

other submaps are “inactive”. The active submap is the earliédined in the set of features that are contained in submap

created submap region that contains the current estimated {8 state estimate of the vehicle and all the features of submap

hicle position. New submaps are created when the vehicle exitéire described byg*[k] and covariance by#[k], in analogy

the active submap and enters a region for which no submap 84th (1)

ists. When the vehicle enters a region for which one or more

submaps exist, the earliest created submap that contains the new PAk] = {

vehicle position becomes the new active submap, and vehicle

state estimate information is transitioned from the previously = 5 5 ]
active submap to the newly active submap. Similarly, letx~[k] andP~[k] define submag

The concept of creating a new, globally referenced submap
when the computational cost of the current map has become suf- P = [ PPk Plo[k] } ©)
ficiently high is relatively straightforward. But one challenging P2 k] PRk |"
issue to consider is: can we reuse old submaps and thus be able
to move between submaps in a manner such that consistent errgtuppose that the robot leaves subniaat time stepj. At
bounds are maintained and temporal convergence is achievit®time, the state estimate for the robok{$[;] and the robot
A second, more difficultissue is to consider spatial convergen&ate estimate covariance B [j]. The state estimate for the
can the information gained from mapping one submap be pas&@fures in submag is x7[j] and the associated covariance
on and exploited to achieve global reduction of errors? matrix is P2 [j]. The joint state estimaté[;], for the robot
In evaluation of the various possible strategies for trand the set of features is
sitioning between submaps, a variety of criteria need to be 5
considered. %B[j] = [{(73 [{{]} (10)
xplil

IV. APPROXIMATION TECHNIQUES FORTRANSITIONING
BETWEEN SUBMAPS

Pk Pk

« Computation time: how does the computational burden
scale W|.th the number of features in the en\{|ronment? and the associated joint covariance matrix is
» Theoretical consistencycan the error covariances com-
puted by the algorithm be shown mathematically to be
i Pl PRl
consistent? PEljl= | o5 F ) (11)
iri i i P21l PErl]
« Empirical consistency do the error covariances com- Fr FF

puted by the algorithm pass tests of consistency based o . . .
the distribution of normalized squared errors [2] of the es_rl]:rom time stepg -+ 1 throughk — 1, no state estimates for

: submapB are computed. During this time, submaps active.
timates? At time stepk, wherek > j, the robot transitions from subma
» Temporal convergencewithin a given submap region, do Stepr, I ) . P
. Lo 4 back into submagi. At this point, the state estimates for the
the error bounds converge, or slowly increase with time?

» Spatial convergencedo the error bounds obtained in dif-rObOt and the feature locations in submapre given by

ferent submaps converge to the same level, or do the errors
increase for submaps that are further from the origin? %Ak = [Xf [/f]} (12)
« Data association complexitydo the methods incur a high %7 [K]

degree of data association complexity when transitions be- ) . ) . )

tween submaps occur? and the associated joint-covariance matrix for submaptime

kis

Based on these criteria, we have examined a wide range of tran-
sition strategies. In this paper, we next present two new ap-

proximation techniques, cross-map relocation and cross-map (13)

P - [Pm P;?f[kl}

Pk Pylk]
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A. Cross-Map Vehicle Relocation covariance for submap is greatly inflated, and the feature

The cross-map relocation step transitions the vehicle state fffvarnance for submap is doubled

formation from submapi back into submag® as follows:

Bt | ¢
e

iﬁ[’?]} (14)
P7 (7] 2P 7[5

PBlk] — [
with associated covariance matrix

whereg” designates a random value uniformly distributed over
PE] PB.K] the region defining sul_:)maB and®” designates a cqvariance
pE I PEF i } much larger than the size of suom&pSecond, the vehicle state

prlk] Prplk] estimate from submag, %:[k], is used as a measurement

_ [Pfr[/ﬂ] +PL PR } (15) With covarianc;}.[k], in an EKF to update the vehicle position
B PZ.[] P2rlil]" in submapB. This is summarized by the following equations:

The vehicle state estimate in submBm@t timek is obtained by .
using the current vehicle state estimate from subnb@md the K =P?[k |H' (HP®[k HT + P2 [K])"
feature state estimate from submiagrom time stepj. The cur- B[kt —%B[k ] + K (Z _ H%B [k*])

rent vehicle covariance from submalpis added to the vehicle Bry+ Br T A T
covariance for submap from time j, and the vehicle-to-fea- PZ[ET] (I - KIPZ[R7|(I - KH)™ + KP7, [k]K
ture correlation and feature covariance terms for subBape . .
left unchanged. whereH is the 4 by(4 + 2N) matrix[I  0].

The intuitive appeal of this strategy is that, if the error bounc%s -I;O exp_lgln the 'ntllj't'tont behind rt]hli strategy, it is UfS(Ial;U| to
for the features in submap were consistent at timg, and 1St consider several strategies which are unsuccessful for one

the features are static, then the feature covaria@g.[k] in reason or another. The first idea one might consider is to simply

submapB at timek will also be consistent. If the error boundsrert).laci tr;e veh|ctl)e stateA%s'Zmate AfoArksubrt%vtylth thle Statf
for the vehicle in submag at timek are consistent, thaP 2. [%], estimate :qu sy hf“f‘ﬂ’ Xr [. | — X"b[ ) ;&; ko rep:f)a}fek €
the vehicle covariance for the vehicle in subndapwill also be corresponding vehicle covariance submafiti, [k] — P [k].

consistent. However, the complete subrip[k] is consistent The problem with this approach is that the subriagovariance
only under the assumption that the vehicle-to-feature correlati

Bh’;\trix can no longer be guaranteed to be positive definite; such
terms have not changed from time steips 1 throughk — 1 areplacement violates the physical meaning of a covariance ma-
Empirical consistency tests must be relied upon to verify the i

r{;{jx and thus violates the consistency of the submap.
pact of this approximation. See [20] for a detailed discussion ofA second idea that overcomes this would be to use the
this issue.

machinery of the EKF to perform the update—that is, to use the
An alternative strategy that avoids this approximation aboﬁ‘?'de location estimate from submajpas a measurement of
the cross-correlation terms is to perform state projection a

vehicle location in an EKF that uses the vehicle covariance
dead-reckoning sensor measurement updates in suliraip In'submap4, 7. [K], as the assumed measurement noise in
each time step during the period when it is inactive. For t

r{Qe Kalman filter update equations for subm&p While this
linear-Gaussian case with perfect data association, provaB‘ tegy dmamtams postl_tlve S?E"dﬁf”lmene?ﬁ It vgnlate(sj the
consistent error bounds can be obtained at the expenseIn penf_;zncte ast_s.un:p |onfsb0th ti amhf':lrll II er f.m produ::hes
either anO(n) algorithm or a great increase in data associatigy €'confiaent estimates of bo € venhicle locations and the
complexity. In related research, we have examined a variety 85

features. Because the vehicle location estimatg@gk] and

{ . o
nonapproximate alternative transition strategies, with encodr: [k] are not independent, using:*[k] as a measurement
aging results.

PoH - |

of the vehicle position results in some information being
used twice. In addition, due to the correlations between the
vehicle and the features in submah performing a vehicle
update measurement in this way also updates the locations
The goal of cross-map updating is to bring more accurabé the feature states in submdp, and greatly reduces their
vehicle estimates from submaps that were created earlieretoor covariances, even though no new information about the
submaps that were created later, to facilitate spatial convieations of these features has been obtained.
gence. (If each submap is given an integer ID based on thelo amend this, we can negate the effect of using vehicle loca-
sequence in which it is initiated, then submaps that are creatish information twice by setting ” [k] to a completely random
later will have a higher ID number than submaps that wepmsition within the submap and inflating the vehicle covariance
created earlier. Hence we refer to submaps created eark¥f.[k] by a large amount. After the Kalman update, the re-
as “lower” submaps, and submaps created later as “highstilting vehicle state estimate is effectively replacedjk],
submaps.) It consists of two steps, (1) de-correlation (denofiexicovariance becomd?. [k] and the correlation terrrBff (%]
by k=) and (2) EKF updating (denoted byt). First, the between the vehicle and features are greatly reduced. The as-
vehicle state estimate for submais randomized, the vehicle sumption is that the great inflation of the vehicle state estimate

B. Cross-Map Vehicle Updating
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before the update serves to “de-correlate” the vehicle estimate
in submapB from its feature location estimates.

does
We are still left, however, with the fact that the m&pfea- rggspf,)ﬁ
ture states have been updated and the corresponding features '
covariances greatly reduced, despite the addition of no new in- ves
. . . . . re . no
formation about their locations. This can be rectified by adding |
thea priori map B feature covariancPJ’?f to thea posteriori 1_F:recme new ldefine cor. ‘
feature covariance after the Kalman update. The resulting co- mapB features
variance must be positive semi-definite and the updated feature

“retrieve
map B

covariancePBf[k—] can be shown to bound the a priori feature
covarianceP%f [7]. Because the Kalman gain is independent of
P7;, itis equivalent to multiplyP?, by two before the Kalman
update.

In this way, improved vehicle location information is trans-
ferred from submapi to submapB, and subsequent measure-
ments of the features in subm&allow the accuracy of submapFig. 2. Structure of the single-pass decoupled stochastic mapping algorithm.
B to be improved. This technique is an approximation becau§é? stochastic mapping (SM) algorithm structure is outlined in Fig. 1.
even though consistency can be demonstrated for the vehicle
and feature covariances after the update, if they were consisterdorrespondence features, denoted by subsEripnd the re-
before, the consistency &#[k~] cannot be guaranteed. In amaining features, denoted by subscrfpfThat is
similar manner to cross-map relocation, assumptions must be

Cross-map
relocation =

made about the cross-correlation terms. Again, empirical con- [Pkl P[] Pk
sistency tests will be vital to verify the performance of an imple- PAk] = | P4 [k] Piplk] P £IF]
mentation of the technique, as shown in our simulation results L P;}T [k] P;}F [%] P}‘f [k]
below. [ %4k
Having two tools for passing vehicle state information k] = | %3k | (16)
between submaps, cross-map vehicle relocation and cross-map x}a k]

vehicle updating, we now move on to define two concurrent
mapping and localization algorithms that utilize these methodshen, mapB is created fronP[%] andx[k] in the following
The first one is single-pass decoupled stochastic mappingy:

which is suitable for missions in which maximum accuracy

is desired after only a single transit through the environment. Bl — Pik] Pi[k] } %B[k] — {fc;?[k]} (17)
The second method is labeled multipass decoupled stochastic P4 [k] P[k] xA[k] |
mapping. Multipass DSM is more suitable when the vehicle

will be able to make repeated passes through its environment™* Plock diagram of the single-pass decoupled stochastic map-
improving the accuracy of its map with each pass. ping algorithm is shown in Fig. 2.

VI. MULTI-PASS DSM ALGORITHM

V. SINGLE-PASS DSM ALGORITHM The purpose of multipass decoupled stochastic mapping is to

have a method where the global error of a submap can be re-

The purpose of single-pass decoupled stochastic mappingigeq by revisiting the submap. The reduction of global uncer-
to achieve the highest accuracy possible based on one traveggaly of a submap is obtained by utilizing cross-map vehicle
of the environment. For this reason, new submaps are '”'t'al'zﬁﬂdating. Again, it should be noted that this aaly be per-
with some of the feature state estimates for the previously actigemed to a submap that was creatatér in time. For the in-

submap. This slows the growth of position uncertainty from ongances when the vehicle travels back to a submap that was cre-

submap to another. ated earlier in time, cross-map vehicle relocation is employed
These features are calledrrespondence featurds the ex- just as in single-pass DSM. In order for cross-map vehicle up-

perimental results in this paper, the correspondence featurescpé[@ng to be applicable, correspondence features are not initial-

chosen based on their proximity to the new submap, to slgygq. Thus, if the vehicle is moving out of submago create

the growth of spatial errors. Because these features are k”%"MBmaFB, submapB is only created from the vehicle state es-

more accurately, the vehicle is able to produce a more accurg{€ate of submapi. That is, using the same notation as in (16)
map than without the existence of these features. As a result, the

uncertainty grows more slowly than if these features were not P2 k] — P7A7 k], %xP[k] < g;?[k]_ (18)
included when creating a submap.

To be more precise, let us assume that we are moving out ofAs there are no correspondence features used in multipass
submapA and are about to create submBpFrom submapd DSM, the feature states between submaps are independent in
we haveP“[k] andx*[k], which for clarity, can be separatedthe sense that their estimates do not share any measurements.
into the states and estimate for the vehicle, denoted by subscHpivever, there will likely be features in adjacent maps that are
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regions do not overlap, although different submaps can possess estimates of the
same environmental features that are independent (in the sense that they do not
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Fig. 3. Algorithm structure for the multipass DSM method. In contrast with [ (A S SR Sk ‘g 2
single-pass DSM, two different map transition strategies are used. Cross-map ¢ ok -l Ll 0
vehicle relocation is used when transitioning from maps created later to maps Ei' -2
created earlier, and cross-map vehicle updating is used when transitioning from £ - : §~ 4
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performed to a later map, and not the reverse. A block diagram i 3[‘
of the multipass DSM algorithm is shown in Fig. 3. % «Ej
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VII. EXPERIMENTAL COMPARISONBETWEEN DSM AND FULL s F N
COVARIANCE STOCHASTIC MAPPING %’ WY L
. . . . I
The simulation parameters are based on the characterization * o
o 6 g8 0 2 8

of an AUV equipped with a forward look electronically scanned Time () Thme s
sonar. The AUV is assumed to be given a differential GPS reset _
at the stat of the mission, thus providing an intal positon uf%. = 128 sy bounde piocieed by 1) cowarence St (on)
certainty of a few meters. In each scenario, false measuremeftsn in Fig. 4. The error is the difference between the true and the estimated
are generated by assuming that the number of spurious retuetdcle position.
has a poisson distribution with an expected valug.dfhe range
and angle of the spurious returns are uniformly distributed overThe top two plots of Fig. 5 show the position errors of the
the field of view of the sonar. The probability of detection ofehicle versus time and tf8er error bounds for full covariance
features is set t&°p, = 0.9. Sonar measurements and dea8M. On the first pass through the environment, the uncertainty
reckoning measurements are obtained at 1 Hz. In these simgaws as the vehicle is furthest from the origin, and then de-
tions, the physical boundaries of the submaps were set to be 528ases when the vehicle returns close to the origin. On subse-
by 525 meter squares. This size was chosen so that, givendhent traversals, the error bounds are reduced.
feature density, the number of features in each submap wouldror each of the two DSM algorithms, the survey area is par-
generally be less than 50. Further, they are placed so that tiiened into four submaps. Each submap bounds a 525 m by
boundaries overlap by 25 m. This was done to prevent exc&5 m square region. Fig. 4 shows the location of the submaps
transitions between submaps when the vehicle moves along éisegenerated by the DSM algorithm. The numbers signify the
boundary between two submaps. This also prevents the generder in which submaps were created.
tion of excess submaps for missions in which the vehicle travelsThe middle plots of Fig. 5 show the position errors for
close to the boundaries of the survey area. single-pass DSM. As with the full covariance algorithm, the
To compare each DSM method with the full covariance Sidosition uncertainty of the vehicle grows as the distance from
algorithm, simulations were performed for a scenario with 11tfie starting point increases. Further, after the first pass through
features randomly distributed over a 1- km by 1-km area, in thige survey path, the full covariance SM and the single-pass
presence of clutter and dropouts. The desired path of the AUDSM results look very similar and achieve close to the same

and the true feature locations are shown in Fig. 4. error bounds. The crucial difference between the methods
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Fig. 7. Position errors}os bounds (top), and normalized mean squared error
(bottom) for a 36 submap single-pass DSM survey of the area given in Fig. 6.
The horizontal dashed line drawn at the value 13.3 in the bottom plot indicates
the 99% error level [3].

area with 1200 features. (b) The partition of the survey area into 36 submaps. (c) 10}
The true feature positions (marked by’) and the estimated feature positions
(marked by %) and 3¢ error ellipses for the long duration multipass DSM run.

Fig. 6. (a) The desired survey path of the vehicle in the 3 km by 3 km survey .,/ §

0 Xy
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Nonh

is that SM estimates the correlations between all features, "o ioie e

S K . o 40_ 60 80 100 120 0 20 40_ 60 8 100 120
while single-pass DSM only estimates the correlations within Time (hes.) Time (hrs.)
submaps. The full covariance method is able to exploit all the
correlations and thus reduce the global error at all locations.
Single-pass DSM is unable to reduce the global uncertainty of
submaps below the uncertainty upon creation of the submap.
This can be seen from the “steps” in the north and &ast
bounds after the completion of the first pass through the survey
area (that is, after the first 2 h of the mission).

T_he bottom plOtS of Fig. 5 show the position errors of thEig. 8. Position errorsjo bounds (top), and normalized mean squared error
vehicle versus time and tt3e bounds for the survey performed(bottom) for a 36 submap multipass DSM survey of the area given in Fig. 6. The
by multipass DSM. The multipass errors resemble the results f@fizontal dashed line drawn at the value 13.3 in the bottom plot indicates the

" " IK9/?% error level [3].
full covariance SM more than the results from single-pass DSM.
Clearly, the vehicle does better after the first pass through the_. 7 <h lots of th i f1h hicl
survey area (that is, after about 2 hours) than before. Thus, %hé:'g' dsﬂfgs %O S g ehpOSI lon errprsl otthe vgsl&efve;rs]us
algorithm is capable of reducing tigobal error everywhere 'Me€ an o bounds when using single-pass or the

and not only locally in the submaps, as for single-pass DsRUrvey area of Fig. 6. In this simulation, the vehicle completed

However, one can see that the error bounds are slightly smaﬁ&klr?]‘;i gfrc:CvE; Z:Z?‘Zn%?i?ﬁ ;)I'fhseuE;s;%o:ulr;n;:rrtamty of each

than those of full covariance SM. This raises the concern tI%‘lF. 8 and 10 sh h i fth hicl

multipass DSM might become somewhat overconfident. This |gsr.1 and 19's ?\.Nt € BOSSI\I;I?n erro:j;f? the venicle verr?us

issue is discussed again below for an example with 36 subm € whenusing mu tipass ortwo di e.rem survey p_at S
ig. 8, the vehicle follows the survey path indicated in Fig. 6,

where the consistency of the error bounds is improved when S . :
path followed by the vehicle is varied. whereas in Fig. 10 the_ veh!cle_follows an alternating survey path
that rotates the path givenin Fig. 6 by 90 degrees after each com-
plete circuit of the environment. This path is shown in Fig. 9.
The multipass DSM shows a considerable improvement over
single-pass DSM in the long run as the survey area is revisited.
Next, we will demonstrate results using single-pass DSM ahtbwever, during the first pass through the survey area, the max-
multipass DSM for surveying a large-scale environment witlmum uncertainty when using multipass DSM is more than 30%
1200 features for a mission duration of over 100 hours, safmgher than the result when using single-pass DSM. Single-pass
pling at a rate of 1 Hz. Fig. 6 shows the desired path of the AUDSM should be used when the survey area is to be traversed
through the 3 km by 3 km survey area, the partition of the surveyly once and multipass DSM should be used if one anticipates
area into submaps, and true and estimated positions of the fedtiple traversals of the environment.
tures in the survey area for the multipass DSM simulation shownThe normalized squared state errors [3] for the vehicle state
in Fig. 6. estimates are also shown in Figs. 7, 8 and 10. The normalized

VIIl. L ARGE-SCALE SIMULATION RESULTS
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Fig. 9. Alternating survey path for second 36 submap multipass DSM survey.
The path given in Fig. 6 is rotated by 90 degrees after each complete circuit
of the environment. The first two cycles through the environment result in the
following submap transition sequende2, 3, . . ., 36, 25, 24, 13,12, 1, 12, 13,
24,25, 36, 35, 26, 23, 15, 11, 2, 3, 10, 15, 22, 27, 34, 33, 32, 29, 20, 17, 8,5, 6,
7,18, 19, 30, 31.
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features with the same conditions as in Fig. 8, except using the alternating survey = H H o1 .M“‘ I .
strategy shown in Fig. 9. With the alternating transition sequence, improved W00 40 60 B 1000 1200 200 400 600 (800 1000 1200

normalized squared errors are obtained.
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Fig. 13. Position errorgs bounds (top) and normalized mean squared error
(bottom) for the robot position for multipass DSM experiment in the testing
tank.

necessary to characterize the effect of the vehicle trajectory on
bias accumulation.

Fig.11. Thetestingtank and robotic positioning system used in the underwater
sonar experiments. 93 fishing bobbers were randomly positioned in the tank and
used as features for testing the DSM algorithm.

IX. TESTING TANK EXPERIMENT
We now present a simple multipass DSM experiment for fur-

squared errors are reasonably well-behaved for the single-pidies investigation of the approach. The parameters for the mis-
DSM run. However, Fig. 8 indicates when the same repetitiggon were chosen so as to simulate an AUV scaled down by
survey path is used with multipass DSM, the amount of normal-factor of 100. A 500-kHz mechanically scanned sonar was
ized squared errors falling outside the 99% error bounds is unameunted on a robotic positioning system and scanned over a
ceptably high. However, this situation improves tremendousty40° sector at each sensing location. Each scan took approxi-
when the vehicle follows an alternating survey path, as illugaately 2 min. The testing tank is shown in Fig. 11.

trated by the mission shown in Fig. 10. When the vehicle is ableln the experiment, 93 fishing bobbers were used as features
to observe each feature from many different survey directiored were randomly placed in the testing tank as shown by the
the normalized errors are very well-behaved. Further researchrigsses in Fig. 12. The sonar returns from the tank walls were
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discarded by time gating. The sonar trajectory was set to paecessary to define the limits of the approach for a given type
form a lawn-mower path starting at the lower right corner of thef vehicle and sensor suite. Gibbegtsal. [13] have presented
tank and moving toward the left. The estimated result from tleeclosed-form solution for the single-degree of freedom CML
DSM algorithm was compared to the true position of the sonproblem with linear models and observation of every feature at
as obtained from position encoders on the robotic positioniegery time step. This solution can provide insights into some of
system. The entire mission lasted about 1250 time steps. The convergence properties of CML for a given combination of
resulting position estimate errors and the normalized squanezhicle, sensors, and environment.
state errors for the experiment are shown in Fig. 13. Itis anticipated that the general strategy of temporal and spa-
tial partitioning can be useful in the investigation of more com-
plex issues of the concurrent mapping and localization problem,
X. CONCLUSION such as map maintenance in dynamic environments, improved
resolution of data association ambiguity, relocation, recovery
This paper has presented a new, computationally efficihdom errors, and cooperative mapping and navigation by teams
method for large-scale CML and demonstrated its performanagemobile robots.
through simulations and experiments. The single-pass and mulThe problem of reliably extracting features from sensor data
tipass DSM algorithms yield performance that is comparablemains an important outstanding issue for the realization of
to full covariance stochastic mapping, while maintaining corGML in more complex and natural environments. In related re-
stant computational requirements. Further work is necessamarch, we have developed a technique called delayed decision
to explore the limits of the approximations employed by thmaking that can be useful for performing CML with composite
cross-map relocation and cross-map updating submap trafs&tures and in situations with high data association ambiguity
tion strategies. For example, the normalized squared errord2if]. The results in this paper considered only point features.
multipass DSM are too large when a repetitive survey path $®me interesting issues arise when considering long linear fea-
followed (Fig. 8), but are quite good when an alternating survéyres (such as corridors or trenches) that would span multiple
pathis followed (Fig. 10). The results are encouraging, howevetybmaps. In our approach, features that are near the bound-
because they demonstrate successful stochastic mapping anies between submaps get mapped multiple times, in different
scale an order of magnitude larger (in terms of number of feasbmaps. In general, the question of how to combine the infor-
tures) than any results previously published using a stochastiation across different submaps, while maintaining consistent
mapping approach. Using either method, the CPU and memeryor bounds, remains open.
requirements are independent of the size of the map. The hard
disk storage requirements of the method scal@@sn) where
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