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Abstract

This paper describes a geometric approach to under-
water environmental modeling using sonar. We clas-
sify and localize geometric features of man-made ob-
jects by combining the boundary constraints of sonar
returns obtained from multiple vantage points. The
approach builds on our previous use of Reid’s multiple
hypothesis tracking (MHT) algorithm in order to re-
solve data association and motion correspondence am-
biguities thereby to construct a model of the observed
environment [2]. In particular, we describe a new,
computationally efficient implementation of the MHT
algorithm originally reported in [3] and validate target
models previously developed for air sonar. The tech-
nique fuses data by modeling the physics of underwater
sonar and its interaction with different object features.
We illustrate the approach in two dimensions with real
acoustic data taken using a high-frequency (1.25 MHz)
pencil-beam profiling sonar, manually positioned along
trajectories which circumnavigate prismatic objects.

1 Introduction

Significant interest exists in applying autonomous
underwater vehicles (AUVs) to perform useful mis-
sions in the harsh ocean environment [20], e.g., to au-
tomate the search for hazardous objects lost on the
ocean floor. The principal difficulty in automating the
object search and recovery process lies with interpret-
ing the data obtained from the vehicle’s sensors. While
a variety of optical sensors are available for underwater
use [16], sonar is a natural choice for investigating the
turbid marine environment due to its superior propa-
gation characteristics.

Sonar data can be notoriously difficult to interpret
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because acoustic returns originate through a variety of
physical mechanisms such as specular reflection from
a smooth surface and diffuse reflection from a rough
surface. Spurious measurements due to multiple re-
flections are common. Considered in isolation, an in-
dividual sonar return yields insufficient information to
determine the shape of an object.

Previous underwater research has investigated a va-
riety of sonar interpretation approaches. Image pro-
cessing approaches, for example, aim to imitate the
methods by which skilled human operators interpret
visual sonar displays [17]. Feature extraction tech-
niques from computer vision, such as edge detection,
directly apply in such approaches. Unfortunately,
computer vision historically proves extremely difficult
to automate. Signal processing approaches, in con-
trast, extract features directly from received signals.
One target recognition technique under study, for ex-
ample, identifies resonant signatures in the echo wave-
form that correspond to objects of interest [5]. While
resonant signatures may aid in the detection of gross
material and structural properties, they fail to provide
detailed shape information needed for tasks such as
grasping. In the latter context, geometric approaches
are superior.

Stewart has successfully applied stochastic back-
projection to a variety of data sets from real ocean
settings, including profile data from the USS Moni-
tor [15]. This geometric technique employs a grid-
based, volumetric representation, similar to the oc-
cupancy grid of Elfes [6]. Whereas our approach as-
sumes high accuracy positioning information is avail-
able (perhaps through an acoustic transponder sys-
tem [10]), Stewart explicitly incorporates navigation
uncertainty by blurring the measurements over several
cells.
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The question of whether a discrete or a continuous
geometric representation is more appropriate depends
directly on the requirements of the task. For a human-
in-the-loop application such as piloting a remotely-
operated vehicle (ROV), an occupancy grid offers a
method for displaying a large amount of data to the
human operator. For object grasping and autonomous
recognition of man-made objects, however, an occu-
pancy grid would entail an unduly small cell resolution
size, resulting in prohibitive storage and processing re-
quirements. A continuous geometric approach offers
the potential of a compact representation capable of
efficiently characterizing a scene and providing direct
input to higher level reasoning schemes. This can only
be possible, however, if the noise and ambiguity of the
input data can be handled in a computationally effi-
cient manner.

In this paper, we propose to build accurate ge-
ometric reconstructions by grouping together sonar
measurements obtained from different vantage points.
To accomplish this, we employ the multiple hypoth-
esis tracking (MHT) algorithm, originally developed
by Reid [14] in the context of traditional multitarget
tracking, and recently shown to be an extremely pow-
erful technique for building and maintaining maps of
a robot’s environment [2]. We experimentally validate
the sensor models previously developed for air sonar [9]
with underwater profiling data and describe a new,
computationally efficient implementation of the MHT
originally reported in [3].

2 Review of the MHT Algorithm!

The MHT algorithm generalizes state estimation
theory to accommodate uncertainty in the origins
of measurements. Traditional state estimation tech-
niques such as the Kalman filter apply only to noisy
measurements of known origin. It provides no res-
olution to correspondence ambiguities and may even
become unstable when given erroneous measurements.
The MHT algorithm, in contrast, provides a Bayesian
framework for resolving the motion correspondence
and data association ambiguities ubiquitous in robotic
sensing.

Figure 1 shows the structure of the MHT algo-
rithm [2]. Cycles of the algorithm begin with a list
of hypotheses, each denoting a different set of assign-
ments between measurements and features. Each hy-
pothesis thus predicts a set of expected sensor mea-
surements which are compared with actual observed
data. Comparisons are represented in the form of
an assoctation cost matriz which concisely models the

!This description is a summary of that found in [2].
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Figure 1: Overview of the MHT algorithm.

ambiguities present in assigning measurements to fea-
tures. Each hypothesis in the tree has an associated
matrix from which it is possible to generate a set of
children, each child representing one possible interpre-
tation of the new set of measurements. Containing
the growth of the tree necessitates pruning unlikely
branches. In order to do this intelligently, we need to
evaluate the likelihood of each hypothesis. Reid [14]
provides a statistical framework by which to do this
under a particular set of assumptions regarding the
sensors and the scene.

The MHT is attractive for sensor fusion because
it defers making assignment decisions until more data
becomes available. Hypotheses containing predictions
well supported by subsequent data gain favor relative
to hypotheses containing unsupported predictions. By
looking ahead two or three time steps and examining
the probabilities at the leaves of the tree, the MHT
makes very accurate assignment decisions.

Two major difficulties arise in the implementation
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of the MHT algorithm. It is necessary to formulate
sensor and target models for the application domain.
In particular, application of the technique in robotics
requires multiple target models to handle different
types of scene geometry and a physically-based model
for the sensor employed. This is discussed in Section 4.
Secondly, generating and evaluating so many hypothe-
ses potentially overwhelms computational resources.
A solution to this problem is discussed next.

3 MHT Implementation

Several implementation strategies were employed in
order to contain the growth of the hypothesis tree
and reduce the number of hypotheses that must be
considered. In particular, we used the concepts of
(1) track trees, (2) spatially disjoint hypothesis trees,
and (3) pruning based on an N-scan back procedure,
all of which are described by Kurien [8]. However,
the most significant implementation strategy was the
use of an algorithm due to Murty [12] to generate effi-
ciently the k-best hypotheses directly as orginally de-
scribed in [3] and briefly discussed next.

Consider first the problem of finding the single most
probable hypothesis. This can be cast as a weighted
bipartite matching problem by constructing a bipar-
tite graph in which each node on one side represents
one of the measurements, each node on the other rep-
resents one of the targets, and each arc, < z;, t;, [ >,
gives the log likelihood, I, that measurement z; should
be assigned to target ¢;. The log of the likelihood of
a given assignment can be found by summing the log
likelihoods of all the arcs that it specifies. Finding the
best hypothesis, then, is a matter of finding the as-
signment that maximizes this sum. An instance of the
classical assignment problem from combinatorial opti-
mization, it can be solved very efficiently in polynomial
time [13].

Murty’s [12] algorithm optimally finds the k-best as-
signments in polynomial time, O(N*). Furthermore,
it finds them in decreasing order of likelihood and is
linear in k, a substantial improvement upon previously
suggested methods. The application of Murty’s k-best
assignment algorithm avoids a brute force enumeration
of all possible global hypotheses, which is entirely im-
practical, while guaranteeing that the k-best hypothe-
ses are examined. The reader is directed to [3] for more
detail.

4 Sensor & Geometric Feature Models

Our profiling sonar mechanically scans through a
full 360° panorama and records 400 equally spaced
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Figure 2: Two prismatic objects, an 18 cm diameter
aluminum cylinder and a flooded triangle with thin
aluminum walls, stand on end in a 1.3 m deep fresh
water tank. The far (concrete) wall of the tank, rough
relative to the wavelength of the 1.25 MHz sensor, con-
trasts with the (glass) windows in the foreground. The
unfilled triangle represents the location of the sonar.

range measurements. It transmits a 1.25 MHz acoustic
pulse of 60 s duration. The circular piston transducer
has a radius of 25 mm, with the first null of the corre-
sponding beam pattern at approximately 1.65°. Suffi-
cient energy exists off-axis, however, for some targets
to appear through extents up to 20°.

Figure 2 shows a typical scan from the sensor taken
in the MIT Testing Tank facility. The rear wall of
the tank is a diffuse reflector because its surface is
rough relative to the 1.2 mm wavelength of the sensor.
In contrast, the glass observation windows of the tank
are smooth, i.e., specular reflectors. The two objects in
the tank are a triangular prism, made by folding alu-
minum sheets, and an aluminum cylinder with thick
walls. Mounted midway in the water column, the sen-
sor scans horizontally such that the scene can be safely
approximated as two dimensional.

We have developed a feature extraction technique
that detects specular reflections at normal incidence
while rejecting many multiple reflections. It assumes
an environment of isolated targets, arising from either
specular reflection or (knife edge) diffraction; rough
surfaces violate this assumption because they give rise
to extra returns at high angles of incidence.

4.1 Regions of Constant Depth

Isolated targets, such as a smooth face, a corner, or
an edge, produce returns spanning an angular extent
determined by the effective beamwidth of the sensor.
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Figure 3: Returns from a target with a smooth face.
Top, returns appear to have constant range. Bottom,
in a close up view, however, returns vary in range be-
cause the peripheral ones experience delay due to their
reduced signal strength.

With an ideal detector, each return in the set would
have a range equal to the the distance from the sensor
to the contact point on the object where a normal from
the surface intersects the sensor axis. Figure 3 illus-
trates this phenomena. The returns associated with
the glass window all appear to have identical range,
hence the origin of the term region of constant depth
(RCD) to describe this type of feature [9]. A closer
look at the measurements using a much finer scale,
shown in the bottom half of Figure 3, reveals that
the returns are not exactly constant, but rather vary
in range by a small amount. The detection delay as-
sociated with the lower signal strength found in the
peripheral returns causes the feature to deviate from
a circular arc as the incidence angle increases. This
effect makes the arcs appear “inverted” in Figure 4.
Since individual returns from a target vary in range
by a small amount, we introduce a tolerance parame-
ter 7 to compare consecutive measurements. An RCD
contains a set of consecutive returns which differ in
range from their adjacent neighbors by less than this
tolerance. A second parameter, w, establishes the min-
imum angular width an RCD must span. We can
choose w small enough to allow only two returns or we
can increase it to establish a more stringent extraction
filter. The range of an RCD is defined as the minimum
range of its member returns, because they correspond
to the early detections, implying strong echo (and con-
fidence) levels. The net bearing angle of the RCD is

10cm
[ —

Figure 4: Top, sharp edges produce 9 returns each.
Bottom, a smooth face produces 23 returns. The num-
ber of returns generally correlates to the strength of
the target. Arcs indicate the angular extent of the
RCDs for 7 = 1 cm and the rays connecting them to
the sensor location indicate the net bearing angle.

the angular centroid of the measurements with mini-
mum range.

Figure 5 shows the resulting RCDs extracted from
the scan of Figure 2 using the values of 7 = 1 ¢cm and
w = 3.6°. Note that RCD extraction has greatly re-
duced the amount of data to consider, but that some
spurious RCDs still exist. One of these RCDs seems
to originate from behind the triangle. In fact this
RCD results from transmission through the near face
of the triangle, specular reflection off the remaining
two faces, and finally transmission back through the
front face to be detected at the sensor. Unlike with
an air sonar such as the Polaroid sensor, in water one
sees a much wider variation in the acoustic reflection
coefficient of objects; partial object transparency is
common and is an additional source of spurious re-
turns that must be rejected by the data association
algorithm.

The feature detector finds two RCD’s on the diffuse
wall. One is due to the set of returns near normal
incidence, and presents the same geometric constraint
as for the smooth glass window. The other is due to
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Figure 5: Sample RCDs extracted using typical pa-
rameters (7 =1 cm and w = 3.6°).

returns at a higher angle of incidence, the consequence
of which is discussed within the next section.

4.2 Geometric feature models

For polygonal and cylindrical scenes, the geometric
features of objects can be represented as points in a pa-~
rameter space and estimated with a Kalman filter. As
described in [2], at time k, a 2D line is represented by
the state vector x,(k) = [R.(k), 8;(k)]T, where R;(k) is
the perpendicular distance from the origin of the global
coordinate frame to the line and 6,(k) is the orientation
of a perpendicular drawn from the line to the origin.
In addition, each line has two endpoints associated

with it, which are estimated by projecting sensor loca-

tions onto the infinite line defined by [R:(k),8:(k)]T.
A corner is represented as a point in 2D by x;(k) =
[z:(k),y:(k)]T. The location of the vehicle is specified
by the vector xg(k) = [z(k),y(k),0(k)]T. The polar
measurements z;(k) = [r;, o] are a function of x,(k)
and xp(k), subject to a noise disturbance w¢(k), as
given by the measurement model

zj(k) = hy(xr(k), x:(k)) + w; (k)

where the measurement function hy(-, ) takes a differ-
ent form depending on the type of geometric feature.
For a plane,

r = |R, — x(k)cos(6;) — y(k)sin(6;)]
a=60,(k)—8(k),?
while for a corner,

=/ (x; — (k)% + (y; — y(k))?

2More precisely, we must occasionally add 7 to the angle in
order to resolve on which side of the plane lies the sensor.

Y — y(k)

xy — x(k)’
The measurement noise is modeled by zero-mean
Gaussian noise with standard deviation ¢ = 1 em in
range and o = 4 degrees in angle. The multiple hy-
pothesis algorithm, described next, uses these models
to compute recursively the locations of geometric fea-
tures, based on hypothesized assignments of the data.

tan(a + 0(k)) = z; # x(k).3

5 Underwater Shape Reconstruction

Having isolated RCDs (circular arcs) from the raw
sonar data, we need to determine which arcs originate
from which geometric features/objects, and which arcs
to consider spurious and ignore. We accomplish this by
moving the sensor and tracking the RCD features from
one location to the next. Each new sonar measure-
ment provides an additional geometric constraint on
the class of possible 2D surfaces being viewed. Since a
specular return implies a surface tangent to the RCD,
multiple tangency constraints from adjacent sensing
locations provide a sequence of “contact points” to
trace out an object’s surface. Returns from a point
target such as an edge or a corner provide the geomet-
ric constraint that the target lies at the intersection of
the RCDs.

The above formulation is a multiple hypothesis
tracking problem. At each iteration or scan, measure-
ments in the form of extracted RCDs are obtained.
The MHT compares these measurements with predic-
tions based on the possible target models: (1) a point
feature such as a corner, (2) a specular planar sur-
face, and (3) a specular cylindrical surface [11]. Each
measurement may (1) belong to an existing geometric
feature, (2) initiate a new geometric feature (of which
exist three types), or (3) be a spurious measurement
such as a multiple reflection. In addition, existing ge-
ometric features (tracks) that fail to be supported by
a measurement may either be continued to the next
scan or terminated, i.e., they have exited the field of
view of the sensor.

Figure 6 shows the RCD features extracted, using
7 =1 cm and w = 3.6°, during a complete sequence
around the triangular object. The sensing locations
were hand-measured to within a few millimeters of ac-
curacy. A typical vertex track for this object, shown
along with the location estimate in Figure 7, contains
16 RCDs. Figure 8 shows all six of the geometric fea-
tures superimposed on the triangular object to which
they belong. The estimated geometric features for
the faces of the triangle are shown as infinite lines.

3In practice, IEEE arithmetic supports the degenerate case
when z: = z(k).
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Figure 6: RCD features extracted from a complete
sequence around a triangular object.

Track 17{16): x=0.006, y = 0.369

Figure 7: A typical vertex track, which comprises
16 RCDs determined to originate from the same vertex
and an estimate of its location.

Two of these tracks contain three RCDs and the third
track (lower right face) contains four. The three ver-
tex tracks (clockwise from the top) each contain 12,
13, and 16 RCDs. The specular alignment condition
needed to observe the faces of the triangle causes fewer
extracted RCDs. Vertex estimates lie inside the true
locations because of the delay in the threshold detector
of our sensor. Targets that are acoustically stronger
(because of shape and/or material properties) will ap-
pear closer than weaker targets [19]. Table 1 sum-
marizes the feature locations and their corresponding
errors. Although this discussion focuses on the trian-
gular object in Figure 2, we have applied the algorithm
to a variety of 2D scenes in the MIT Testing Tank [11].

Figure 9 shows a superposition of the remaining
tracks. We see many point targets that lie “behind”
the top rough wall. Because the wall is not an isolated

Figure 8: Close-up view of feature estimates for the
triangular object. 4o error ellipses are show for vertex
features. The feature to the left is a reflection of the
interior corner of the right vertex in the left face.

Faces
Track Estimated Actual Difference
¢ (deg) R(m) 9 (deg) R (m) 6 (deg) R (m)
Teft T.02 0.009 0 0 S1.02 0.009
Tower C133.61 ~0.283 ~132.i7 0.286 1.44 -0.003
upper 132.13_| -0.166 132.36 S0.171 0.23 ~0.005
Vertices
xz (m) y (m) z (m) y (m) z (m) y (m)
Tower 0.006 0.369 0 0.386 ~0.006 0.017
upper. 0.001 ~0.215 0 -0.232 0.001 ~0.017
right 0.326 0.076 0.34 0.078 0.014 0.002

Table 1: Comparison of estimated and hand-measured
feature locations for the triangular object. Faces are
parameterized by their distance R from the origin and
their orientation 8.

target it produces extra RCDs at high angles of inci-
dence. A good track is still produced for the rough wall
from the normal-incidence RCDs. Figure 10 shows the
measurements rejected as false alarms.

The cumulative data set for this experiment con-
tained 48 scans with an average of approximately
6 RCDs per scan. The false alarm likelihood was set
to 0.1 and the detection likelihood was set to 0.45.
On A 50 MHz RISC workstation, the MHT algorithm
required approximately 5 seconds to process all of the
data using the following values for pruning parameters:
N = 4-scan-back, £ = 500-best, and minimum likeli-
hood ratio 0.01. See [2] and [11] for further discussion
of the role of these parameters.

6 Discussion

QQuite accurate reconstructions are possible because
the algorithm groups together returns obtained from
different vantage points that originate from the same
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Figure 9: Remaining tracks not shown in Figure 8, dis-
played with RCDs. An erroneous vertex track caused
by multiple reflections is prominent in the middle of
the figure. This track is the “image” of the right vertex
of the triangle reflected by the left face of the triangle.
There are a large number of point features initialized
at high angles of incidence to the rough top wall of
the tank, because it violates the assumptions of the
RCD extractor; these all fall behind a single long plane
track created for the wall from its normal-incidence re-
sponses. The arcs from the cylinder are grouped into
a single point target.

geometric feature, while rejecting spurious measure-
ments. Our approach addresses uncertainty in the ori-
gins of measurements (data association or correspon-
dence uncertainty) as well as in the values of mea-
surements (noise uncertainty). It models the uncer-
tainty due to noise by covariance matrices and rep-
resents the data association uncertainty by Bayesian
probabilities attached to nodes of a hypothesis tree,
each node representing different possible assignments
of measurements to features. In addition to sonar in-
terpretation, the MHT approach has been applied to
a surprising number of diverse areas such as motion
tracking {1}, contour grouping [4], and seismic data in-
terpretation [18].

The experimental results for the triangle scene
demonstrate that the geometric sonar interpreta-
tion approach developed for land mobile robotics by
Kue [7], Leonard [9] and others can be applied in an
underwater setting. Further, the results validate the
efficient hypothesis generation strategy described in
Section 3.

Because the experiments thus far have been re-
stricted to static, rigid, 2D scenes, further research
is necessary to fulfill the task of underwater object
search and retrieval we described at the outset. Theo-

Figure 10: Features classified as false alarms.

retically, the techniques readily extend to 3D (arc fea-
tures, for example, transform into solid angle sections
of a sphere). In practice, track initiation certainly be-
comes more problematic.

The MHT is formulated based on the assumption
that the target state estimate (in our case the loca-
tion of a face, edge, or vertex) can be initialized from
a single measurement. Subsequent measurements are
evaluated via data-to-target association hypotheses,
by comparing new observations to predictions made
based on the estimated target state. In three dimen-
sions, however, target states contain too many degrees
of freedom to be initialized from a single measurement.
Two solutions appear feasible. The first is to remove
responsibility for track initiation from the MHT and
provide a specialized module for the purpose, much as
Kurien [8] has done. The second solution is employ an
array of sonar sensors to make several measurements
of a geometric feature at each scan, thereby providing
sufficient information to allow the initiation of geomet-
ric features.

Finally, the specular wavelength regime only applies
to objects whose RMS surface roughness is less than
A/4. Under typical marine conditions of both sedimen-
tation and biological fouling, many surfaces will reflect
diffusely, not specularly. As such, they will cease to fit
the conditions of being an isolated target. With a fea-
ture extraction technique that can adapt to a range of
surface roughness scales, it should be possible to clas-
sify a diffuse scatterer such as the top wall in Figure 2
as a single track.
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