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Data Association in Stochastic Mapping Using the
Joint Compatibility Test

José Neira and Juan D. Tardés

Abstract—In this paper, we address the problem of robust data A data association algorithm is composed of two elements: a

association for simultaneous vehicle localization and map building. testto determine the compatibility between a sensor observation

We show that the classical gated nearest neighbor approach, which g 5 map feature given an estimation of the vehicle location,
considers each matching between sensor observations and features d lecti iterionto ch the best tchi
independently, ignores the fact that measurement prediction errors and aselection CrIENomno cloose the RSt malichings among

are correlated. This leads to easily accepting incorrect matchings the set of compatible matchings.
when clutter or vehicle errors increase. We propose anew measure-  In stochastic mapping [3], this problem is frequently ad-
ment of the joint compatibility of a set of pairings that successfully dressed using the gated nearest neighbor (NN) algorithm, a
rejects spurious matchings. We show experimentally that this re- ¢|55sical technique in tracking problems [1]. The normalized
strictive criterion can be used to efficiently search for the best so- . ; . . L
lution to data association. Unlike the nearest neighbor, this method SAuared innovation test is used to determine compatibility, and
provides a robust solution in complex situations, such as cluttered then the NN rule (smallest Mahalanobis distance) is used to
environments or when revisiting previously mapped regions. select the best matchings. This technique, sometimes along

Index Terms—Data association, Mahalanobis distance, nearest with additior.1al hel_JriStiCS_: such as accepting matchings only
neighbor, stochastic mapping. for observations with a single candidate map feature, has been
used by many authors [4]{[7].

The great advantage of this solution, apart from its conceptual
simplicity, is itsO(mn) computational complexity. However, a

HE USE of a sensor mounted on a vehicle to build aneery important fact is being overlooked: the innovations in the
update a map of the environment where the vehicle igatchings of different observations obtained from the same ve-

navigating poses a specially daunting data association probldngle position arecorrelated As we show in Section 1l this
Data association consists of relating sensor observations wighises the individual innovation compatibility test to be too per-
the elements included in the map. Obtaining a correct solutionissive: it easily accepts hypotheses formed by mutually incon-
is crucial, because a misassignment causes location estimasistent pairings, which leads to divergence in the estimation of
methods, such as the extended Kalman filter (EKF), to divertjee state.

[1]. The power of this test to detect spurious matchings decreases
Data association may be posed as a search problem in aisevehicle imprecision or clutter grow. NN is reliable for features
space of observation-feature correspondences [2]. The caueh as segmented walls from laser sensors, where clutter is low
plexity of finding correspondences between a setwo$ensor and sensor precision is high, as long as vehicle error is moderate

measurements andmayp features is exponential on the numbdb]. However, its reliability quickly plummets as the uncertainty

of measurements: if there ag+ 1 possible pairings for thigh ~ of features relative to the vehicle increases, as is always the case
measurement (allowing repetitions and including the possibilityhen revisiting previously mapped regions after a long loop.
that it be spurious), the correct hypothesis is to be found amoRgliability also plummets when using less precise sensors, such
an exponential space ¢, (n; + 1) alternatives. Two main as sonar [8], or edge-based monocular vision [9].

=1

factors determine the size of the solution space: More robust algorithms have been proposed, such as multi-

1) Clutter. bothm andn; are proportional to the density of tracking, which obtains hypotheses whéeenporalcoherence
features in the environment. is guaranteed. Multitracking actually increases complexity,

2) Imprecision n; also grows with the imprecision of thesince it is necessary to maintain one map per hypothesis [10],
vehicle location and of the sensor being used. [11]. Sensor-specific solutions, such as visual tracking [12],
can performlocal data association very efficiently, but cannot
be used to solve the crucial revisiting problem. Alternative

. . . _ aéaproaches search for the best solution in the vehicle pose
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tree approach. However, pairwise compatibility does not guavhich states that the relative location between the measurement
antegjoint compatibility [2], and additional validations are re-and the corresponding feature must be zero.
quired. The purpose of a data association algorithm is to generate a

In this work we define a criterion that, taking explicitly intohypothesisH,,, = {j1, ..., 7=} that pairs each measurement
account the correlations between the innovations, determigswith a map featurd”;, (whenyj; = 0, the measurement is
the joint compatibility of a set of pairings. We show that thisonsidered spurious). This exponential solution space can be
criterion is much more restrictive than the individual innovatiorepresented as anterpretation treeof m levels [2]; each node
test, and that it can be efficiently computed. The use of this cet level:, called ani-interpretation provides an interpretation
terion in a branch and bound (BB) search algorithm results for the firsti measurements. Each node hast+ 1 branches,
a very robust solution to data association, with an efficient traerresponding to each of the alternative interpretations for mea-
versal of the solution space. We compare both the robustnsasement; (including the possibility that the measurement be
and efficiency of the NN and BB algorithms in an experimergpurious and allowing map feature repetitions in the same hy-
with a Labmate mobile robot equipped with a trinocular visiopothesis). Data association algorithms must select in some way
system, building a map along a loop trajectory of 60 m. We shawne of the|['" | (n; + 1) m-interpretations as the correct hy-
experimentally that in simple situations both algorithms are rpothesis, carrying out validations to determine the compatibility
bust, with equivalent performances. When there is an incredssween sensor measurements and map features. Once a hypoth-
in clutter and/or imprecision, NN breaks down, while BB mainesis has been obtained, it can be used to improve the estimation
tains its robustness, with a computational cost that is acceptabifex.
for real-time applications.

B. Individual Compatibility Nearest Neighbor

Il. THE CLASSICAL NEAREST NEIGHBOR APPROACH The individual compatibility nearest neighbor (ICNN) simply
pairs each measurement with the feature considered most com-
patible according to (1). Since usually the measurement func-

In stochastic mapping [3], [6], the state of a vehifleand i, is nonlinear, linearization around the current estimation is
of a set ofn features{ Iy, ..., F,, } of the environment where necessary

the vehicle is navigating is represented by a vestdret x be

the estimation of the vehicle and feature locations, Bntthe N .
covariance of the estimation error £ij: (6, y) = hyj + Hij,(x = %) + Gij(y -3) - ()

A. Problem Definition

Rn where
)A(F PN 8f77
%= ' hyj, =1, (% 9); Hij = 52
: &3
)A(Fn Gijz. _ 8;717
Pr PRFI s PRFn y (x,9)
PﬂFl Pr, - Pgp, Vector h;;, represents the innovation of the pairing between
P= _ _ _ _ . E; andFjy,. From (1) and (2) its covariance can be obtained as
PL. PL, - Pp Cij, =H;;,Cov(x — %) H}; + G;;,Cov(y — §) G},
—H.. T . T
In a similar way, lety represent a set of» measurements =Hj, PH;;, + Gij; 8Gj, - ®3)
{E:, ..., E,} of environment features, obtained using a

sensor mounted on the vehicle, affected by white Gaussian' "€ individual compatibility (IC) betweed; and £}, can be
noise determined using an innovation test that measures the Maha-
lanobis distance as follows:
=y +Au7 N0, 8) D}, =hj; Clhy;, < x3 ., (4)
VE Se, -+ SeE.
. §— whered = dim (f;;, ) and« is the desired confidence level. This
’ test, applied to the predicted state, determines the subset of map
Ve, Sgl g, Sk, features that are compatible with a measurentgntand thus
the value ofn;).
Wherey is the theoretical value of the observations. A measure-The NN selection criterion for a given measurement con-
mentE; and its corresponding featufg, are related by am-  sjsts of choosing among the features that satisfy (4), the one
plicit measurement functiofi8] of the form with the smallest Mahalanobis distance. This algorithm is fre-
quently used given its conceptual simplicity and computational

f,(x,y)=0 (1) efficiency: it performsmnn compatibility tests, making it linear

<>
Il
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Fig. 1.  Monodimensional robot with two features. Step 1: map creation frol , ‘ ‘ . ‘ ‘ . ‘ _ :Feature1
two sensor measurements taken from initial position. Step 2: data associat °z o3 04 05 05 07 08 08 Y
problem afte 1 m motion with three sensor measuremerits, spurious. X, =xg "y1 ’}‘/3 y,

Intervals represerto uncertainty bounds.
Fig. 2. Simulation of a monodimensional robot. Each axis represents the

with the size of the map. For a Iar@ji, its inversion may be a predif:ted Iopation of a feature with respect to the robot locatian i »
costly operation. Several methods to calculate lower bounds f8f 72 — 7= respectively) together with the three actual measurements
5 L. . y1, g2 and gs. The big square region represents the uncertainty of each
D;; have been proposed, which in some cases allow to reject faiction considered independently, while the ellipsoidal region represents

pairing betweer®; and I, without invertingC;;, [19]-[21]. this uncertainty considering the correlation between the predictions. Each small
group of a square and a circle represents an alternative matching hypothesis,

C. Limitations of the Nearest Neighbor with its measurement uncertainty.

To illustrate the limitations of this approach, consider the
simple example of a robak that traverses a monodimensionafegion (Fig. 2). From this perspective, in our example it is clear
space, where there are two features (Fig. 1). Assume that 8t pairings{(g., 21), (93, 22)} are not simultaneously ac-
robot is equipped with a sensor capable of detecting these fégptable: the region of uncertainty of this hypothesis (circular,
tures. At step 1, the robot observes the two features, and t@\fpn that the precision of this sensor has been considered con-
are included in the stochastic map. At step 2 the robot moves§t@nt) does not intersect the ellipsoidal region of acceptance of
m, and obtains three measuremetjis:g», andis (spurious). the predicted measurements. Only the region corresponding to
The uncertainties in robot motion and sensor measurements/aothesis{({1, 21), (J2, £2)} does.

or = 0.1 andog = 0.02. In this case, we have This simple example shows that with ICNN there is a high
risk of obtaining an inconsistent hypothesis and thus updating
fij(x,y)=2r+yi—x;, =0 the state vector with a set of incompatible measurements, which

will cause EKF to diverge. As vehicle error grows with respect
to sensor error, the ratio between the area of the square and the
In Fig. 2, the big square represents the acceptance re- area of the ellipse grows (due to the increase in the correla-
gion of IC, and the six small squares represent the uncertaitign between the vehicle and the predicted measurements), and
of the six main pairing hypotheses (we consider here the dbus the discriminant power of IC decreases. For this reason, the
ditional restriction that two measurements cannot come froaNN algorithm is adequate only when these two conditions are
the same feature). According to IC, only measuremgnis Satisfied
compatible with featuret; (horizontal axis in Fig. 2), while 1) The robot error is smaller than the distance between the

h,; =&r + 0 — ;.

both ¢, and{s are compatible wittt, (vertical axis). Thus IC features, so that it is unlikely that two features pass the IC
accepts the two possible hypothedés,, 1), (72, 22)} and test for the same observation.
{(in, 1), (43, T2)} because their squares intersect the square2) Spuriousness is sufficiently low so that it is unlikely that
region of acceptance. Ag lies closer taz; — &g thang,, NN a spurious measurement will fall inside the acceptance
would prefer the second hypothesis, pairiigwith &5 incor- region of some feature.
rectly.

This occurs because IC considenslividual compatibility IIl. OBTAINING CONSISTENTHYPOTHESES

between a measurement and a feature. However, individually ] o )

compatible pairings are not guaranteed tqdietly compatible A Sequential Compatibility Nearest Neighbor

to form a consistent hypothesis. Even if sensor measurementé simple way to assure that the resulting hypothesis
are independent, correlations in the stochastic map are alwagstains jointly compatible pairings is to use a sequential
present and cannot be ignored [5]. Furthermore, the predictmmpatibility nearest neighbor (SCNN) algorithm. Sequen-
measurements are always correlated because they are affetisédcompatibility (SC) is an innovation test that determines
by the same robot position error. Graphically this means thagmpatible features for a measureméft given that a hy-
for a given confidence level, the region of acceptance of the ppsthesisH;_; = {ji, ..., ji—1}, corresponding to pairings
dicted measurements is altipsoidal regioninstead of a square {(E1, F},), ..., (E;—1, F;,_,)} has been established and
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has been used to obtain an estimation; of the state. If H,;,
the Mahalanobis distanc@fji, corresponding to a feature H. — Oy, _ Hy,_, _ : @)
F;., satisfies (4) given(x;_1, P;_1), the pairing (E;, F},) Tt IX |z 9 H,;, :

will be consistent withall pairings in;_1. If this feature is H,.
considered the nearest compatible with measurerignthe

measurement can be used to obtain the new estikaiaf of Gy, Gui

the state vector and its covarianBe. In the next iteration, a Gy, = Hi = < ”) = : . (8)
pairing for measuremert;; will be determined by applying 9y *,%) Gij, '

(2) and (4) to the updated state estimatian, P;). Gij;

“SCNNis anO(mn) + O(mn?) algorithm, quadratic with the  The JC of pairings belonging #; can be determined using
size of the map: for each of the measurements, SCNN re-an, jnnovation test on the joint innovatidn,, as follows:

quires evaluating compatibility with the map featuresp(n),

and updating the stochastic map(»?) (recent works address Cy, = HHZ.PH%. + Gy, SG%_ 9)
the reduction of this complexity [22], [23]). It is appealing be- 9 T el 5

cause it guarantees that all pairings belonging to the resulting Dy, =1y, Gy ha, <Xa,a (10)
hypothesis are jointly compatible. However, it ignores the fagfherec,,. is the covariance of the joint innovatiomjs the de-
that these pairings may anyway Ineorrect a feature may be gjreq confidence level, antl= dim (£, ). The size of botfs,
compatible with an unrelated or spurious sensor measuremgnf, C,,. increase with the size of h{/pothe§i{s. This makés
justby chance. In our example, if SCNN tries to pair observatiqfis test potentially expensive to apply. The calculation of lower
gs inthe first step, it will pair it incorrectly with; (Fig. 2). The o nqs ofD3,. to try to determine whether the hypothesis can
pairing will be used to re-estimate the stochastic map, and g@ rejected without invertin'y, is pointless in this case, since

more pairings will be acceptable in subsequent steps. This rigkine pairings ir; are already known to be individually com-
increases with clutter, and robot or sensor error. In this gree, Ntible.

algorithm, the decision to pair a measurement with its most com-|, the worst case, verifying the joint compatibility of a set of
patible feature is never reconsidered, and thus spurious pairiﬁgﬁmgs in a hypothesis involves the inversion ofamx m ma-
may be included in the hypothesis and integrated in the stateﬁ&—’ O(m?3). This complexity can be reduced @(m?) using
timation, especially during the initial iterations. This leads agajfe tact that joint compatibility can hiacrementallyevaluated:
toa r_eduction in uncertainty with no reduction in error, i.e., "biven a hypothesig(;_, formed by jointly compatible pairings,
consistency. with its correspondindyy,_,, Cy! ,andD3, , and given a
pairing (£;, F},), with correspondingd;;,, andC;;,, the Ma-
B. Joint Compatibility Branch and Bound halanobis distanc®? corresponding td{; can be calculated
Reconsideration of the established pairings is necessaryafofollows.
limit the possibility of accepting a spurious pairing. The prob- 1) CalculateC;{}. From (9) we have that
ability that a spurious pairing is jointly compatible with all the
pairings of a given hypothesis decreases as the number of pair- Cr = <HHH ) P (HZ HZ )
ings in the hypothesis increases. For this reason, we require a ! Tt e
search algorithm to traverse the interpretation tree in search of
the hypothesis that includes the largest numbgoiotly com- + < ) S( G%;H G;—Fji )
patible pairings. SC could be used to restrict the search to tree i
nodes representing hypotheses with jointly compatible pairings, Cun,., wi
but it requires the update of the whole stochastic map for each = < . )
pairing considered;(n?), which can be computationally very Wi 4
expensive in a search algorithm. where
We use an alternative formulation to establish the consistency T T
of a hypothesig?; = {1, ..., j:}, called joint compatibility wi = Hi;; PHy, | + G SGyy,
(JC), which uses a joint implicit functiofy,, (x, y) = 0, where

iji

GH;71

According to the partitioning method for matrix inversion
[24], matrix C;{f can be calculated as

by [0 K, LT
o= (0| ilin) @
fij. (%, ) where
~hy, 4+ Hy, (x = %) 4 G (y — §) (5) Lt
- N; = (Cij, - wiCyt wl)
hy, =fx, (%, §) = <h]: ) = : (6) Li= —-Niw;Cy) |
b hyj, K, =Cy  +LIN;'L;.
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Fig. 3. Images of the trinocular vision system at step 48 of the robot trajectory.
2) CalculateDs3, o e :
2 _ 17T -1 :
DHi _hHgCHi hHi

K; LT> By

— (nl m;(
( Hi—1 i ) Li Ni

h
:hai_le‘hHg_l =+ 2hz;7 LihHg_l =+ hz;7 Nzhuz

iji

=D}, +hf, LN 'Liby, ,
+ 2hg}f LihHFl + hz;z Nihiji . (12)

An alternative method for the incremental calculation of the
Mahalanobis distance can be found in [21].

JC is equivalent to SC except for linealization errorsi,
satisfies (10), the pairingZ;, F,) is compatible with all pair-
Ings in7;;. Using JC has several advantageS: Fig. 4. Stochastic map obtained during the first 18 steps of the robot

+ JC can be tested without recomputing the stafean trajectory (solid line) and true robot trajectory until step 48 (dashed line), with
O(n2) operation. resulting uncertainty in the robot location after continuing the robot trajectory

+ The nversion of a growing, matrixis avoided. Infact, 194 Ypdatng e stochastc map, A map of te emironment ot ine)
only the inversion of a constant size matf¥ is neces-
sary.

* Most of the elements involved in the calculationiof,
(h;;,, H;;,, C;;,) have been previously computed to assert A Labmate mobile robot equipped with a trinocular vision
Individual Compatibility. system was programmed to perform a loop trajectory of around

The joint compatibility branch and bound (JCBB) algorithn©0 m. The ground truth for the robot location along the trajectory
proposed in this work traverses the interpretation tree in seamhs obtained using theodolites. Trinocular vision provided a set
of the hypothesis with the largest number of nonnull jointlpf two-dimensional (2-D) points corresponding to corners, wall
compatible pairings. This monotonically nondecreasing critend window frames, etc., obtained by establishing correspon-
rion can be used tooundthe search in the interpretation tree [2]dences between vertical edges extracted from the three images
The quality of a node at levé| corresponding to a hypothesis(Fig. 3).

'H;, can be defined as the number of nonnull pairings that can beContinuouslocalization and map building using this infor-
established from the node. In this way, nodes with quality lowemation is fairly straightforward. Thus, we designed an experi-
than the best available hypothesis are not explored. The neamsht to determine how well the SCNN and JCBB data associa-
neighbor rule using the Mahalanobis distade® can be used tion algorithms solve the more complex and importantsiting

as heuristic folranching so that the nodes corresponding t@roblem A stochastic map of a corridor was constructed [5]
hypotheses with a higher degree of joint compatibility will beising the information obtained in the first 18 steps of the robot
explored first. trajectory (Fig. 4). The robot trajectory was continweithout

As experiments will show, JC is a very restrictive criteriompdating the stochastic map until the first corridor was visible
to traverse the interpretation tree, limiting the combinatorial eggain (step 48). Fig. 5 depicts the situation from the robot's
plosion of the search due to increasing vehicle error. perspective: the measurements obtained by the trinocular vision

IV. EXPERIMENTS
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Fig. 5. The revisiting problem at trajectory step 48: (a) 2-D points obtained by trinocular vision and (b) predicted location of map featuresutitio thsp
robot location.
100 random locations

Solutions SCNN Solutions JCBB

28 2s

Moderate Uncertainty

Large Uncertainty

Fig. 6. Solutions for 100 random robot locations using SCNN and JCBB for moderate and for large uncertainty.

system, and the predicted location of map features relative to ttedeg (bottom). It can be seen that SCNN exhibits a great dis-
robot. It is clear that robot error and environment clutter malgersion in the solutions obtained, which becomes more notable
the number of candidate features for each measurement laageobot error grows. In contrast, the solutions obtained by JCBB

and the situation very confusing. remain grouped around the true robot location even for large un-

A Monte Carlo simulation was performed to generate 10ertainty values.

random positions at 10 different fractions of the odometry un- In order to measure the robustness of both algorithms to the
certainty at step 48. Both SCNN and JCBB were then executéttrease in robot error, the 100 hypotheses obtained by each
and the estimations of the robot location according to the r@ere compared with the true associations, established by hand.
sulting hypotheses were compared with ground truth. In the fetesults [Fig. 7(a)] show that the robustness of SCNN drops

lowing, we discuss the results from two perspectives: robustnegsckly with the increase in error, making this algorithm unsuit-

to robot error and computational efficiency. able for loop closing situations. In contrast, the probability of
success of JCBB is always higher than that of SCNN, remaining
A. Robustness of SCNN Versus JCBB above 0.9.
Fig. 6 shows results for frontal, lateral, and angutar)(er- It should be noted that the JC test is based on the lineariza-

rors 0.15m, 0.11 m, and 1.4 deg (top) and 1.55 m, 1.16 m, amah of the relation between the measurements and the state [see
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Fig. 7. Performance of JCBB and SCNN versus robot positiorerror: (a)
fraction of correct hypotheses (with no spurious pairings) obtained and
computational cost (in FLOPS).

ig. 9. Computational cost of the different parts of our JCBB algorithm versus
mber of observations.

) ) . a highly restrictive criterion. We can see that the total number
(2)]. JCBB will remain robust to robot error as long the lineags nodes in the solution space grows several orders of magni-
approximation is reasonable. Thus, the adequacy of using JCBRe hetween 0.2 m and 2 m in position error. But this is not the
is determin_ed_ by the robot orientation error (in practice, we hay¥gqe for the maximum number of jointly compatible nodes and
found the limit to be around 30 deg). maximum number of nodes visited by branch and bound. This
, . is because the joint compatibility of a certain number of 2-D
B. Computational Efficiency of SCNN vs. JCBB points fundamentally depends on theilative error(which de-
That JCBB is more robust to an increment of robot error thggends on sensor and map precision), more than onahsalute
SCNN was an expected result: JCBB is a back-tracking algerror (which depends on robot error).
rithm, while SCNN is a greedy search algorithm. Given that the Results [Fig. 7(b)] show that the computational cost of SCNN
cost of SCNN is linear with the number of measurememntthe decreases slightly with the increase in robot error, due to the fact
important question is then: is JCBB, an exponential time algtitata more probable spurious pairing normally reduces the possi-
rithm, feasible? This essentially depends on two factors: 1) hdaiity of establishing more pairings. Forsmallrobot positionerror,
restrictive JC is to limit the real size of the solution space arnle cost of JCBB and SCNN are similar. For a moderate error,
2) how effective the branch and bound is to limit the search faround 1 m in position and 7 deg in orientation, JCBB executes
the best solution within this space. around twice more flops. For larger errors, up to 2 m and 14 deg,
Fig. 8 shows the variation in the maximum number of individthe computational cost of JCBB increases rapidly, although it re-
ually compatible nodes, jointly compatible nodes, and visitedains feasible inrealtime. Itisimportantto note thatthese results
nodes, all with respect to the increase in error. JC shows tofeder to edge-based trinocular vision, an especially difficult data
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association problem. Insimpler cases, suchaswallsobserved wit}s]
alaser rangefinder, the method will handle larger errors, up to the
limit imposed by the linearization errors.

Fig. 9 shows the computational cost of JCBB with respect to[9]
the increase in the number of observatiandt can be seen that
the cost of establishing individual compatibility and the cost of
updating the stochastic map grow linearly. On the other hand, [1.0]
is a known fact that the cost of the interpretation tree search i
the presence of spurious observations grows exponentially [2].
Our experiments show an asymptotic complexityxgl.53™).
This means that the number of observations must be limited t62
make this algorithm feasible in real time. In practice, selecting
the 10 or 12 more relevant observations (larger or more prd3l
cise) guarantees the robustness of the hypothesis obtained [QX]
the JCBB algorithm. Once the map is updated using this hy-
pothesis, the remaining observations can be safely associated
with the SCNN algorithm. [15]

1]

V. CONCLUSION [16]

The popular NN algorithm for data association in stochastic
mapping is very sensitive to the increase in vehicle and sensor
error. Both factors contribute to increase the probability off17]
matching a sensor measurement with an unrelated map feature.
Since NN does not reconsider the establishment of a measurgs]
ment-feature pairing, spurious pairings are easily formed and
never reconsidered. [19]

We have shown that reconsideration of the validity of pair-
ings is necessary, and thus a constrained search algorithm, su[g&
as the JCBB algorithm described in this paper, is required. The
combinatorial explosion of this backtracking algorithm with re-[21]
spect to increase in vehicle error is controlled by the use of a
restrictive validation mechanism that determines the joint comp2]
patibility of a set of pairings in the hypothesis. This greatly re-
duces the number of nodes in the interpretation tree that must
be visited, as the algorithm traverses the tree in higher level§3]
Experiments show that JCBB is not only more robust than NN
algorithms, but also feasible in terms of computational cost. [24]

In this work, we have studied the problem of refining an avail-
able estimation of the vehicle and feature state. Complementary
techniques, applicable when there is no estimation of the vehicle
location, will constitute further work.
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