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Mobile Robot Localization by Tracking Geometric
Beacons

John J. Leonard and Hugh F. Durrant-Whyte

Abstract—This short paper presents the application of the extended
Kalman filter (EKF) to the problem of bile robot navig: in a
known environment. We have developed an algorithm for model-based
localization that relies on the pt of 2 ¢ ic b —a natu-
rally eccurring environment feature that can be reliably observed in

ive sensor and can be accurately described in terms
of a g tric par The algorithm is based on an
EKF that utilizes matches between observed geometric beacons and an «
priori map of beacon locations. We describe two implementations of
this navigation algorithm, both of which use sonar. The first implemen-
tation uses a simple vehicle with point kinematics equipped with a single
rotating sonar. The second implementation uses a ‘‘Robuter”” mobile
robot and employs six static sonar transducers to provide localization
information while the vehicle moves at typical speeds of 30 cm /s.

I. THE NAVIGATION PROBLEM

Stated most simply, the problem of navigation can be summarized
into answering the following three questions: ‘‘where am I?”’,
‘“‘where am I going?”’ and ‘‘how should I get there?’’. The first
question is one of localization; how can I work out where I am in a
given environment, based on what I can see and what I have
previously been told? The second and third questions are essentially
those of specifying a goal and being able to plan a path that results
in achieving this goal. We are principally concerned with the first,
localization, question, and maintain that finding a robust and reliable
solution to this problem is an essential precursor to answering the
remaining two questions.

The problem of position determination has been of considerable
interest over the last 4000 years. The basic process of distance
measurement, correlation, and triangulation was known to the
Phoenicians,! who successfully managed to build and maintain quite
accurate maps of the Mediterranean area. Today, navigation is a
well-understood quantitative science, used routinely in maritime and

Manuscript received August 30, 1989; revised August 30, 1990. This
work was supported in part by ESPRIT 1560 (SKIDS) and by the SERC-
ACME under Grant GRE/42419. A portion of this work was presented at
the IEEE/RSJ International Conference on Intelligent Robot Systems, 1989.

The authors are with the Department of Engineering Science, University
of Oxford, Oxford, United Kingdom.

IEEE Log Number 9042230.

"The Phoenicians were pre-Greek seafarers from Syria whose main claim
to fame was their hypothesis that the world was flat.
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aviation applications [22]. Given this, the question must be asked as
to why robust and reliable autonomous mobile robot navigation
remains such a difficult problem. In our view, the reason for this is
clear; it is not the navigation process per se that is a problem, it is
the reliable acquisition or extraction of information about navigation
beacons, from sensor information, and the automatic correlation or
correspondence of these with some navigation map that makes the
autonomous navigation problem so difficult.

Implementing a navigation system that uses artificial beacons
together with sensors that provide accurate and reliable measure-
ments of beacon location is a straight forward procedure used by
many commercial mobile robots today. For example, the GEC-
Caterpillar AGV [3] uses a rotating laser to locate itself with respect
to a set of bar codes that are fixed at known locations through the
AGV’s environment. More recently, the TRC Corporation has
developed a system for localization that uses retro-reflective strips
and ceiling lights as beacons that are observed by vision and active
infrared sensors. Our goal for a competence of localization is to
use the naturally occurring structure of typical indoor environments
to achieve comparable performance to artificial beacon systems
without modifying the environment. .

We have developed a system in which the basic localization
algorithm is formalized as a vehicle-tracking problem, employing an
extended Kalman filter (EKF) to match beacon observations to a
navigation map to maintain an estimate of mobile robot location.
Kalman filtering techniques have been used extensively in location
estimation problems such as missile tracking and ship navigation
[21]. There have been many notable applications of the EKF in
mobile robot systems. For example, Dickmanns uses an EKF in a
real-time vision system that achieves autonomous road-following at
speeds over 80 km/h [7). Ayache and Faugeras [1], Matthies and
Shafer [19], and Kriegman et al. [14] have used the EKF for visual
map building and motion estimation. These systems address a much
more complex task than that considered here, as they start without
an a priori model. However, the motion estimation formulation
does not by itself meet our requirements for long-term autonomous
position estimation, for despite the high accuracy with which the
relative motion between frames can be estimated, uncertainty in the
globally referenced vehicle position estimate must accumulate with
time. Hallam has developed an undersea navigation system that
maintains an absolutely referenced estimate of vehicle position in an
environment comprised of moving targets and clutter [13]. Our
formulation to the problem deals with the much simpler case of a
static environment, but has been demonstrated to be successful with
real sonar data on several different robots.

II. THE LOCALIZATION ALGORITEM

In man-made indoor environments, we model the world in terms
of geometry and consider each feature of the environment to be a
geometric target. A geometric beacon is a special type of target
that can be reliably observed in successive sensor measurements and
that can be accurately described in terms of a concise geometric
parameterization. Hence, geometric beacons are stable, naturally
occurring environment features that are useful for navigation. The
idea of a generalized geometric beacon arises as the result of our
earlier work in describing sensors and processing algorithms as
‘‘geometry extractors’’ [9], [11], allowing many different types of
information to be integrated easily in a common geometric frame-
work.

With reference to Fig. 1, we denote the position and orientation
of the vehicle at time step k by the state vector x(k) =

1042-296X/91/0600-0376301.00 © 1991 IEEE
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Fig. 1. Localization by concurrent observation of several beacons. Four

geometric beacons are in view to an ultrasonic sensor at time k and time
k + 1: plane p,, corner p,, plane ps, and cylinder p,. The sonar measure-
ments 2,(k) and z,(k) are the shortest distance from the vehicle to planes
p, and p, at time k. The measurement z,(k) is the distance from the
vehicle to corner p, at time k. Measurement z,(k) is the distance to the
central axis of cylinder p, less the radius of the cylinder.

[x(k), y(k), (k) comprising a Cartesian location and a heading
defined with respect to a global coordinate frame. At initialization
the robot starts at a known location, and the robot has an a priori
map of the locations of geometric beacons p;. We stress that the
map is just a set of beacon locations, not an exhaustively detailed
world model. Each beacon is assumed to be precisely known. At
each time stop, observations z j(k) of these beacons are taken. Our
goal in the cyclic process is to associate measurements z (k) with
the correct beacon p; to compute an updated estimate of vehicle
position.

The Kalman filter relies on two models: a plant model and a
measurement model. The plant model describes how the vehicle’s
position x(k) changes with time in response to a control input u(k)
and a noise disturbance v(k)

x(k+1) = F(x(k), u(k)) + v(k), v(k) ~ N(0, 0(k))

(M
where F(x(k), u(k)) is the nonlinear state transition function. We
use the notation wv(k) ~ N(0, Q(k)) to indicate that this noise
source is assumed to be zero mean Gaussian with variance Q(k)
[12].

The measurement model expresses a sensor observation in terms

of the vehicle position and the geometry of the beacon being
observed and has the form

z2;(k) = hy(p;, x(k)) + wi(k),  wi(k) ~ N(0, R;(k)).

@)
The observation function h,(p;, x(k)) expresses an observed mea-
surement z;(k) as a function of the vehicle location x(k) and
beacon location p;. This observation is assumed corrupted by a
zero-mean Gaussian noise disturbance w;(k) with variance R (k).
The form of the observation function A,(-,- ) depends on the sensor
employed and the type of beacon being observed.
The goal of the cyclic computation is to produce an estimate of
the location of the robot?> £(k + 1|k + 1) at time step k + 1

2The term X(i| j) should be read as ‘‘the estimate of the vector x at time
step i given all observations up to time step j.”
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Fig. 2. The localization algorithm.

based on the estimate of the location X(k | k) at time step k, the
control input #(k) and the new beacon observations z ;(k + 1). The
algorithm employs the following steps: prediction, observation,
matching, and estimation. Fig. 2 presents an overview of this cyclic
process. We state the Kalman filter equations without derivation and
refer the reader to Bar-Shalom and Fortmann [2] and Smith et al.
[20] for more details.

A. Prediction

First, using the plant model and a knowledge of the control input
u(k), we predict the robot’s new location at time step kK + 1:

2(k+1]k) = F(2(k|k),u(k)). 3)

We next compute P(k + 1] k), the variance associated with this
prediction

P(k+ 1| k) = VFP(k|k)VFT + Q(k) (4)

where VF is the Jacobian of F(-,-) obtained by linearizing about

the updated state estimate X(k | k). Next, we use this predicted

robot location to generate predicted observations of each geometric
beacon p;

2(k+ 1) =h(p;, (k+1]k)),

B. Observation

i=1,...,N,. (5

The next step is to actually take a number of observations
Z;(k + 1) of these different beacons and compare these with our
predicted observations. The difference between a prediction Z,(k +
1) and an observation z;(k + 1) is termed the innovation, and it is
written as

vk +1) = [2,(k+1) - £,(k +1)]
=[5,k +1) - b(p;, 2(k + 1]K))].  (6)

The innovation covariance can be found by linearizing (2) about the
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prediction, squaring, and taking expectations
8;;(k + 1) = E[v;(k + 1)v5(k + 1)]
= Vh; P(k+ 1| k)Vh] + R;(k + 1)
where the Jacobian VA, is evaluated at #(k + 1| k) and p,.

™

C. Matching

Around each predicted measurement, we set up a validation gate
[2] in which we are prepared to accept beacon observations

vy (k + 1)85" (k + )v5(k + 1) < g2. (8)

This equation is used to test each sensor observation z j(k + 1) for
membership in the validation gate for each predicted measurement.
When a single observation falls in a validation gate, we get a
successful match. Measurements that do not fall in any validation
gate are simply ignored for localization. More complex data associa-
tion scenarios can arise when a measurement falls in two validation
regions or when two or more measurements fall in a single valida-
tion region. At this stage, such measurements are simply ignored by
the algorithm as outlier rejection is vital for successful localization.
This has proven acceptable thus far, but we are investigating the use
of probabilistic data association techniques [2] to resolve these
ambiguities.

D. Estimation

The final step is to use successfully matched predictions and
observations to compute X(k + 1|k + 1), the updated vehicle
location estimate. To do so, we use a parallel update procedure
[23]. We first stack the validated measurements z;(k + 1) into a
single vector to form z(k + 1), the composite measurement vector
for time & + 1, and designate the composite innovation v(k + 1).
Next, we stack the measurement jacobians Vh; for each validated
measurement together to form the composite measurement jacobian
Vh. Using a composite noise matrix R(k + 1) = diag [R;(k + 1)],
we then compute the composite innovation covariance S(k + 1) as
in (7). We then utilize the standard result that the Kalman gain can
be written as

W(k+1)=P(k+1|k)VATS"(k + 1)

to compute the updated vehicle position estimate

©)

#(k+1)k+1) =2(k+1|k) + W(k+1)v(k+1) (10)
with associated variance
P(k+1|k+1)=P(k+1|k)
- W(k+1)S(k+1)WT(k+1). (11)

Fig. 3 shows a variety of simulated sonar runs that illustrate the
localization process. Fig. 3(a) is a run with no visible beacons,
showing how position uncertainty grows in accordance with the
system plant model [see (1)] if no sensor observations are available.
Fig. 3(b) shows the use of a wall as a beacon. The only part of a
specular planar tdarget that is visible to a sonar sensor is the portion
of the wall that is perpendicular to the incident sonar beam. Thus,
uncertainty grows as before for the first two cycles of the filter.
After the wall cdmes into view, range measurements to the wall
provide a position update perpendicular to the wall, while uncer-
tainty continues to grow in the parallel direction. Fig. 3(c) and (d)
shows position estimation by using range updates from multiple
walls. As different walls come in and out of the sonar’s view,
uncertainty is reduced in different degrees of freedom.
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(c) (d)

Fig. 3. Simulations illustrating the use of walls as geometric beacons.

II. LocaL1ZATION USING A SINGLE ROTATING SONAR

In this section we present an implementation of the navigation
algorithm based on a simple mobile robot with point kinematics,
equipped with a single servo-mounted sonar. (The Appendix sum-
marizes our approach to extracting and predicting beacon informa-
tion for the standard Polaroid sonar system that is used in both of
these implementations.) The results we present here are taken from
an experiment where the vehicle’s position was accurately measured
by hand at a sequence of positions from which real sonar scans were
taken. The Kalman filter was then run off-line by introducing
artificial process noise to the position estimates.

Fig. 4 illustrates one cycle of the localization algorithm. The
system has a 2-D global representation of the environment consist-
ing of a list of line segments and the corners they define, assumed
known with absolute confidence. The vehicle starts from a known
location. This starting point is the left-most triangle in Fig. 4(a).
The initial state covariance matrix P(0 |0) is set to zero. We show a
run in which observation is suppressed for the first two time steps.

A. Prediction and Observation

Fig. 4(a) shows a sonar scan of 612 measurements taken at time
step 3. Based on the predicted vehicle location, Fig. 4(b) shows
predicted beacon observations generated using (5), with correspond-
ing validation regions generated using (7). The validation regions
take the form of circular arcs blurred in the perpendicular direction
by range measurement noise and uncertainty in the a priori vehicle
position estimate. In conjunction with this, Fig. 4(c) shows regions
of constant depth (RCD’s) extracted from the original scan using a
simple thresholding algorithm.

B. Matching

Fig. 4(d) shows the result of matching the predicted RCD’s in
Fig. 4(b) with the observed RCD’s in Fig. 4(c) using (8). The figure
shows the validation regions and observed RCD’s for the seven
matches found.
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Fig. 4. Localization with a single rotating sonar. (a) Original scan dis-
played with reference to the a priori location estimate. (b) Predicted RCD’s,
with validation gates for each prediction. (c) Extracted RCD’s. (d) Matched
predictions and observations. (¢) Observed RCD’s displayed with reference
to the updated position. (f) Original scan displayed with reference to the
updated position. The triangle and rectangle show the estimated and true
vehicle positions, respectively.

C. Estimation

Using these seven matches, the vehicle’s a posteriori position
estimate £(k + 1|k + 1) and associated variance P(k + 1]k + 1)
are computed using (10) and (11). Fig. 4(e) and (f) shows the
extracted RCD’s and the original scan displayed with respect to the
updated position. This approach to localization with sonar scans,
based on matching observed RCD’s to RCD’s predicted from the
map, should be constrasted to the approaches of Crowley [5] and
Drumbheller [8], which extract line segments from sonar scans for
matching with the model. We have found that matching line seg-
ments is unreliable because the features inherent to sonar data are
RCD’s—circular arcs in Cartesian coordinates—not straight-line
segments.

IV. LocALIZATION USING Six FIXED SONARS

In this section we present an implementation of model-based
navigation using the ‘‘Robuter’’ mobile vehicle. This vehicle uses
six fixed sonars in a ‘‘ring’’ formation to provide range informa-
tion. Fig. 5 shows a complete run with localization being performed
repeatedly as the vehicle moves at an approximate speed of 30
cm/s. Fig. 6 shows various stages in this run.

A. Initialization

The vehicle starts from a known location in the corner of the
room as shown in Fig. 6(a). In the figure, the triangle represents a
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priori location and the rectangle represents the a posteriori esti-
mate. The initial covariance P(0|0) was set to zero. The environ-
ment is approximately 12 m in length. The line segment model was
obtained by measuring the room by hand.

B. Motion Prediction

The vehicle moves continuously, following a sequence of
straight-line motions and on-the-spot rotations supplied by a trajec-
tory planner. The plant noise matrix Q(k) was chosen to be
diagonal, with the values 0, = 0, = 1.5cm and 0, = 1°.3

C. Data Acquisition and Measurement Prediction

Each time a set of six range readings is acquired, a reading from
the vehicle’s odometry system is made. The odometry measurement
is used to provide a prediction [using (3)] of the vehicle’s location at
which these sonar range readings were acquired. At this predicted
location, predicted range measurements are generated to the nearest
wall to each transducer using the planar target model described in
the Appendix. We assume a maximum value of 8 for all planar
targets of 26°. If the vehicle orientation estimate is not within 13°
of being perpendicular to the target, a NULL prediction that cannot
be matched is generated.

D. Matching

These predictions are matched to the observed range values using
(8). The innovation variance S(k + 1) is computed using ¢, = 1 cm
for the standard deviation of range measurement error. A value of 1
was used for g, the validation gate ‘‘number of sigmas,’’ in (8).
Fig. 6(b) shows the vehicle at a location in which only two of these
six range readings have been matched to their predictions. In this
case only these two matches are passed on to the vehicle position
update step. Likewise, Fig. 6(c) and (d) shows five and three
matched range readings, respectively. Approximately 30% of the
798 range measurements taken during the run shown were matched
for an average of just under two matches out of six readings per
time step.

E. Vehicle Position Update

Matched range readings are then used to update the predicted
vehicle location using (10). The resulting location estimate and its
confidence depends on which range readings have been matched.
For example, Fig. 6(b) shows that two matched range readings have
reduced the size of the error ellipse in a direction perpendicular to
the readings themselves, while Fig. 6(c) shows that the five matched
range readings have reduced uncertainty in all degrees of freedom.

The localization system was written in C and run on a Sun-3
workstation, communicating to a vehicle controller running in LISP
on a Sun-4, which in turn supplied updated position estimates to the
vehicle’s on-board 68000 microprocessor only at the completion of
each straight-line motion segment. The filter achieved a cycle time
of approximately 1 s. The most computationally expensive part of
the algorithm as implemented is the time spent generating predicted
observations. This time can be significantly reduced by presorting
the map of beacon locations, but this facility was not in use when
the run shown here was carried out.

Sonar measurements can only be matched if the sonar transducer
was estimated to be nearly perpendicular to a planar target when the
measurement was obtained (within 13°). Note that, in Fig. 5, during
the second leg of the vehicle’s clockwise journey around the room,
the error ellipse is quite large in comparison with the rest of the run.

3These values were chosen by an empirical evaluation of the localization
capabilities of the vehicle’s built-in odometry-based controller.
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each straight line component of this motion sequence, matching 30 percent of all sonar measurements taken during the run.
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Fig. 6. A localization sequence for the skids vehicle. The triangle is the a priori position estimate, the rectangle is the a
posteriori position estimate, and the ellipse shows the confidence in the estimates of x(k) and y(k). (a) Initial position, with range
measurements from all six sensors displayed. (b}, (c), and (d) Various stages in the run, only displaying the current validated sonar

range values that have been used to update position.

During this part of the run, no wall beacons are visible because the
vehicle’s estimated orientation is about 110°. As a result, no
predicted measurements are generated, no matches obtained and no
motion update performed. The vehicle recovers when it subse-
quently rotates to be nearly perpendicular to the walls of the room,
as shown in Fig. 6(c).

Hence, with the configuration of the six fixed sensors on this
vehicle (one sonar facing forward and backward, two facing left and
right), the system is restricted to follow paths that are nearly
perpendicular to the walls of the room. To overcome this limitation,
for our current research the vehicle is being fitted with servo-
mounted sonars of the type used in the first implementation to
endow the vehicle with the ability to track corner, cylindrical, and
planar beacons in its environment for precise localization while
executing an arbitrary trajectory. Despite this restriction, the system
demonstrates that accurate localization is achievable with sonar,
provided one has a good sensor model. For walls and corners, sonar
provides precise distance measurements, but other times misleading

multiple reflections; the key to using sonar is knowing when it is
telling the truth. This system achieves this by only attempting to use

updates from planar targets and using tight validation gates to reject
outliers.

V. DISCUSSION AND SUMMARY

We have developed a mobile robot localization system that inte-
grates a variety of beacon observations for input to a Kalman filter
to maintain a robust vehicle location estimate. We have presented
the application of this system on two different mobile robots that
employ sonar as the principle navigation sensor.

The two implementations reveal the tradeoffs between the use of
servo-mounted sonars versus a ring of fixed sonars. Stopping a
vehicle to obtain a densely sampled scan from a single location takes
a great deal of time. A fixed ring provides a spread of measurements
over a range of orientations very quickly, permitting dynamic
‘‘on-the-fly’’ position estimation. However, a single unsupported

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 7, NO. 3, JUNE 1991
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range measurement obtained by an isolated sonar in a ring has no
local support to aid in its interpretation. Single unsupported range
measurements have a large angular uncertainty of about 25°, but
this varies widely depending on the target being observed. This
angular uncertainty is uniformly distributed. For this reason, we
do not use the orientation of the sensor directly in the EKF
equations—updates of the vehicle’s orientation come implicitly
through range updates to different sensors around the vehicle’s
perimeter. For strong targets the range errors are small enough (less
than 1 cm) to be adequately modeled as Gaussian.

In contrast, densely sampled sonar scans obtained from a station-
ary location provide the potential for bottom-up data interpretation
without an a priori model [17]. Angularly adjacent range measure-
ments of nearly the same range can be combined to constrain the
ambiguity in the true bearing to the target. Rotating the sensor to
acquire a densely sampled scan takes time, but the local support
inherent in a densely sampled scan makes data interpretation easier.

There are a number of limitations to the current version of this
algorithm. The most obvious is the restriction that the environment
needs to be known a priori; we are investigating the problem of
navigating in the absence of an initial model in our current research
[171, [18]. However, our extensions to handle unknown and chang-
ing environments firmly rest on the competence of localization
provided by the algorithm presented here. Although these imple-
mentations have made exclusive use of sonar, the principles apply
equally well to other sensors, provided that a suitable sensor model
has been developed. In summary, we reiterate our initial comments
that navigation for autonomous mobile vehicles remains an impor-
tant unsolved problem for which a solution must be found before
many potential applications can be realized.

APPENDIX
EXTRACTING BEACON INFORMATION FROM SONAR DATA

The key to interpreting sensor information is to have a good
model of sensor behavior [10]. Indeed, a perfect sensor model
would be able to exactly predict what sensor data can be observed
from any given configuration of objects. The sensor model is used
by our algorithm in two crucial ways: 1) predicting beacon obser-
vations based on the @ priori vehicle position estimate and 2)
extracting beacon observations form sensor data. Our model of
sonar follows from the work of Kuc and Siegel [16]. They describe
a physically based model of sonar that considers the responses of
corners, walls, and edges in a specular environment. One key
conclusion from their work is that corners and walls produce
responses that can not be distinguished from a single scan. The
responses from these specular targets take the form of a sequence of
headings over which the range value measured is very accurate
(typically within 1 cm.) Fig. 7 shows a typical, densely sampled
(612 range readings), sonar scan obtained in an uncluttered office
scene. With this high sampling density, one can see that the scan is
composed of sequences of headings at which the range value
measured is essentially constant. We refer to such sequences as
regions of constant depth (RCD’s).

The applicability of this model might seem limited by the fact that
most environments present a complex mixture of both diffuse and
specular targets. However, the vast amount of sonar data that we
have taken in our research has led us to conclude that almost all
measurements obtained with the off-the-shelf unmodified Polaroid
ranging system in typical scenes (e.g., offices and corridors) are in
fact the result of specular reflections. Fig. 7 shows that, in a typical
indoor scene, many ‘‘false’” range readings are produced by the
system when the beam is oriented at high angles of incidence to
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Fig. 7. A typical sonar scan.

planar targets. At these high angles of incidence, the sound energy
emitted from the side-lobes of the beam that strikes the wall
perpendicularly is not of sufficient strength to exceed the threshold
of the receiving circuit. As a result, the first echo detected by the
system is a multiple reflection by some other part of the beam
reflecting specularly off the wall to some other target and then back.
These multiple reflections have been observed by many other re-
searchers, and have commonly been referred to in the literature as
“‘specularities’” [6]. We feel this term is misleading because Kuc’s
model shows that most accurate range measurements produced by
planes and corners are in fact due to specular reflections.

To prevent this confusion, we define the order of a range
measurement as the number of surfaces from which the sound has
reflected before returning to the transducer. Orienting the transducer
perpendicular to a planar surface such as a wall produces a first-order
range reading. Corners produce second-order range readings be-
cause the sound has reflected specularly off two surfaces before
returning back to the transducer. Multiple reflections will produce
third-order and higher range readings. A crucial task in interpreta-
tion is to eliminate these higher order reflections which, if naively
taken to be the distance to the nearest object, yield false range
readings.

Another conclusion Kuc and Siegel reach is that (convex) edges
give rise to diffuse echoes that will be weaker in intensity than
reflections from walls or corners. In a recent paper Kuc [15] shows
that the primary task for obstacle avoidance is to ‘‘look’’ for edges
since these are the most difficult to observe. This implies that, for
the purpose of localization, edges are less useful as beacons. To
incorporate diffuse edges in our terminology, we refer to diffuse
reflections from edges as zeroth-order range readings.

We define 8 as the visibility angle of a given target, correspond-
ing to the angles over which the RCD is observed. Fig. 8 shows the
result of extracting RCD’s of width 8 = 10° from the scan in Fig. 7
using a simple thresholding algorithm, superimposed on a line
segment model of the room. Here we can see RCD’s corresponding
to walls, corners, edges, and higher order targets. To use first- and
second-order RCD’s for navigation, we need to define which geo-
metric targets in the environment produce them. First-order RCD’s
principally arise from planes and cylinders. Most second-order
RCD’s arise from corners. Kuc and Sigel show that corners and
walls will appear the same in a scan from a given location [16]. A
cylinder is a first-order target that appears similar to a plane or
corner from a single location. Higher order multiple reflections also
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Fig. 8. Regions of constant depth (RCD’s) of width § = 10° extracted
from this sonar scan, superimposed on a hand-measured model of the room.
We can see four first-order RCD’s from the four walls of the room, three
second-order RCD’s from corners, and a single fourth-order RCD resulting
from a multiple reflection off the top wall into the lower right-hand corner of
the room. There is a single zeroth-order RCD resulting from a weaker
reflection from the edge in the lower right-hand region of the room.

produce RCD’s that if considered in isolation from a single location
could be interpreted as any of these targets.

Qualitatively, the shape of the sonar beam pattern dictates that the
width of an RCD is determined by a target’s ability to reflect
acoustic energy—the stronger the target, the wider the RCD. How-
ever, computing in general the precise visibility angle B; of target
D; is a complicated process involving a multitude of factors, includ-
ing the complex pattern of the beam, limitations in the ranging
system hardware, and occlusion by other targets. We are addressing
these issues in our current research, but for our purposes here, the
important conclusion is that planes, cylinders, and corners are the
strongest targets, and hence we can obtain precise range measure-
ments to these targets over a wide range of viewing angles using the
standard Polaroid ranging system.
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