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Numerical Potential Field Techniques
for Robot Path Planning

Jérome Barraquand, Bruno Langlois, and Jean-Claude Latombe

Abstract—A new approach is proposed to robot path planning
that consists of incrementally building a graph connecting the
local minima of a potential field defined in the robot’s con-
figuration space and concurrently searching this graph until a
goal configuration is attained. Unlike the so-called “global” path
planning methods, this approach does not require an expensive
computation step before the search for a path can actually
start. On the other hand, it searches a graph that is usually
much smaller than the graph searched by the so-called “local”
methods. A collection of effective techniques to implement this
approach is described. These techniques 1) construct “good”
potential fields and 2) efficiently escape their local minima (i.e.,
efficiently build the local-minima graph). They are based on the
use of multiscale pyramids of bitmap arrays for representing both
the robot’s workspace and configuration space. This distributed
representation makes it possible to construct potential fields
numerically, rather than analytically. A path planner based on
these techniques has been implemented. Experiments with this
planner show that it is both very fast and capable of handling
many degrees of freedom. It has solved a variety of problems,
some of which are far beyond the capabilities of previously
developed planners.

I. INTRODUCTION

E THIS PAPER we describe several numerical potential
eld techniques for robot motion planning. We have im-
plemented these techniques in a path planner that turns out
to be both very fast and capable of handling many degrees
of freedom (DOF’s). In particular, the planner has been
able to plan the motions of mobile robots with 3 DOF’s
(two translations and one rotation) two orders of magnitude
faster than most previously existing planners. It has also
generated paths of robots with many DOF’s in reasonable
amount of time. For example, difficult paths for a nonserial
manipulator with 10 joints (some revolute, some prismatic)
were produced in 1 to 5 min.! Paths were also generated in a
three-dimensional (3-D) workspace for a manipulator with 31
DOF’s in about 15 min of computation time. These results
are far beyond the capabilities of previously implemented
planners.
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1 Most of the experiments reported in this paper were carried out on a DEC
3100 MIPS-based workstation (14-mips processor) using simulated robots.
The programs are all written in the C language.

The problem of generating collision-free paths has attracted
considerable interest during the past years [29], [30]. By sim-
plifying, we can say that two extreme approaches have been
proposed, the “global” one and the “Jocal” one. The global
approach consists of first constructing a concise representation
of the connectivity of the set of collision-free configurations
of the robot in the form of a “connectivity graph” and then
searching this graph for a path. Various techniques have been
devised, e.g., exact cell decomposition [28], approximate cell
decomposition [5], [10], [12], [32], retraction on a network
of one-dimensional curves [23]. The local approach consists
of searching a grid placed across the robot’s configuration
space [8]. Heuristics computed from partial information about
the geometry of the configuration space are used to guide the
search of the grid. Most proposed heuristics take the form of a
potential field guiding the search along the flow of its negated
gradient vector field [15], [16], [18].

The drawback of the global approach is that it requires
an expensive precomputation step—the construction of the
connectivity graph—before the search for a path can actually
start. Since the computation time required by this construction
is typically exponential in the dimension n of the configuration
space (i.e., the number of DOF’s), the approach is impractical
even for reasonably small values of n. To our knowledge, no
effective planner has been implemented using this approach
with n > 4. Instead, the local approach requires no expensive
precomputation step before starting the search of a path.
Consequently, in favorable cases, it runs substantially faster
than any global method. But, since the search graph (i.e.,
the grid) is considerably larger than the connectivity graph
searched by global methods, it may require much more time
than global methods in unfavorable cases. In order to deal
with this difficulty, local methods need powerful heuristics
to guide the search. But known such heuristics have the
drawback of eventually leading the search to dead-ends, for
instance local minima of the potential field. One may think
of constructing a potential field with no other local minimum
than the goal configuration (in the connected subset of the
free space containing the goal configuration), but the analytical
definition of such a potential turns out to be difficult (e.g., see
{26]). Futhermore, even if a definition was available, it is likely
that its computation would constitute an expensive precompu-
tation step before path generation, similar in drawback to the
construction of a connectivity graph.

There are many reasons motivating the development of
fast path planners capable of dealing with many DOF’s. For
instance, a (semi-)autonomous robot will have to generate its
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paths on-line, based on its current model of the world, and
to react rapidly to contingencies. Although one may envision
a robot that learns about its workspace and memorizes a
variety of typical paths, it is by far more appropriate to
have a fast “real-time” path planner.> Robots will typically
combine one or several arms mounted on a mobile vehicle;
for instance, space robots may consist of several manipulator
arms attached to a free-flying platform [27). Planning the paths
of such robots will require to be able to handle many DOF’s,
specially if cooperation among them is needed. One may argue
that, most of the time, at every instant, the planner has to
worry only about a subset of these DOF’s. But determining
which DOF’s are important at every instant is also part of
planning and hence should be handled by the planner. Fast
path planning capabilities may also be extremely useful for
off-line programming of industrial and construction robots, and
for the automatic generation of animated scenes on a graphic
workstation [25].

We propose a new approach to path planning that attempts
to combine the advantages of both the local approach (avoid
expensive precomputation) and the global approach (search
a concise graph). This approach consists of incrementally
building a graph connecting the local minima of a potential
function defined over the configuration space of the robot and
concurrently searching this graph until a goal configuration
is attained. The graph of local minima plays a role similar
to that of the connectivity graph in the global approach.
The major difference, however, is that it is constructed in
an incremental fashion during the search. Hence, our ap-
proach does not require an expensive precomputation step,
although it definitely searches a much smaller graph than
the discretization grid placed across configuration space. In
this paper we describe a collection of specific techniques
that allows the engineer various implementations of this path
planning approach.> The purpose of these techniques is to (1)
construct “good” potential fields and (2) efficiently escape
their local minima (i.e., efficiently build the local-minima
graph). They are based on the use of multiscale pyramids
of bitmap arrays for representing both the workspace and
the configuration space of the robot. These representations
allow us to construct potential fields numerically, rather than
analytically, in relation to other efficient numerical techniques
(e.g., collision checking, valley tracking).

In Section IT we describe the hierarchical bitmap repre-
sentations of the workspace and the configuration space of
a robot. In Section III we propose several ways of con-
structing numerical potential fields in the robot’s configuration
space. In Sections IV-VII we present four path planning
techniques—respectively called “best-first motion,” “random
motion,” “valley-guided motion,” and “constrained motion”
techniques—which are based on different ways of escaping the
local minima of these potential fields. We have implemented

To that respect, it is interesting to remember that not so many years ago, it
was proposed 1o compute the inverse kinematics of a manipulator by storing
the numerical values of the inverse Jacobian matrix of the forward kinematic
map at many configurations of the manipulator. Today, the computation of
the inverse kinematics is routinely done in real-time without having to store
inverse Jucobian matrices.

*Some of these techniques were previously presented in [3], [4].

all these techniques and, for each one, we give experimental
results. Each technique admits many straightforward variants
and, in the course of our experimentation, we ran several vari-
ants successfully. Hence, within some limits, the algorithms
presented in this paper may be adapted so that they better fit
the characteristics of a specific application domain.

II. BITMAP REPRESENTATIONS

A. Basic Terminology and Notations

We denote the robot by 4 and its workspace by W. A
Cartesian coordinate system, denoted by Fyy, is embedded in
W. A configuration of A is a specification of the position
of every point in A with respect to Fyy. The configuration
space of A is the space, denoted by C, of all the possible
configurations of A, The subset of W occupied by A at
configuration ¢ is denoted by A(q).

The workspace contains a finite number of obstacles denoted
by B;, with i = 1,-+,r. We denote the region W — J._; B;
by Wempty. Each obstacle B; maps into C to the set CB;
of configurations, called C-obstacle, where the robot and the
obstacles intersect, i.e., :

CB; = {geC/ Alg)NB; #0}.

The subset of configurations where the robot and the obstacles
have no intersection, that is:

r
Ciree = C- U CBw
i=1
is called the free space. A collision-free path (more simply,
a free path) between two configurations ¢;;; and g, is any
continuous map 7 : [0, 1] — Cgee, such that 7(0) = g¢;,;, and
T(l) = qgoal'

The configuration space C is an n-D manifold [19]. For
example, a mobile robot can usually be modeled as a two-
dimensional (2-D) object .A that can both translate and rotate
in the plane. Then, C is the 3-D manifold R?x S1, where S! is
the unit circle. In the case of a manigulator arm with n revolute
joints, C is the n-D manifold (S*)", or a subset of that space
when the motion of each joint is limited by mechanical stops.

Throughout this paper, we represent a configuration q of A
by a list of n independent parameters, (g1, -,qn), where n
is the dimension of C. This parameterization may have to be
augmented with modular arithmetic for some of the angular
parameters. Hence, we represent C as an n-D Cartesian space.
For example, C = R?x S* may be represented as RZx R /2 Z.
Any configuration q is then parameterized by (z,y, ), where
(z,y) € R* and € [0,27) with modulo 27 arithmetic.
Similarly, C = (S')" may be represented as (R/27Z)".
Any configuration is parameterized by (q1,---,¢n), where
gi € [0,27) with modulo 27 arithmetic, for every ¢ € [1,n].

For each point p € A, one can consider the geometrical
application that maps any configuration ¢ = (q1,---,¢,) € C
to the position £ € W of p in the workspace. This map:

X : AxC - w
(rg9) — z=X(p4q
is called the forward kinematic map.
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1) For every £ € GWempty, set d1(z) to infinity (i.c., a large
number M).

2) Scan GW and identify every point x such that BM(z) =1
and one of its neighbors is in GWempty - Set Lo to the list of
these points. Include the points forming the frame boundary
of GW in L. For every point z in Lo, set d1(z) to 0.

3) Fori=0,1,2,---, until L; is empty, do: initialize L; 41 to
the empty list; for every point x in L;, for every neighbor
y of  in GWeppty, if di(y) = M then set di(y)toi+1
and insert y at the end of L.

Fig. 1. Algorithm computing the d; map.

B. Workspace Bitmap

In the following, we make the reasonable assumption that w
is a bounded subset of R%, with d = 2 or 3. W is modeled as
a multiscale pyramid of d-D bitmap arrays. At each resolution
level, the array is represented by a function:

BM : W — {1,0}
z +— BM(z)

so that the subset of points z such that BM(z) = 1 represents
the workspace obstacles and the subset of points = such that
BM(z) = 0 represents the empty part of the workspace, ie.,
Wempty-

The distance between the centers of two consecutive cells
in the same line or the same column of an array is constant.
Hence, at any level of resolution, the midpoints of the cells
of the bitmap array form a regular grid denoted by GW. The
subset of the grid where BM evaluates to O is denoted by
GWempty- For any integer k € [1,7], the k-neighborhood of
a point £ in a grid of dimension r is defined as the set of
points in the grid having at most k coordinates differing from
those of z, the amount of the difference (if any) along any axis
being the discretization step along that axis. In GW, we always
use the 1-neighborhood, except if it is noticed otherwise (e.g.,
to track a curve or a surface). In a 2-D workspace grid, this
means that each point £ = (4,j) € GW has a maximum of 4
neighbors: {(i —1,7), (i +1,5), (4,5 —1),(4,j+1)}. Ina 3-D
workspace grid, each point has up to six neighbors.

Most of the experiments reported in this paper were carried
out in a 2-D workspace (d = 2). In those experiments, the
coarsest level of resolution in the pyramid was 16 and the
finest 5122. The workspace representation is given to the
planner at the finest level of resolution. The other levels are
automatically derived from it in a conservative fashion, so
that {zx € W / BM(z) = 0} C Wempry- The scaling factor
between two successive levels of resolution is 2, but a different
factor could have been chosen.

In preparation to other algorithms to be described later, the
planner computes the discretized L! distance d;(z) of every
point £ € GWempty to the obstacles. This computation is
performed according to the following “wavefront expansion”
algorithm.* First, the points in the boundary of the obstacles
are identified and the value of d; at these points is set to zero
(the points in the contour of the bitmap are also included as
boundary points). Next, the value of dy is set to 1 at all the

4In this algorithm we normalize the distance between two neighbors in the
grid to 1.

neighbors of the boundary points in GWempty; to 2 at the
neighbors of these new points (if not yet computed); etc. The
algorithm terminates when all GWoempty has been explored. A
more formal description of the algorithm is given in Fig. 1.
The time complexity of this algorithm is linear in the number
of points in the grid GW.

C. Configuration Space Bitmap

Since we discretize the workspace in a hierarchical fashion,
it is consistent to discretize the configuration space C as well,
by constructing another multiresolution grid pyramid. This
pyramid has as many levels of resolution as the workspace
pyramid and the resolutions at each level of the two pyramids
are tightly related, as developed below. At each level of reso-
lution, we denote by GC the grid representing the configuration
space and by GCpee the subset of the grid lying in the free
space Cpree-

Let us denote by 6 the distance between two adjacent points
in a workspace grid GW. In the workspace pyramid, § varies
between Smin and Spax. For example, let us assume that we
have a workspace represented by a pyramid of arrays whose
sizes are ranging between 162 and 5122, If the distance is
measured in percentage of the workspace diameter, we have
Smin = 1/512 and Smax = 1/16.

Let us define the resolution of a grid as the logarithm of the
inverse of the distance between two discretization points, in
the base defined by the scaling factor between two successive
resolution levels (two in our implementation). In our example,
the resolution r hence varies between Tmin = — logs(max) =
4 and Thax = — l0gs(6min) = 9-

Remember that we represent the configuration space Casa
subset of an n-D Cartesian space with ¢ = (g1, -+, gn)- For
any given workspace resolution, say r = — log,(8), the corre-
sponding resolution R; = —log,(A;) of the discretization of
C along the g; axis is chosen in such a way that a modification
of g; by A; = 2R generates a “small motion” of the robot
in the workspace. By “small motion”, we mean that any point
p € A moves by less than nbtol x 8, where nbtol is a small
number (typically, 2).

The relation between positions of robot points in the
workspace and robot configurations is given by the forward
kinematic map X (p, g). For every point p € A, a modification
of ¢; by A; results in a modification of each coordinate x;

of p (j € [1,d]) by

ox;
) A
Ba; (P, @)
If we impose all workspace motions to be less than nbtol x 6,
we must have

A; = nbtolx b/ sup (%—z:—(p,q)) = nbtolxé/J;upA

peA,geC,jell,d]

For a given robot, the numbers J:up are generally straight-
forward to compute. This leads us to compute the resolution

R; as

R; = + logy(J¢

sup

) — log,(nbtol).
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For example, let us consider a bar of length L moving freely
in a 2-D workspace. We can represent a configuration of the
bar by (z¢,yq,0), where z¢ and yg are the coordinates of
the bar’s midpoint and 6 is the orientation of the bar. Let us
normalize zg, yg, and 6 so that their values range between
0 and 1. We have

Jszu% = ‘]équp =1
and
6
Jeup = 7L

If we set nbtol = 2, we get
R,,=Ry,=r-1
and
Rg =7+ logy(nL) — 1.

This means that we need 2! = 2 times less samples for z¢
and y¢ than for the workspace representation at each level of
resolution, and 2/ L less samples for 6.

The planning techniques described below do not construct
and/or use a complete representation of the configuration space
grids, nor of the C-obstacles, since this would be in general
too time and space consuming. Indeed, while the configuration
space grids implicitly define the search space of the planner, in
most practical cases, only a very small subset of the grids will
be explored. It is clear, however, that in the worst case the grids
would have to be exhaustively explored, requiring exponential
time computation as any other existing path planning method.

III. POTENTIAL FIELD CONSTRUCTION

A. Overview

We describe below several ways of constructing numerical
potential fields in the configuration space of a robot. They all
consist of two major computing steps. First, potential fields,
called W-potentials, are computed in the robot workspace W.
Each W-potential applies to a selected point in the robot, called
control point, and pulls this point toward its goal position. The
Wh-potentials at the various control points are then combined
into another function, called C-potential, which is defined over
the robot’s configuration space.

More formally, let p;, 2 = 1, - - -, s, denote the control points
in the robot. Each W-potential is a function:

Vi : T € Wempty — V. (z) € R.
The C-potential is defined as
Ulg) = G(Vp,(X(p1,9)), -+, V5, (X(ps, 1))

where G is called the arbitration function.

The rationale behind this two-step computation is to use
the workspace, whose dimension is small, as a source of low-
cost information for constructing a “good” C-potential in the
configuration space, whose dimension is usually big. As a
matter of fact, the W-potentials computed by the algorithms
of the next subsection are free of local minima. This allows

us to construct C-potentials that avoid the robot to get trapped
into simple cavities formed by the obstacles. However, the
resulting C-potential may still have spurious local minima.
One reason for that is that the information contained in the
W-potentials does not completely characterize the connectivity
of the free space; indeed, the W-potentials are computed
for a finite (usually small) number of control points. The
other reason is that the combination of several local-minima-
free W-potentials does not guarantee that the C-potential is
without local minima. Indeed, the effect of the C-potential
is to concurrently attract the various control points, which
are related by fixed or variable kinematic constraints, toward
their respective goal positions. Thus, the control points are
competing among themselves to attain these positions, and
this competition may create undesired minima. The role of the
function G is to arbitrate in this competition, hence the name
of the function. Various arbitration functions are possible,
resulting in more or less numerous, more or less deep local
minima (Section III-C).

The only precomputation that is required by our planning
approach is that of the W-potentials. The C-potential is defined
by the arbitration function and is computed according to the
needs of the planner during the search for a path. The pre-
computation of the W-potentials is necessary because we want
these potentials to be free of local minima; hence, they cannot
be computed locally. We could avoid this precomputation by
not requiring the W-potentials to be local-minima-free, but
we think that this condition is critical to the construction of
a “good” C-potential. On the other hand, the computation
of the W-potentials occurs in the workspace bitmap, whose
dimension is only 2 or 3. As we will see below, it can be
made very fast.

B. Computation of W-Potentials

We propose two techniques for computing local-minima-
free W-potentials. Other similar techniques can easily be
developed. In the rest of the paper, we will refer to the two
W-potentials defined below as the “simple W-potential” and
the “improved W-potential,” respectively.

Simple W-Potential: Let p be a control point in the robot
and V,(z) the corresponding W-potential. We want V, to be
free of local minima, i.e., to have a single minimum at the goal
position of p in the connected subset of Wempty containing
this goal position. Indeed, as mentioned previously, we think
that this is a major heuristic step toward the construction of a
C-potential with few or small local minima.

Let g0 be the goal position of p in W. The simple W-
potential® V, is computed as follows. First, the value of V,
is set to 0 at Zzoa. Next, the value of V, is set to 1 at
the neighbors of Zgoa1 in GWempty; to 2 at the neighbors of
these new points (if not yet computed), etc. The algorithm
terminates when all GWempty has been explored. A more
formal description of the algorithm is given in Fig. 2. At every
point £ € GWempty, the resulting W-potential is equal to the
L! length of the minimal-length path connecting Z t0 Zgoal
through GWepmpty. It has no other local minimum than g1

5 A similar potential has previously been proposed in [13].
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1) For every £ € GWempty, Set V,(2) to infinity (i.e., a large

number M).
2) Set V,(2goal) to 0 and the list Lo to (Zgoal )-
3) Fori =0,1,--, until L, is empty, do: initialize Li11 to

the empty list; for every point = in L;, for every neighbor
y of £ in GWempty, if Vp(y) = M then set Vo(y)toi+1
and insert y at the end of Liyi.

Fig. 2. Algorithm computing the simple W-potential.

)

S

_
N\

Fig. 3.

Contours of the simple W-potential.

This algorithm is similar in structure to the algorithm
computing d;. Its time complexity is also linear in the number
of points of GW and constant in the number and the shape of
the obstacles. Fig. 3 displays contours of V, for a 2562 2-D
workspace, with Zz.a1 located in the upper-left corner of the
bitmap array. (This computation takes a fraction of a second
on a 14-mips workstation.)

A property of the V, function computed as before is the
following. By tracking the flow of the negated gradient vector
field —VV,, from any initial point Zin;¢, We obtain a path that
CONNECLS Tinit tO Tgoal. In addition, this path is the shortest path
for the L! distance (at the resolution of the bitmap array). In
a 3-D workspace, this computation may be preferable to exact
methods, since the problem of computing the exact shortest
distance in a polyhedral space is known to be NP-hard in the
number of vertices under any LP metric [6].

Notice that the algorithm given previously computes V,
only in the connected subset of GWempty that contains the goal
position 4,1, Hence, after the algorithm has been executed,
if the initial position Z;,; of p is such that Vo(@init) = M,
we can immediately return that there is no path connecting
Tinit 10 Tgoal. Step 2 of the algorithm can easily be modified
to accommodate the case where the goal of p is a subset of
Wempty-

Improved W-Potential: A significant drawback of the sim-
ple W-potential is that it induces paths that typically graze
obstacles in the workspace. In order to both reduce the risk of
creating local minima in the C-potential function and enlarge
the maneuvering space of the robot, so that, when local minima
are created, they can be more easily escaped, we propose an
improved W-potential. This potential, like the previous one, is
free of local minima. But its negated gradient pulls the control
point p toward its goal position along a path of nonminimal
length, which stays as far away as possible from the obstacles.

) SN
S

(7 o 8N
S 2 XA
%6.@3%?.%3

Fig. 4. Examples of workspace skeletons.

1) (Initialization.)

For every £ € GWempty» Set V() to infinity (i.e., a large
number M).

2) (Connection of the goal to the skeleton.)

Set  t0 Zyoal. While z ¢ S, include z in S, select a
neighbor y of z having the largest value of di, and set =
to y.

3) (Computation of the W-potential in the augmented skeleton.)
Set V,(2goat) 10 0, Q 1O (Zgoal) and Lo to the empty list.
(Q is a queue of points sorted by decreasing values of d1.)
Until Q is empty, do: remove the first element z of ) and
insert it at the end of Lo; for every d-neighbor y of z in
S, if Vp(y) = M then set Vi (y) to Vp (z) + 1 and insert
y in Q. (At the end of this step, Lo contains all the points
in S accessible from zgoa1.)

4) (Computation of the W-potential in the rest of GWempey-)
Fori = 0,1,2,---, until L; is empty, do: initialize Li+1 to
the empty list; for every point z in L;, for every neighbor
y of  in GWempty, if Vp(y) = M then set V,(y) to
V,(z)+ 1 and insert y at the end of Li4,.

Fig. 5. Algorithm computing the improved W-potential.

This improved W-potential is computed in three stages.

First, the discrete L' distance dy(z) of every point T €
GWempty to the obstacles is computed and a (d—1)-D subset S
of GWempty is concurrently extracted. This subset is called the
workspace skeleton. Second, the function V, is computed in
the skeleton S. Third, V,, is computed in the rest of GWempty-

The distance d;(x) is computed using the algorithm given
in Fig. 1. The workspace skeleton S is extracted during the
computation of d; as the set of points where the “waves”—the
lists L; in the algorithm—issued from the boundary points
of GWempty meet. This is done by propagating not only the
values of dy, but also the points in the discretized boundary of
GWempty that are at the origin of the propagation. For each
point £ in GWempty, let O(z) denote this point. Notice that
d(z) is the L* distance from  to O(z). At step 2, we set O(x)
to x for every & in Lg. At step 3, let z be the point currently
considered in L; and y one of its neighbors. If di(y) = M,
we set O(y) to O(z); otherwise, if the L' distance between
O(y) and O(z) is greater than some threshold (typically, 2)
and z ¢ S, we include y in S.

Fig. 4 displays the skeletons computed for several 2-D
workspaces. Each of these skeletons is a kind of generalized
Voronoi diagram of Wempty [21] for the L! distance. It is
also similar to the skeleton extracted from a region in a
digitized image using techniques from Image Analysis and
Mathematical Morphology [31].

The improved W-potential in S is computed as follows
(see Steps 2 and 3 in Fig. 5). First, the goal position Tgeal
is connected to S by a path following the gradient of d; and
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Fig. 6. Contours of improved W-potential.

the configurations along this path are included in S (Step 2).
The new S is called the augmented skeleton. Then, the W-
potential is computed in the subset of S accessible from Zyoa1,
using a wavefront expansion algorithm starting at Zz0a1 and
guided by the map d; as follows. The potential O is given to
Tgoal, aNd Tgoy is inserted in a queue ) whose elements are
points of S sorted by decreasing values of d; (Q is initially
empty). Next, until Q is empty, the first element of Q —
call it £ — is removed from Q; every d-neighbor® y of z
in S whose potential has not been computed yet receives a
potential value equal to V,(z) + 1 and is inserted in Q. The
algorithm terminates when @ is empty, i.e., all the points in
the augmented skeleton accessible from zg..1 have been given
a potential value. The queue @ is represented as a height-
balanced tree [1], so that both the insertion of a new point and
the removal of a point maximizing d; are done in logarithmic
time.

The W-potential at all the other points in GWempty is
computed using a wavefront expansion algorithm (see Step 4
in Fig.5) starting from S, similar to the algorithms computing
the d; map and the simple W-potential. The W-potential at
each 1-neighbor y of every point = in S is set to V,(z)+1. The
W-potential at the neighbors of these neighbors is iteratively
incremented until all the points in GWenpty accessible from
Tgoal have been explored.

Fig. 6 shows the equipotential contours of the resulting W-
potential for the same workspace as in Fig. 3. This W-potential
generates no stable equilibrium state. Following its steepest
descent from any initial position zj,i; produces a path that
first connects Tin;, to S, then stays as far as possible from
the obstacles by following the safest curve of S, and finally
connects S t0 Fgoa1. The previous algorithm only computes V,
over the connected subset of GWempty that contains zgoar. It
can be adapted to the case where the goal of p is a region in W.

The complexity of computing the improved W-potential
is slightly higher than for the simple one. Let a be the
number of points in the bitmap array, and b the number
of points in the augmented skeleton S. The complexity of
the algorithm is O(a + blogb). For reasonable workspaces,
however, we have b o a%~1/¢ since the skeleton is a (d-1)D

SHere, we exceptionally use the d-neighborhood in the workspace grid, so
that we can track the augmented skeleton reliably.

subset of the workspace. For such workspaces, the complexity
is O(a + a®~Y/4loga), hence is linear in a. For the 2567
workspace of Fig. 6, the computation takes about 2 s (including
the computation of d; and §) on a 14-mips workstation.

Variants of the aforementioned W-potential are easy to
define and compute. For example, in step 4 of the algorithm,
we could compute V,(y) = V() +1/d1(x) and obtain a W-
potential that becomes infinite on the boundary of GWempty-
We will not detail the cosmetics of the computation of nu-
merical W-potentials further. We just want to point out that
W-potentials with various properties can be built within our
framework.

C. Computation of C-Potentials

The C-potential U is computed as a combination:

U(g) = GV, (X(p1,@), -+ V. (X (95, 9)))

of the W-potentials V,,, ¢ = 1,---,s, defined for s (s >
1) distinct control points p;. This combination concurrently
attracts the different points p; toward their respective goal
positions. U(g) attains its minimal value, i.e., 0, when all
the control points are at their goal positions. At any other
configuration, it is strictly positive.

The control points are those used to input the description of
the goal configuration of the robot. (By definition, the robot is
at a goal configuration whenever all the control points are at
their goal locations.) The goal configuration may, or may not
be uniquely defined. For instance, if A is a 2-D object that
can both translate and rotate in the plane (3-D configuration
space), the specification of the goal positions of two control
points uniquely determines the goal configuration of the robot.
If A is, say, a 10-DOF manipulator arm, specifying the desired
positions of some points in the end-effector determines a goal
region in configuration space. In all cases, we denote by Cgoal
the subset of goal configurations.

It is important that a path planner allows us to define a
goal configuration by specifying the goal positions of a small
number of points in the robot. Indeed, in many tasks, the
goal configuration is incompletely determined by the task
constraints. Arbitrarily selecting one configuration among the
various possible ones may result in a more difficult, and
perhaps even impossible, path planning problem. Furthermore,
if the robot has many DOF’s, specifying a unique goal
configuration is known to be a difficult placement problem.

In order to precisely define the C-potential, we must now
specify the arbitration function G. In most of the previous
systems using the artificial potential field approach, G has
been chosen as the sum of the W-potentials [15]:

i=s
G(ylv T 1y8) = Zyi'
=1

This simple choice seems natural because it does not favor
one control point over the others. However, precisely for
that reason, conflicts among the points tend to be frequent,
producing numerous local minima.

The choice of the function G is specially important be-
cause it highly influences the number and the depths of the
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local minima of U. With local-minima-free W-potentials, the
workspace cavities do not directly create local minima of U.
But, as mentioned previously, the concurrent attraction of the
different control points toward their respective goal positions
may create local minima. The function G determines how the
competition between the different points is to be regulated.

The choice of G, which seems to minimize the number of
local minima is

i=s

G(yly' o 7ys) = 1111=i{1y1

Indeed, this arbitration function favors the attraction of the
point that is already in the best position to reach its goal.
However, when one point has reached its goal position, the
potential field is identically zero, and the other points are
not attracted toward their goal positions. A way to avoid this
shortcoming is to add another term to the arbitration function,
yielding:

i=.s 1=8
G(y1, -+, ys) = Miny; + emaxy;

i=

M

where ¢ is a small real number. In our experiments, we used
= 0.1. However, the best value of ¢ may depend on the robot.

Another choice for G is:

G(y1, -+, ys) = MAXYi. @)
This arbitration function favors the attraction of the control
point that is the furthest away from its goal (along the path
determined by the W-potential). It tends to increase the number
of competitions among the control points and, therefore, the
number of local minima. However, it can be a good choice
for robots with many DOF’s. As a matter of fact, the number
of local minima is not the only measure for the quality of
the C-potential. Another critical factor is the depths of these
minima. Indeed, in some cases, it may be preferable to have
several small local minima, rather than a single, very deep one.
This is specially true when the robot has many DOF’s, since
the number of discretized configurations contained in a local-
minimum well of given depth increases exponentially with
the dimension of the configuration space. Various experiments
with the previous arbitration function indicate that in general
it increases the number of local minima, but reduces their
volumes.

Obviously, many other arbitration functions can be imag-
ined. In some of our experiments, we used other C-potentials,
as indicated further in this paper.

We now describe four path planning techniques incorporat-
ing the general planning approach presented in the introduc-
tion. All these techniques iteratively consider each level of
resolution in the workspace and configuration space pyramids,
from the coarsest to the finest. They terminate with success
as soon as a path has been generated. They return failure
if, after having considered the finest bitmaps, they still have
not generated a path. Below, we only describe the algorithms
executed at each level of resolution. We denote by GW and
GC the current workspace and configuration space grids.
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IV. BEST-FIRST MOTION TECHNIQUE

A. Description

We start with a very simple path planning algorithm.7 This
algorithm essentially performs a best-first search [22] of GC
using the C-potential U as the cost function. It iteratively
constructs a tree T whose nodes are configurations in GCtree-
The root of T is the initial configuration @i At every
iteration, the algorithm examines the k-neighbors (for some
k € [1,n]) of the leaf of T, which has the smallest C-potential
value, retains the neighbors in GCiree that are not already in T,
and installs them in T as successors of the currently considered
leaf. The algorithm terminates when the goal configuration
goa1 has been attained (success) or when the subset of GCtree
accessible from g;;, has been fully explored (failure).

A configuration in GC has up to 2n 1-neighbors, 2n?
2-neighborhoods, . . . , and 3" —1 n-neighbors. In our imple-
mentation of the best-first search algorithm, we use k =n.The
size of the neighborhood thus increases exponentially with 7,
but as we will see below, the planning technique is intrinsically
limited to problems involving few DOF’s (typically, n < 4), s0
that the size of the maximal neighborhood remains reasonable.

As long as the algorithm does not reach a local minimum of
the C-potential, the search reduces to following an approxima-
tion of the negated gradient of the C-potential (fastest descent
procedure). When a local minimum is reached, the algorithm
naturally fills up the local minimum well until a saddle point
is reached. Then, it proceeds again along the negated gradient
of U. It stops when a goal configuration (U = 0) is attained.
Hence, the algorithm basically searches a graph connecting
local minima among them, but this graph need not be explicitly
represented. Two local minima are adjacent in the graph if they
communicates through a saddle point. From a local minimum,
the algorithm always goes to the adjacent local minimum
that is attainable through the lowest saddle point. When two
adjacent minima get filled up, they are implicitly merged into
a single minimum.

The algorithm is resolution-complete, i.e., it is guaranteed to
reach the goal in a finite amount of time whenever a solution
path exists (at the resolution of GC), or return failure when
there is no solution. In most cases (virtually all reasonable
cases), a very small subset of the grid GC has to be explored
before the algorithm terminates. It is easy, however, to create
a problem admitting no solution path, which requires most of
GCree to be explored before the planner gives up.

At this stage, there is an important aspect of the algorithm
that must be made precise. Since the C-potential only depends
on the distance of a few control points to the obstacles, best-
first search does not guarantee that collisions of the robot with
the obstacles will be completely avoided. Therefore, whenever
the planner considers a new configuration in GC, it should
check that it lies in the free space. Because the planner does
not represent the C-obstacles explicitly, the verification is done
in the workspace as explained below.?

7This algorithm is described in more detail in [4].

81n a low-dimensional configuration space, as is the case here, an alternative
is to precompute a bitmap representation of the C-obstacles, and then to check
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As the workspace representation is distributed, it seems
natural to represent the robot .4 in the same way, i.e., by
a bitmap. If we were using a massively parallel computer, this
representation would be the simplest and the most efficient
to test collisions. For example, we could have one processor
per point in the bitmap representation of .A; this processor
would compute the position of the point in the workspace at
the current configuration of A and determine whether it is
contained in an obstacle, or not. However, as we implemented
our planner on a sequential computer, we chose to represent
the boundary of A algebraically. The implemented collision-
checking technique is a classical “divide-and-conquer” algo-
rithm, which consists of iteratively adjusting the number of
points in the robot’s boundary that are necessary to check col-
lisions reliably. To illustrate this idea, let us consider a simple
robot modeled as a single straight line segment of length L.
The function d; has already been computed over Wempty-
Instead of checking the distance d; for each discretized point
on the line segment modeling A and then calculating the
minimum of all these distances, we first compute the distances
d; (begin(q)) and d;(end(q)) of the two endpoints begin and
end of the segment. If min{d;(begin(q)),d:(end(q))} > L,
then we are certain that the robot does not collide with any
obstacle. Otherwise, we cut the segment in two half-length
segments, and we recursively apply the procedure to the two
new segments. If the robot boundary is modeled by a polygon,
the same procedure can be applied to each edge of the polygon.
The procedure can also be generalized to higher-order shapes
of the robot boundary such as circular and elliptical arcs, and to
three-dimensional robots by triangulating their boundaries and
recursively decomposing the generated triangles into smaller
ones. When the robot is far from the obstacles, very few points
on its boundary need be checked. When the robot gets closer to
an obstacle, an increasing number of points (up to the current
resolution of the workspace bitmap) in the boundary segment
that is close to the obstacle have to be checked.

The search algorithm only considers the neighbors of a
configuration that are collision-free. Hence, there may be two
types of local minima: the natural minima of U (where the
gradient is zero) and the minima located at the boundary of
GCtree (Where the gradient is not zero in general). When an
obstacle is hit, the last configuration before the collision (i.e.,
a configuration in the boundary of GCy..) is taken as the local
minimum. Both types of minimum are escaped in the same
fashion.

B. Experimental Results

We experimented with the best-first motion planning tech-
nique using a planar “mobile robot” with two DOF’s of
translation and one DOF of rotation, namely a long rectangular
bar in a 2-D workspace. Fig. 7 shows an example of path
generated by the planner. This path demonstrates the ability
of the planning technique to produce complex maneuvers. The
running time to produce the path was 1 s.° This is three orders

every explored configuration against this bitmap [20].

9Since there are many simple variants of the techniques presented in this
paper, only the order of magnitude of the given execution times is actually
pertinent. In fact, very recent improvements of our algorithm have made it

Fig. 8. Path generated among randomly distributed obstacles.

of magnitude faster than the running times reported in [5] for
similar (though apparently simpler) path planning problems.
One order of magnitude is due to the faster computer we used.
The other two are actually a product of our algorithm.

Fig. 8 shows another example of the planning abilities of
the algorithm. For the same robot, a path was generated in
less than 5 s within a 5122 bitmap representing a workspace
cluttered by more than 70 complex-shaped, randomly gener-
ated obstacles. This example would probably be very difficult
to solve for a planner using a semi-algebraic representation
of the workspace, e.g.,. an exact cell decomposition planning
technique. It demonstrates the power of the “distributed”
representations used in our planner relative to the “centralized”
algebraic representations.

In both examples, the C-potential was computed by consid-
ering two control points located at the midpoints of the two
small edges at the extremities of the bar, using the improved
W-potential described in Section III-B. The C-potential was
computed using the arbitration function defined by (1). The
best-first motion technique also works in a satisfactory fashion,
but is in average slower, when the simple W-potential is used
in place of the improved one.

In practice, the previous planning technique is only appli-
cable to robots with a small number n of DOF’s—typically,
n < 4. Indeed, the number of discrete configurations in a
local-minimum well increases exponentially with the number

possible to solve planning problems of the complexity of Fig. 7 within a few
1/10s of a second.
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of DOF’s. Filling up a well would be too time consuming for
robots with many DOF’s.

V. RANDOM MOTION TECHNIQUE

A. Description

The planning algorithm!® presented in this section essen-
tially differs from the previous one in the way it escapes
local minima. Rather than filling up each encountered local
minimum, it applies a Monte-Carlo procedure, which consists
of generating random motions until the minimum is escaped.

Starting from the initial configuration, the algorithm first
searches the current grid GC in a best-first fashion. Thus,
it follows the negated gradient of the C-potential, until it
reaches a local minimum (call it g,,.). We call such a motion
a gradient motion. If g, € Cgoal, the planner returns the
solution path generated. Otherwise, it attempts to escape the
local minimum by generating several random motions from
Qio.- These random motions are symmetrical random walks,
which are known to be approximations of Brownian motions.
They are described in more detail in the next subsection.

The generation of gradient motions and the recognition of
local minima are done using the n-neighborhood in GC. As
long as n < 4, this raises no difficulty. However, when
n becomes too big (and we ran the random motion tech-
nique with robots having many DOF’s), the size of the
n-neighborhood becomes too large. In this case, at each
step of the gradient motion, a limited (and relatively small)
number of configurations in the n-neighborhood of the current
configuration g are iteratively considered, until one is found
to have a smaller C-potential than q. Each iteration consists of
randomly selecting a configuration ¢’ in the n-neighborhood
of ¢ (using a uniform distribution law). If U(q') < U(q),
¢ is taken as the successor of ¢ along the path of the
gradient motion (hence, the motion may only follow a rough
approximation of the negated gradient flow). The number of
iterations is limited to a few tens to a few hundreds (depending
on the value of n). If none of them generates a successor of g, ¢
is treated as a local minimum. An alternative to this technique
would be to use a smaller neighborhood, for instance the linear
1-neighborhood. In fact, we tried several alternatives, and the
technique described previously gave the best experimental
results. In particular, due to the crude discretization that it
entails, a small neighborhood often resulted in the detection
of fictitious local minima.

At the terminal configuration of every random motion,
the algorithm executes a gradient motion until it reaches a
hopefully new local minimum. From each local minimum, if
it is not in the goal region, it performs another set of random
motions, etc. A local-minima graph is thus incrementally
built, the path joining two “adjacent” local minima being the
concatenation of a random motion and a gradient motion.
Using the values of the C-potential at the local minima, a
best-first search of this graph is performed until the goal
configuration is reached or all the local minima in the graph
have been expanded (i.e., a series of random motions have

"This algorithm is described in more detail in {4].

been executed from them). When a solution path is generated,
it is smoothed using a classical variational calculus technique.
An interesting property of this algorithm is that all the random
motions starting from a given local minimum can be performed
concurrently on a parallel machine, since there is no need for
communication between the different processing units.

Many variants of the best-first search scheme are possible,
and we experimented with several ones. The search technique
that gave the best results consists of iteratively executing
random motions starting at the current local minimum g,
and, after each one, performing a gradient motion. If the
attained local minimum has a lower C-potential than gy, the
iteration is stopped and the search proceeds from this new local
minimum, by executing new random motions. The number of
random motions starting at each local minimum is arbitrarily
bounded. If no random motion from ¢ followed by a
gradient motion leads the planner to a better minimum, g,
is considered as a dead-end. The algorithm then backtracks to
a point in the current path connecting the initial configuration
to gyo.- This point is selected randomly, using a uniform
distribution law, over the set of points contained in the current
path. The search for a path resumes at that point by executing
a gradient motion. Since the backtracking point may belong
to the subpath generated by a random motion, the gradient
motion may reach local minimum not encountered yet. This
search technique has the advantage of not requiring an explicit
representation of the local minima graph to be maintained.

As the algorithm uses a random procedure to build the
graph of the local minima, it is not guaranteed to find a
path whenever one exists. In other words, the algorithm is not
complete. However, the properties of Brownian motions make
it possible to prove that when the number of random motions
executed from every local minimum is unbounded (the com-
putation time may then tend toward infinity), the probability to
reach the goal converges toward 1 [4]. Hence, we say that the
algorithm is probabilistically resolution-complete. However,
this convergence-in-distribution property, which is well-known
for the so-called “simulated annealing” algorithms!! [11], is
a very weak one. Indeed, the totally uninformed algorithm,
which executes a Brownian motion from g;,;, and terminates
when it enters a small neighborhood of the goal configuration,
is also probabilistically complete!

A weakness of the algorithm with the search technique
described previously is that it may be unable to recognize
that a planning problem admits no solution path. However,
since the algorithm turns out to be relatively fast in most
practical cases where there exist solution paths (see Section V-
C), one way to deal with this drawback is to arbitrarily limit the
computing time allocated to the planner. By simplifying a bit,
we can say that we traded decidability and slow computation
for semidecidability and fast computation.

B. Random Motions
A random motion is defined as a discrete symmetrical
random walk in GC. The duration ¢ of the motion is a

WEor a comparison between simulated annealing algorithms and our
planning algorithm, see {4].
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certain number, say N, of time intervals of length 6¢. Hence,
t = N x ét. At each time interval, a motion step is executed,
whose projection along each axis g;, s = 1, - -, n, is randomly
A; x 6t or —A; x 6t, each with the same probability 0.5.
Therefore, each motion step is independent of the previously
executed steps. Such a random walk is known to converge
almost surely toward a Brownian motion of duration ¢ when
5t tends toward O (and, hence, N tends toward infinity) [24].
In our implementation, we take 6t = 1 and we assume that
the A;’s are small enough to consider the random walk as a
reasonably good approximation of the limit Brownian motion.
We use this approximation and properties of Brownian motions
to select the duration ¢, as described below.

Without loss of generality, we take the local minimum, gy,
as the origin of the coordinate system in C. The configuration
attained by a Brownian motion of duration ¢ defined as before
is the value of a random variable Q(¢) = (Q1(t),- -, Qn(t))
such that the density p;(g;) of Q;(t), for any 7 € [1,n], is [24]:

(@) = —— exp(~ %)
i(q;) = ——=—= exp(— .
PR = A vam P 2A

Hence, the standard deviation D; of Q;(t) is: D; = AV

The Brownian motion is well-defined as long as it does
not encounter any obstacle in configuration space. When it
hits the boundary of a C-obstacle, the Brownian motion has
to be adapted so that it stays in the free space. The classical
adaptation of a Brownian motion when the space is bounded
consists of reflecting the motion that would take place if there
were no boundary, symmetrically to the tangent hyperplane of
the boundary at the collision configuration. The mathematical
consistency of this adaptation is discussed in [2]. Our planner,
which does not construct an explicit representation of the
C-obstacles, does not know the orientation of the tangent
hyperplane at the collision configuration. Hence, whenever
a motion step yields a collision, instead of bouncing sym-
metrically on the hyperplane tangent to the C-obstacle, the
planner guesses another random step and substitutes it for the
previous one. The collision is detected in the workspace using
the divide-and-conquer technique described in Section IV-A.

The duration ¢ of a random motion should not be too short,
since the motion would have then little chance to escape the
local minimum. On the other hand, if it is too long, the planner
could waste time and loose the opportunity to use the C-
potential gradient information when it becomes useful again.
We define the attraction radius Ag;(q,,.) of a local minimum
¢1oc of U along the axis ¢; as the distance along ¢; between
¢, and the nearest saddle point of U in that direction. It is the
minimum distance that the robot must travel in the direction g;
in order to escape the local minimum g, . If we were able to
estimate the statistics of Ag,, the property D; = A;v/t would
give us a clue for computing ¢. Indeed, the duration of the
Brownian motion could then be taken equal to the value of
the function ¢(q,,.) defined by

‘1Ri(qloc) ) 2
t ~ II —_— . 3
(q1oc) max, ( A, 3)

But, as we make no assumption on the obstacle distribution,
we cannot infer any strong statistical property about U and

Fig. 9. Path generated for a 3-DOF robot.

the Ag,’s. However, in general, we may consider that the
distance Ag; for each parameter g; does not exceed the
distance that would provoke a motion of the robot longer than
the workspace diameter itself. Normalizing this diameter to 1,
this assumption yields the following estimate of Ag; for any
local minimum g, :

ARi ~ 1/‘]slup (4)

This estimate, combined with the fact that Ag, is strictly
positive, leads us to treat A, as a random variable with a
truncated Laplace distribution of density:

p(ARt) = J:up exp(_JsiupARi>'

(The truncated Laplace distribution is the less informed dis-
tribution, i.e., the one that maximizes entropy, for a positive
random variable of given expected value.)

We have A; = § /J;'up (see Section II-C), where 6 is the
distance between two adjacent points in GWW. Combining this
formula with (3) and (4), we obtain

One could take ¢ equal to the previous value. However, this
choice would implicitly assume that all the attraction radii are
the same, which is not the case. Using the previous distribution
of Ag,, we choose ¢ as the value of a random variable T" with
the following density:

p(t) = 507 exp(=6V)

One can verify that the expected value of T is 1/62.

C. Experimental Results

We have tested the random motion technique with several
different robot stuctures. We now describe some of the ob-
tained results. Since the planning technique contains several
random components, the running time for the same planning
problem is not constant and depends on the seed given to the
random number generator. The times given below are only
typical times. It is not unusual that two running times for the
same example differ by a ratio of 5. The execution times would
be both smaller and much more stable on a parallel architecture
allowing the concurrent execution of several random motions.
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Fig. 10. Path generated for the 8-DOF manipulator.

Structure of the 10-DOF manipulator.

Fig. 11.

First, we applied the random motion planning technique
to the 3-DOF robot example shown in Fig. 7 using the
same C-potential as with the best-first motion algorithm.
We got the path shown in Fig. 9 (after smoothing). The
overall computation time was 10 s, which is about ten times
slower than with the pure best-first motion planning technique.
However, we think that a parallel implementation of the
random motion technique would considerably reduce this
computation time.

We experimented with the planner using an 8-DOF serial
manipulator with 8 revolute joints and all its links modeled
as line segments of the same length. Fig. 10 illustrates a path
generated by the planner. The goal region is defined by the
position of the endpoint p of the last link of the robot. The C-
potential U was computed as the improved W-potential at p,
i.e., V,(X(p, q)). The path was generated in 2 min, covering
all the computation performed between the input of the robot
and workspace models and the display of the generated path.

We also experimented with the planner using a 10-DOF
nonserial manipulator arm with three prismatic and seven
revolute joints, as depicted in Fig. 11. Fig. 12 illustrates a path
generated by the planner. The C-potential was computed by
considering two control points located at the endpoints of the
two kinematic chains, using the improved W-potential field
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Fig. 12. Path generated for the 10-DOF manipulator.
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and the arbitration function defined in (2). The computation
time was 3 min. (In this example, the number of configurations
in the grid GC in which the path was found is of the order of
10010 = 10%))

Finally, we have run the path planning algorithm with a 31-
DOF serial manipulator carrying a bar in a 3-D workspace.
The manipulator consists of a sequence of 10 identical links,
each with three DOF’s (one translation and two rotations).
The last module provides a third rotation. A path generated
by the planner is illustrated in Fig. 13. The C-potential was
computed by considering two control points located at the
endpoints of the bar, using the improved W-potential field and
the arbitration function of (2). The computation time was 15
min. The level of resolution of the workspace representation
required to find this path was 1283, (In this example, the size
of GC is of the order of 10%2 configurations.)

In all the previous multilink robot examples, we simulated
mechanical stops by limiting the range of displacement of
every joint. Except with the 31-DOF arm, we also prohibited
collisions among the links, by checking collisions between
any two links.

Other successful experiments were more recently conducted
with two rigid objects moving in the same three-dimensional
workspace (12 DOF’s), with two manipulator arms carrying
the same object (closed-loop kinematic chain of 7 DOF’s),
and with manipulators mounted on a free-flying platform in a
three-dimensional workspace (10 to 20 DOF’s).

The efficiency of the algorithm comes from the fact that
a typical path planning problem has many solutions, so that
a globally random process can find one, providing that it
is sufficiently informed most of the time. This efficiency
result is not new. Previous research has shown that Monte-
Carlo techniques may successfully solve NP-hard problems.
For example, Cerny [7] described an algorithm that generates
suboptimal solutions to the traveling salesman problem for
more than 10000 towns. Kirkpatrick et al. [17] proposed an
algorithm for the placement and the routing of VLSI chips,
which is better than human experts. In both problems, the
very large search space is associated with a large number of
“good” suboptimal solutions.
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Fig. 13. Path generated for the 31-DOF manipulator.

VI. VALLEY-GUIDED MOTION TECHNIQUE

A. Description

The path planning algorithm!? described in this section
differs significantly from the previous two. It consists of
searching the “valleys” of a C-potential U in Cgee. The set of
valley points of U is called the valley roadmap and is denoted
by V.

The algorithm is similar in structure to a retraction algorithm
[23]:

1) Given an initial and a goal configurations, ¢;,;, and g,
generate two new configurations, g; and g, local minima
of U, by following the negated gradient of U from gq;,;,
and g¢,,,), respectively.

2) Search the valley roadmap V for a path connecting g;
to q,.

3) If step 2 terminates successfully, return the path ob-
tained by concatenating the three paths joining g;;, to
¢; (gradient motion), g; to g, (valley-guided motion),
and g, to g,,, (gradient motion). Otherwise, return
failure.

This algorithm does not require U to be minimum at the goal
configuration. However, since q,,, is projected in V by a
gradient motion, g, has to be uniquely defined, which was

12This algorithm is described in more detail in [3].

not the case with the previous two algorithms.' Ideally, U
should be such that V is a 1-D subset of the free space Cree.
In addition, U should “represent the topology” of Ciree, i.€-, q;
and g, should be connected in V iff g;,; and gy, are con-
nected in Cgree. In [3], we discuss the conditions under which a
C-potential satisfies these two properties. Unfortunately, these
conditions are quite involved and difficult to verify.

At step 2, V is searched in a depth-first manner. A decision
is made at every crossroad using a simple heuristic function
defined as another C-potential Upe,,. This C-potential is con-
structed as described in Section III, i.e., by combining local-
minima-free W-potentials. In our experiments, this heuristic
potential dramatically reduced the computation times.

It now remains to specify how V is constructed. Unfortu-
nately, as noticed in [3], there has not been much research on
the concept of valley reported in the literature so far. One way
to get a simple, but ad hoc, definition of valley points is to
discretize the set of possible directions of the valleys. Namely,
we force these directions to be the various g; coordinate axes.
Thus, we only have n possible valley directions. We define
a configuration ¢ to be a valley point along the g; coordinate
axis (i € [1,n]) when all the values of the C-potential U

13 Actually, one could extend the previous algorithm to handle the case
where a goal configuration is any configuration in a subset Cgo, of the con-
figuration space. But this would require each configuration in the discretized
boundary of Cgoal to be connected by a gradient motion to V. Except for
robots with few DOF’s, this is likely to be impractical.
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Fig. 14. Path generated for a 3-DOF mobile robot

at the (2n — 2) 1-neighbors in the hyperplane orthogonal to
this direction are greater than U(q). According to this simple
definition, every local minimum of U is also a valley point of
U (which is consistent with our intuitive notion of valley),
so that the valley roadmap V can be regarded as a graph
connecting the local minima of U. This graph has to be
searched for a path between two minima, ¢; and q,.

In order to check whether a point g is a valley point or not,
we thus use the simple following algorithm:

1. Compute U(q).

2. Compute the 2n values of U at the 1-neighbors of g.

3. For each possible valley direction i € [1,7] do:

Compare U(q) to the 2n — 2 values of U at the 1-
neighbors in the hyperplane orthogonal to the g; axis.
If U(q) is smaller or equal to these 2n — 2 values, ¢ is
a valley point.

The time complexity of this algorithm is O(n?).

As nondegenerated valleys are 1-D, the safest neighborhood
to track them is the n-neighborhood. Unfortunately, the cardi-
nal of this neighborhood is 3™ —1, yielding an exponential time
tracking algorithm. For instance, in a 10-D configuration space,
using the 10-neighborhood entails performing about 60000
valley checkings at every increment of the tracking process.
Instead, the implemented planner uses the 2-neighborhood,
whose size is quadratic in n, allowing each tracking increment
to be performed in O(n*) time. This compromise between
time and completeness appeared reasonable in most of the
experiments we made. Complex paths have been generated,
meaning that valleys can be tracked using the 2-neighborhood.
Nevertheless, the choice of the 2-neighborhood is empirical.

Some valleys may be dead-ends. Valley tracking stops when
the tracking algorithm is unable to proceed further. It also
stops if the valley is running into an obstacle in configuration
space (this can be detected by using the collision checking
technique described in Section IV-A). In both cases, the
planning algorithm backtracks to a crossroad point in the
valley roadmap.

B. Experimentation

We experimented with the valley-guided motion technique

on a variety of path planning problems.!* The best results were
obtained with the C-potential U defined as follows [3]:

8
U(g) = olog(Y_ exp(Vy, (X (9i,0)/9)),
=1
where o is a small number and the p;’s (i = 1,- - -, s) are the
control points.'> Each W-potential V', is computed using the
simple definition of Section III-B.

The heuristic potential Upeur used in our experiments is
defined as the sum of the simple W-potentials computed at a
few control points.

We applied the algorithm to 3-DOF mobile robot problems.
An example of generated path for a triangular robot is shown
in Fig. 14. This example was run using 15 control points
equally distributed in the triangle boundary. We ran the
algorithm with and without the heuristic potential Uneur-
When used, Upeyr Was computed by considering a single
control point. In both cases, the program found a solution
path. However, the heuristic potential considerably reduced
the overall computational time. In the example of Fig. 14, the
running time was reduced from 2 min to less than 30 s.

We also applied the algorithm to the 10-DOF robot shown in
Fig. 11. Fig. 15 shows a path generated by the planner. In this
example, the C-potential U was computed using 70 control
points equally distributed in the robot and the heuristic poten-
tial Upeyr using two control points located at the endpoints of
the two kinematic chains. The use of the heuristic potential was
necessary to obtain a path in a reasonable amount of time. (In
a 10-D configuration space, each point has 200 2-neighbors.
The computation of the next point along a valley takes a few
seconds.) The path was generated in less than 1h

Notice that the path planning problem shown in Fig. 15 is
significantly simpler than the problem shown in Fig. 12. There
is more space for the robot to “maneuver.” (In Fig. 12, the hole
in the wall is narrower and the square object is closer to the
wall.) The previous algorithm failed to solve the problem of
Fig. 12. (More precisely, we stopped the search after a few
hours of computation, but the planner did not explicitly return
a failure message.)

The aforemetioned planning technique is slower than the
best-first and random motion techniques for robots with few
DOF’s. It is also slower and definitely less reliable than the
random motion technique for robots with many DOF’s. The
failures of the algorithm may have several causes: the search of
the valley roadmap may require exponential-time computation,
the valley roadmap may imperfectly represent the connectivity
of the free space, it may be locally degenerated (i.e., may not
be 1-D), the 2-neighborhood may be insufficient to reliably

14We developed the valley-guided motion technique before the other three
techniques presented in this paper. It has been implemented on a SUN III
workstation, and the experiments described below were carried out on this
machine.

15The expression defining U(g) is a discrete approximation of
olog(f4 exp(Vp(X (p.q))/o)dp), which decreases when the distance of
the robot to the obstacles increases and tends toward infinity when this distance
tends toward 0. The expression defining U(q) also uniformly converges
toward the simpler expression sup;e(; V,(X(p,q)) when o — 0. The
latter expression, however, is highly degenerated for manipulator arms and

produces flat valleys that are difficult to track. Therefore, it cannot be used
reliably by the valley-guided planning technique.
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Fig. 15. Path generated for the 10-DOF manipulator

track the valleys, etc . . . We think that these causes might be
partly remedied by investigating the concept of valley further
(see [3]).

Notice that using the concept of valley might also be useful
to improve the random motion technique. Indeed, when a gra-
dient motion reaches a local minimum, that algorithm executes
a series of totally uninformed random motions. Instead, valley
directions could be extracted around the encountered minimum
and the probability laws governing the random motions could
be biased so that these motions tend to stay closer to the valley
directions than uninformed motions.

VII. CONSTRAINED MOTION TECHNIQUE

A. Description

The constrained motion technique rests on a combination of
ideas already present in the previous three techniques. On the
one hand, like the best-first and random motion techniques, it
makes use of a C-potential that is globally minimal (null) in
the subset Cgoa1 Of goal configurations and, except when it tries
to escape a local minimum, it follows the negated gradient of
this C-potential. On the other hand, it uses a concept similar
to the notion of valley for escaping encountered local minima.

Starting from the given initial configuration, the algorithm
follows the flow of the negated gradient field of the C-potential
U until a local minimum, ¢,,, is attained (gradient motion).
If gioc € Cgoal, the problem is solved. Otherwise, the plan-
ner executes a series of constrained motions. A constrained
motion, denoted by M (qy,.) (resp. M. (q,,.)), with i €
[1, n], consists of iteratively forcing the ith configuration space
coordinate, g;, to increase (resp. decrease) by the increment A;
of the grid GC, until a saddle point of the local-minimum well
is reached. Since gy is a local minimum of the C-potential,
this means that the sth DOF is required to move in the opposite
direction of the direction suggested by the C-potential. At
each iteration of the constrained motion, the remaining n — 1

coordinates g;, j # i, are selected according to a best-first rule.
Hence, if (g1, ,qi—1, 4, qi+1, ' - Gn) is the current config-
uration, its successor minimizes the C-potential over the set
consisting of the configuration (g1,-- -, gi-1, g qit1, 1 dn)>
where ¢} = i+ A (if M7 (g)0.) is being executed) or g; — A;
(if M (qy,.) is being executed), and its 1-neighbors in the
hyperplane perpendicular to the g; axis. The motion thus tracks
a kind of valley in the (n—1)-dimensional subspace orthogonal
to the g; axis. Hopefully, it ultimately reaches a saddle point of
the local-minimum well. The planner recognizes such an event
when the C-potential decreases again. Then it terminates the
constrained motion and executes another gradient motion.

Assume for an instant that every constrained motion attains
a saddle point of the local-minimum well. By interweaving
gradient and constrained motions, the planner constructs a
graph of local minima. Each minimum, after it has been
fully expanded, has 2n immediate successors in the graph
and is connected to each of them by the concatenation of
a constrained motion and a gradient motion. Whenever the
planner attains a minimum, it may check if it is a new
one, by comparing its coordinates with those of previously
generated minima. The search of the local-minima graph may
be conducted in a best-first fashion by iteratively selecting a
pending local minimum having the smallest value of the C-
potential and generating its successors. In order to avoid the
systematic generation of all the successors of every selected
pending minimum, we have implemented a variant of this
strategy. At each iteration, the implemented algorithm selects
a minimum gy, having the smallest value of U among those
whose successors have not all been constructed yet, and it
generates a new Successor gj,. of qy,.. At the next iteration,
if U(q},.) < U(gic), the algorithm naturally selects ¢, and
generates one of its successors; otherwise, it constructs another
successor of ¢, if any.

However, a constrained motion M (g,o.) (of M; (@,c))
may not terminate at a saddle point. Instead, it may hit
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Fig. 16. Coordinated motion of four mobile robots.

an obstacle. In that case, the implemented algorithm merely
considers that the local minimum has no successor “in the
direction of” increasing (or decreasing) ¢;. An alternative
would be to treat the last configuration attained by the con-
strained motion before the collision as a successor of g,.
This successor would not be a local minimum, but it would
nevertheless be included as a node of the local-minima graph
and then treated as any other node, except that the constrained
motions executed from it should not be commanded along
the ¢; axis. It is rather easy to construct examples where the
constrained motion technique succeeds only if these nonlocal-
minimum configurations are inserted in the search graph.
Without further assumptions on the C-potential, the previous
path planning technique is not complete. Nevertheless, as
shown below, it produces interesting experimental results.

B. Experimentation

We initially developed the conmstrained motion technique
with the goal of solving planning problems involving the
coordinated motions of several mobile robots in a workspace
made of narrow corridors. Indeed, consider the case where a
gradient motion leads two mobile robots to roll in opposite
directions in a narrow corridor where they cannot pass each
other. At some point, they cannot progress further toward their
respective goals without colliding. Then, the gradient motion
has reached a local minimum of the C-potential defined in the
product configuration space of the two robots. A constrained
motion corresponds to one of the robots moving backward, the
other robot proceeding along the negated gradient of the C-
potential, until there is sufficient room for the robots to pass
each other.

We applied the technique to plan the motion of four robots
in a workspace containing two parallel walls forming a narrow
corridor (see Fig. 16). Each robot is a L!-disc of radius
a denoted by A;, © = 1,---,4, which can only translate

in the plane. Its configuration is defined as the coordinates
(x:,v;) of the center p; of the square in a workspace coor-
dinate frame.'® The configuration space of the whole robot
system is an 8-D space with each configuration represented
by (21,%1,-*»T4,¥4). In the example shown in Fig.16, the
robots initially stand in the corridor made by the two walls.
In the goal configuration, which is uniquely defined, the
robots also stands in the corridor but in the reversed order.
Fig.16 shows various intermediate configurations along the
path generated by the planner. In this example, the C-potential
was constructed as the sum 2?=1 V. (X (pi,q)) of the simple
W-potentials computed at the centers of the robots. The
collision-checking technique of Section IV-A reduces to the
comparison of the L! distance d1(X (p;,q)) to the L' radius
a. In the same fashion, the collisions between two robots A;
and A; were checked by comparing the L' distance between
the points p; and p; and 2a. The total planning time was 30 s.

Fig. 17 illustrates another example to which we applied the
planning technique. Ten mobile robots, identical to the robots
of the previous example, operate in a workspace consisting
of two rooms connected by corridors. No two robots can
pass each other in any of the corridors, except in the lateral
corridors at the four corners, the two intersections with the
central corridor, and the locations facing the two doors. The
whole robot system has a 20-D configuration space. The initial
configuration is shown in the upper-left corner of the figure
and the goal configuration in the lower-right corner. The figure
displays several intermediate configurations along the path
generated by the planner. We first ran the planner using the C-
potential 232 1 V. (X(pi, q)), as in the previous example. The
planner was able to construct a path, but this path traversed
several tens of local minima. Many of these minima were
due to the fact that the robots were moving in a de-organized
fashion yielding intricate traffic jams. Then, we ran the planner
using a slightly different C-potential obtained by adding to the
previous C-potential a term that applies to each robot a force
perpendicular to its current direction of motion and pointing
toward its right. This additional field, which is analogous to
a “magnetic field,” essentially reproduces the “drive on the
right” traffic rule. In our experiments, it led the various robots
to move in a more organized fashion. Using this C-potential,
the planner solved the problem shown in Fig. 17 by generating
a path traversing only a few local minima. The total path was
generated in about 30 s, which is quite satisfactory given the
high number of robots.

Since multirobot path planning problems typically involves
many DOF’s, traditional global path planning methods are
often impractical. More specific approaches, e.g., “prioritizing”
and “velocity tuning” have been proposed for such problems.
The prioritizing approach [9] consists of considering the robots
in sequence. When the path of a robot has been constructed,
this robot becomes a mobile obstacle for the robots whose

16The orientation of the coordinate axes with respect to the walls has no
major impact on the operations of the planner.
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motions have not yet been planned. The velocity tuning
approach [14] consists of first planning the motion of each
robot as if it was the only robot in the workspace and then
tuning the velocities so that no two robots collide. Hence, both
approaches first break the planning problem for g robots into g
simpler planning problems, each involving a single robot, and
then consider the interactions among their solutions. These
approaches are unable to solve multirobot problems involving
tight interactions among the robots, such as the two problems
shown previously.

Although the constrained motion technique seems partic-
ularly suitable for planning coordinated motions of multiple
mobile robots, we have also experimented with it using
the 8-DOF manipulator arm of Fig.10 with the same C-
potential as in the experiment reported in Section V-C. In
the example of Fig. 10, a solution path was constructed in
about 3 min, which is comparable to the result obtained with
the random motion technique. However, our experimentation
with multijoint manipulator arms has been limited, and the
reliability of the constrained motion technique remains to be
verified for such robots.

VIII. CONCLUSION

In this paper we presented a collection of numerical po-
tential field techniques for robot path planning. All these
techniques apply the same general approach. They construct
a potential field over the robot’s configuration space, build a
graph connecting the local minima of this potential, and search
this graph. The graph is built incrementally and searched
as it is built. The only precomputation step is aimed at the
construction of the local-minimum-free W-potentials for the

Coordinated motion of ten mobile robots.

various control points in the robot. This step could be avoided,
but it is an important one, since it allows us to construct “good”
C-potentials. In addition, this precomputation occurs in a space
of fixed and small dimension d = 2 or 3. In virtually all
practical cases, the size of the graph of the local minima is
reasonably small, resulting in efficient path searching.

We proposed four techniques for constructing the local-
minima graph. These techniques are based on different ways of
escaping the encountered local minima of the C-potential. The
best-first motion technique is very simple and gives excellent
results for robots with few DOF’s (less than 5). However,
it is impractical for robots with many DOF’s. The random
motion technique gives very good results for robots with
few and many DOF’s. In addition, it is highly paralleliz-
able. The valley-guided motion technique gave significantly
inferior results. However, it embeds ideas that one might
improve in the future by exploring the concept of valleys
more thoroughly. The constrained motion technique, although
incomplete, gave very good experimental results, specially for
planning the coordinated motions of several simple mobile
robots. The principles underlying these four planning tech-
niques are somewhat independent of the representation of the
robot’s workspace and configuration space. However, their
efficient implementation was made possible by the use of
hierarchical bitmap representations. The planner implementing
these techniques was able to solve path planning problems,
whose complexity measured by the number of DOF’s or the
number of obstacles is far beyond the capabilities of previously
implemented planners. For simpler problems, our planner is
several orders of magnitude faster than most previous planners.

We feel that the techniques presented in this paper and
the experimental results obtained with them make it possible
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to realistically envision the development of “real-time” path
planners. By “real-time,” we mean that the planners would be
able to produce paths in a very small amount of time (say,
a fraction of a second) in almost all practical situations. The
construction of such a real-time planner will probably require
the use of some dedicated hardware and parallel computing
architecture, leading to the notion of “motion engine” just
like there exist “geometric engines” for performing graphic
operations (e.g., hidden line removal). We believe that the
availability of a real-time motion engine would open new
perspectives on some important issues in industrial robot
programming and autonomous robot control, and enable the
construction of efficient robot systems operating in partially
known and dynamically changing workspaces. It could also
provide a useful tool for automatically generating animated
graphic images. Among the four techniques presented in
this paper, the random motion technique seems to provide
the best combination of qualities (time efficiency, generality,
reliability). Since it is also highly parallelizable, it is probably
the best candidate for developing such a motion engine. The
random motion technique described in the paper makes use of
uninformed probability distribution laws. If a very fast imple-
mentation of the technique was available, we could envision
the inclusion of a learning module. In a specific application
domain, this module would collect various pertinent statistics,
for instance statistics about the distribution and the radii of
the minimum wells, and refine the probability laws used by
the planner, yielding even faster and more stable response
times.
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