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Data Association in Stochastic Mapping Using the
Joint Compatibility Test

José Neira and Juan D. Tardós

Abstract—In this paper, we address the problem of robust data
association for simultaneous vehicle localization and map building.
We show that the classical gated nearest neighbor approach, which
considers each matching between sensor observations and features
independently, ignores the fact that measurement prediction errors
are correlated. This leads to easily accepting incorrect matchings
when clutter or vehicle errors increase. We propose a new measure-
ment of the joint compatibility of a set of pairings that successfully
rejects spurious matchings. We show experimentally that this re-
strictive criterion can be used to efficiently search for the best so-
lution to data association. Unlike the nearest neighbor, this method
provides a robust solution in complex situations, such as cluttered
environments or when revisiting previously mapped regions.

Index Terms—Data association, Mahalanobis distance, nearest
neighbor, stochastic mapping.

I. INTRODUCTION

T HE USE of a sensor mounted on a vehicle to build and
update a map of the environment where the vehicle is

navigating poses a specially daunting data association problem.
Data association consists of relating sensor observations with
the elements included in the map. Obtaining a correct solution
is crucial, because a misassignment causes location estimation
methods, such as the extended Kalman filter (EKF), to diverge
[1].

Data association may be posed as a search problem in the
space of observation-feature correspondences [2]. The com-
plexity of finding correspondences between a set ofsensor
measurements andmap features is exponential on the number
of measurements: if there are possible pairings for theth
measurement (allowing repetitions and including the possibility
that it be spurious), the correct hypothesis is to be found among
an exponential space of alternatives. Two main
factors determine the size of the solution space:

1) Clutter: both and are proportional to the density of
features in the environment.

2) Imprecision: also grows with the imprecision of the
vehicle location and of the sensor being used.
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A data association algorithm is composed of two elements: a
testto determine the compatibility between a sensor observation
and a map feature given an estimation of the vehicle location,
and aselection criterionto choose the best matchings among
the set of compatible matchings.

In stochastic mapping [3], this problem is frequently ad-
dressed using the gated nearest neighbor (NN) algorithm, a
classical technique in tracking problems [1]. The normalized
squared innovation test is used to determine compatibility, and
then the NN rule (smallest Mahalanobis distance) is used to
select the best matchings. This technique, sometimes along
with additional heuristics, such as accepting matchings only
for observations with a single candidate map feature, has been
used by many authors [4]–[7].

The great advantage of this solution, apart from its conceptual
simplicity, is its computational complexity. However, a
very important fact is being overlooked: the innovations in the
matchings of different observations obtained from the same ve-
hicle position arecorrelated. As we show in Section III, this
causes the individual innovation compatibility test to be too per-
missive: it easily accepts hypotheses formed by mutually incon-
sistent pairings, which leads to divergence in the estimation of
the state.

The power of this test to detect spurious matchings decreases
as vehicle imprecision or clutter grow. NN is reliable for features
such as segmented walls from laser sensors, where clutter is low
and sensor precision is high, as long as vehicle error is moderate
[5]. However, its reliability quickly plummets as the uncertainty
of features relative to the vehicle increases, as is always the case
when revisiting previously mapped regions after a long loop.
Reliability also plummets when using less precise sensors, such
as sonar [8], or edge-based monocular vision [9].

More robust algorithms have been proposed, such as multi-
tracking, which obtains hypotheses wheretemporalcoherence
is guaranteed. Multitracking actually increases complexity,
since it is necessary to maintain one map per hypothesis [10],
[11]. Sensor-specific solutions, such as visual tracking [12],
can performlocal data association very efficiently, but cannot
be used to solve the crucial revisiting problem. Alternative
approaches search for the best solution in the vehicle pose
space rather than in the correspondence space [13]–[15].

In other approaches, geometric constraints between features
are used to obtain hypotheses with pairwise compatible pairings.
Baleyet al. [16] consider relative distances and angles between
points and lines in two laser scans and use a graph theoretic ap-
proach to find the largest number of pairwise compatible pair-
ings. Castellanos and Tardós [17] also use binary constraints to
localize the robot with ana priori map using an interpretation
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tree approach. However, pairwise compatibility does not guar-
anteejoint compatibility [2], and additional validations are re-
quired.

In this work we define a criterion that, taking explicitly into
account the correlations between the innovations, determines
the joint compatibility of a set of pairings. We show that this
criterion is much more restrictive than the individual innovation
test, and that it can be efficiently computed. The use of this cri-
terion in a branch and bound (BB) search algorithm results in
a very robust solution to data association, with an efficient tra-
versal of the solution space. We compare both the robustness
and efficiency of the NN and BB algorithms in an experiment
with a Labmate mobile robot equipped with a trinocular vision
system, building a map along a loop trajectory of 60 m. We show
experimentally that in simple situations both algorithms are ro-
bust, with equivalent performances. When there is an increase
in clutter and/or imprecision, NN breaks down, while BB main-
tains its robustness, with a computational cost that is acceptable
for real-time applications.

II. THE CLASSICAL NEARESTNEIGHBORAPPROACH

A. Problem Definition

In stochastic mapping [3], [6], the state of a vehicleand
of a set of features of the environment where
the vehicle is navigating is represented by a vector. Let be
the estimation of the vehicle and feature locations, andthe
covariance of the estimation error

...

...
...

...
...

In a similar way, let represent a set of measurements
of environment features, obtained using a

sensor mounted on the vehicle, affected by white Gaussian
noise

...
...

...
...

where is the theoretical value of the observations. A measure-
ment and its corresponding feature are related by anim-
plicit measurement function[18] of the form

(1)

which states that the relative location between the measurement
and the corresponding feature must be zero.

The purpose of a data association algorithm is to generate a
hypothesis that pairs each measurement

with a map feature (when , the measurement is
considered spurious). This exponential solution space can be
represented as aninterpretation treeof levels [2]; each node
at level , called an -interpretation, provides an interpretation
for the first measurements. Each node has branches,
corresponding to each of the alternative interpretations for mea-
surement (including the possibility that the measurement be
spurious and allowing map feature repetitions in the same hy-
pothesis). Data association algorithms must select in some way
one of the -interpretations as the correct hy-
pothesis, carrying out validations to determine the compatibility
between sensor measurements and map features. Once a hypoth-
esis has been obtained, it can be used to improve the estimation
of .

B. Individual Compatibility Nearest Neighbor

The individual compatibility nearest neighbor (ICNN) simply
pairs each measurement with the feature considered most com-
patible according to (1). Since usually the measurement func-
tion is nonlinear, linearization around the current estimation is
necessary

(2)

where

Vector represents the innovation of the pairing between
and . From (1) and (2) its covariance can be obtained as

(3)

The individual compatibility (IC) between and can be
determined using an innovation test that measures the Maha-
lanobis distance as follows:

(4)

where and is the desired confidence level. This
test, applied to the predicted state, determines the subset of map
features that are compatible with a measurement(and thus
the value of ).

The NN selection criterion for a given measurement con-
sists of choosing among the features that satisfy (4), the one
with the smallest Mahalanobis distance. This algorithm is fre-
quently used given its conceptual simplicity and computational
efficiency: it performs compatibility tests, making it linear
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Fig. 1. Monodimensional robot with two features. Step 1: map creation from
two sensor measurements taken from initial position. Step 2: data association
problem after 1 m motion with three sensor measurements,ŷ spurious.
Intervals represent2� uncertainty bounds.

with the size of the map. For a large , its inversion may be a
costly operation. Several methods to calculate lower bounds for

have been proposed, which in some cases allow to reject the
pairing between and without inverting [19]–[21].

C. Limitations of the Nearest Neighbor

To illustrate the limitations of this approach, consider the
simple example of a robot that traverses a monodimensional
space, where there are two features (Fig. 1). Assume that this
robot is equipped with a sensor capable of detecting these fea-
tures. At step 1, the robot observes the two features, and they
are included in the stochastic map. At step 2 the robot moves 1
m, and obtains three measurements:, , and (spurious).
The uncertainties in robot motion and sensor measurements are

and . In this case, we have

In Fig. 2, the big square represents the acceptance re-
gion of IC, and the six small squares represent the uncertainty
of the six main pairing hypotheses (we consider here the ad-
ditional restriction that two measurements cannot come from
the same feature). According to IC, only measurementis
compatible with feature (horizontal axis in Fig. 2), while
both and are compatible with (vertical axis). Thus IC
accepts the two possible hypotheses and

because their squares intersect the square
region of acceptance. As lies closer to than , NN
would prefer the second hypothesis, pairingwith incor-
rectly.

This occurs because IC considersindividual compatibility
between a measurement and a feature. However, individually
compatible pairings are not guaranteed to bejointly compatible
to form a consistent hypothesis. Even if sensor measurements
are independent, correlations in the stochastic map are always
present and cannot be ignored [5]. Furthermore, the predicted
measurements are always correlated because they are affected
by the same robot position error. Graphically this means that,
for a given confidence level, the region of acceptance of the pre-
dicted measurements is anellipsoidal regioninstead of a square

Fig. 2. Simulation of a monodimensional robot. Each axis represents the
predicted location of a feature with respect to the robot location (x̂ � x̂

and x̂ � x̂ respectively) together with the three actual measurements
ŷ , ŷ and ŷ . The big square region represents the uncertainty of each
prediction considered independently, while the ellipsoidal region represents
this uncertainty considering the correlation between the predictions. Each small
group of a square and a circle represents an alternative matching hypothesis,
with its measurement uncertainty.

region (Fig. 2). From this perspective, in our example it is clear
that pairings are not simultaneously ac-
ceptable: the region of uncertainty of this hypothesis (circular,
given that the precision of this sensor has been considered con-
stant) does not intersect the ellipsoidal region of acceptance of
the predicted measurements. Only the region corresponding to
hypothesis does.

This simple example shows that with ICNN there is a high
risk of obtaining an inconsistent hypothesis and thus updating
the state vector with a set of incompatible measurements, which
will cause EKF to diverge. As vehicle error grows with respect
to sensor error, the ratio between the area of the square and the
area of the ellipse grows (due to the increase in the correla-
tion between the vehicle and the predicted measurements), and
thus the discriminant power of IC decreases. For this reason, the
ICNN algorithm is adequate only when these two conditions are
satisfied

1) The robot error is smaller than the distance between the
features, so that it is unlikely that two features pass the IC
test for the same observation.

2) Spuriousness is sufficiently low so that it is unlikely that
a spurious measurement will fall inside the acceptance
region of some feature.

III. OBTAINING CONSISTENTHYPOTHESES

A. Sequential Compatibility Nearest Neighbor

A simple way to assure that the resulting hypothesis
contains jointly compatible pairings is to use a sequential
compatibility nearest neighbor (SCNN) algorithm. Sequen-
tial compatibility (SC) is an innovation test that determines
compatible features for a measurement, given that a hy-
pothesis , corresponding to pairings

has been established and
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has been used to obtain an estimation of the state. If
the Mahalanobis distance , corresponding to a feature

, satisfies (4) given , the pairing
will be consistent withall pairings in . If this feature is
considered the nearest compatible with measurement, the
measurement can be used to obtain the new estimateof
the state vector and its covariance. In the next iteration, a
pairing for measurement will be determined by applying
(2) and (4) to the updated state estimation .

SCNN is an algorithm, quadratic with the
size of the map: for each of the measurements, SCNN re-
quires evaluating compatibility with themap features, ,
and updating the stochastic map, (recent works address
the reduction of this complexity [22], [23]). It is appealing be-
cause it guarantees that all pairings belonging to the resulting
hypothesis are jointly compatible. However, it ignores the fact
that these pairings may anyway beincorrect: a feature may be
compatible with an unrelated or spurious sensor measurement
just by chance. In our example, if SCNN tries to pair observation

in the first step, it will pair it incorrectly with (Fig. 2). The
pairing will be used to re-estimate the stochastic map, and no
more pairings will be acceptable in subsequent steps. This risk
increases with clutter, and robot or sensor error. In this greedy
algorithm, the decision to pair a measurement with its most com-
patible feature is never reconsidered, and thus spurious pairings
may be included in the hypothesis and integrated in the state es-
timation, especially during the initial iterations. This leads again
to a reduction in uncertainty with no reduction in error, i.e., in-
consistency.

B. Joint Compatibility Branch and Bound

Reconsideration of the established pairings is necessary to
limit the possibility of accepting a spurious pairing. The prob-
ability that a spurious pairing is jointly compatible with all the
pairings of a given hypothesis decreases as the number of pair-
ings in the hypothesis increases. For this reason, we require a
search algorithm to traverse the interpretation tree in search of
the hypothesis that includes the largest number ofjointly com-
patiblepairings. SC could be used to restrict the search to tree
nodes representing hypotheses with jointly compatible pairings,
but it requires the update of the whole stochastic map for each
pairing considered, , which can be computationally very
expensive in a search algorithm.

We use an alternative formulation to establish the consistency
of a hypothesis , called joint compatibility
(JC), which uses a joint implicit function , where

...

(5)

... (6)

... (7)

... (8)

The JC of pairings belonging to can be determined using
an innovation test on the joint innovation as follows:

(9)

(10)

where is the covariance of the joint innovation,is the de-
sired confidence level, and . The size of both
and increase with the size of hypothesis . This makes
this test potentially expensive to apply. The calculation of lower
bounds of to try to determine whether the hypothesis can
be rejected without inverting is pointless in this case, since
all the pairings in are already known to be individually com-
patible.

In the worst case, verifying the joint compatibility of a set of
pairings in a hypothesis involves the inversion of an ma-
trix, . This complexity can be reduced to using
the fact that joint compatibility can beincrementallyevaluated:
given a hypothesis formed by jointly compatible pairings,
with its corresponding , , and , and given a
pairing , with corresponding , and , the Ma-
halanobis distance corresponding to can be calculated
as follows.

1) Calculate . From (9) we have that

where

According to the partitioning method for matrix inversion
[24], matrix can be calculated as

(11)

where
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Fig. 3. Images of the trinocular vision system at step 48 of the robot trajectory.

2) Calculate

(12)

An alternative method for the incremental calculation of the
Mahalanobis distance can be found in [21].

JC is equivalent to SC except for linealization errors if:
satisfies (10), the pairing is compatible with all pair-
ings in . Using JC has several advantages:

• JC can be tested without recomputing the state, an
operation.

• The inversion of a growing matrix is avoided. In fact,
only the inversion of a constant size matrix is neces-
sary.

• Most of the elements involved in the calculation of
( , , ) have been previously computed to assert
Individual Compatibility.

The joint compatibility branch and bound (JCBB) algorithm
proposed in this work traverses the interpretation tree in search
of the hypothesis with the largest number of nonnull jointly
compatible pairings. This monotonically nondecreasing crite-
rion can be used toboundthe search in the interpretation tree [2].
The quality of a node at level, corresponding to a hypothesis

, can be defined as the number of nonnull pairings that can be
established from the node. In this way, nodes with quality lower
than the best available hypothesis are not explored. The nearest
neighbor rule using the Mahalanobis distance can be used
as heuristic forbranching, so that the nodes corresponding to
hypotheses with a higher degree of joint compatibility will be
explored first.

As experiments will show, JC is a very restrictive criterion
to traverse the interpretation tree, limiting the combinatorial ex-
plosion of the search due to increasing vehicle error.

Fig. 4. Stochastic map obtained during the first 18 steps of the robot
trajectory (solid line) and true robot trajectory until step 48 (dashed line), with
resulting uncertainty in the robot location after continuing the robot trajectory
without updating the stochastic map. A map of the environment (dotted line) is
superimposed as reference but not used during the process.

IV. EXPERIMENTS

A Labmate mobile robot equipped with a trinocular vision
system was programmed to perform a loop trajectory of around
60 m. The ground truth for the robot location along the trajectory
was obtained using theodolites. Trinocular vision provided a set
of two-dimensional (2-D) points corresponding to corners, wall
and window frames, etc., obtained by establishing correspon-
dences between vertical edges extracted from the three images
(Fig. 3).

Continuouslocalization and map building using this infor-
mation is fairly straightforward. Thus, we designed an experi-
ment to determine how well the SCNN and JCBB data associa-
tion algorithms solve the more complex and importantrevisiting
problem. A stochastic map of a corridor was constructed [5]
using the information obtained in the first 18 steps of the robot
trajectory (Fig. 4). The robot trajectory was continuedwithout
updating the stochastic map until the first corridor was visible
again (step 48). Fig. 5 depicts the situation from the robot’s
perspective: the measurements obtained by the trinocular vision
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(a) (b)

Fig. 5. The revisiting problem at trajectory step 48: (a) 2-D points obtained by trinocular vision and (b) predicted location of map features with respect to the
robot location.

Fig. 6. Solutions for 100 random robot locations using SCNN and JCBB for moderate and for large uncertainty.

system, and the predicted location of map features relative to the
robot. It is clear that robot error and environment clutter make
the number of candidate features for each measurement large
and the situation very confusing.

A Monte Carlo simulation was performed to generate 100
random positions at 10 different fractions of the odometry un-
certainty at step 48. Both SCNN and JCBB were then executed,
and the estimations of the robot location according to the re-
sulting hypotheses were compared with ground truth. In the fol-
lowing, we discuss the results from two perspectives: robustness
to robot error and computational efficiency.

A. Robustness of SCNN Versus JCBB

Fig. 6 shows results for frontal, lateral, and angular () er-
rors 0.15 m, 0.11 m, and 1.4 deg (top) and 1.55 m, 1.16 m, and

14 deg (bottom). It can be seen that SCNN exhibits a great dis-
persion in the solutions obtained, which becomes more notable
as robot error grows. In contrast, the solutions obtained by JCBB
remain grouped around the true robot location even for large un-
certainty values.

In order to measure the robustness of both algorithms to the
increase in robot error, the 100 hypotheses obtained by each
were compared with the true associations, established by hand.
Results [Fig. 7(a)] show that the robustness of SCNN drops
quickly with the increase in error, making this algorithm unsuit-
able for loop closing situations. In contrast, the probability of
success of JCBB is always higher than that of SCNN, remaining
above 0.9.

It should be noted that the JC test is based on the lineariza-
tion of the relation between the measurements and the state [see
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(a)

(b)

Fig. 7. Performance of JCBB and SCNN versus robot position2� error: (a)
fraction of correct hypotheses (with no spurious pairings) obtained and (b)
computational cost (in FLOPS).

(2)]. JCBB will remain robust to robot error as long the linear
approximation is reasonable. Thus, the adequacy of using JCBB
is determined by the robot orientation error (in practice, we have
found the limit to be around 30 deg).

B. Computational Efficiency of SCNN vs. JCBB

That JCBB is more robust to an increment of robot error than
SCNN was an expected result: JCBB is a back-tracking algo-
rithm, while SCNN is a greedy search algorithm. Given that the
cost of SCNN is linear with the number of measurements, the
important question is then: is JCBB, an exponential time algo-
rithm, feasible? This essentially depends on two factors: 1) how
restrictive JC is to limit the real size of the solution space and
2) how effective the branch and bound is to limit the search for
the best solution within this space.

Fig. 8 shows the variation in the maximum number of individ-
ually compatible nodes, jointly compatible nodes, and visited
nodes, all with respect to the increase in error. JC shows to be

Fig. 8. Maximum number of nodes versus position error (2�).

Fig. 9. Computational cost of the different parts of our JCBB algorithm versus
number of observations.

a highly restrictive criterion. We can see that the total number
of nodes in the solution space grows several orders of magni-
tude between 0.2 m and 2 m in position error. But this is not the
case for the maximum number of jointly compatible nodes and
maximum number of nodes visited by branch and bound. This
is because the joint compatibility of a certain number of 2-D
points fundamentally depends on theirrelative error(which de-
pends on sensor and map precision), more than on theirabsolute
error (which depends on robot error).

Results [Fig. 7(b)] show that the computational cost of SCNN
decreases slightly with the increase in robot error, due to the fact
thatamoreprobablespuriouspairingnormally reduces thepossi-
bilityofestablishingmorepairings.Forsmall robotpositionerror,
the cost of JCBB and SCNN are similar. For a moderate error,
around 1 m in position and 7 deg in orientation, JCBB executes
around twice more flops. For larger errors, up to 2 m and 14 deg,
the computational cost of JCBB increases rapidly, although it re-
mains feasible in real time. It is important tonote that these results
refer to edge-based trinocular vision, an especially difficult data
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associationproblem.Insimplercases,suchaswallsobservedwith
a laser rangefinder, the method will handle larger errors, up to the
limit imposed by the linearization errors.

Fig. 9 shows the computational cost of JCBB with respect to
the increase in the number of observations. It can be seen that
the cost of establishing individual compatibility and the cost of
updating the stochastic map grow linearly. On the other hand, it
is a known fact that the cost of the interpretation tree search in
the presence of spurious observations grows exponentially [2].
Our experiments show an asymptotic complexity of .
This means that the number of observations must be limited to
make this algorithm feasible in real time. In practice, selecting
the 10 or 12 more relevant observations (larger or more pre-
cise) guarantees the robustness of the hypothesis obtained by
the JCBB algorithm. Once the map is updated using this hy-
pothesis, the remaining observations can be safely associated
with the SCNN algorithm.

V. CONCLUSION

The popular NN algorithm for data association in stochastic
mapping is very sensitive to the increase in vehicle and sensor
error. Both factors contribute to increase the probability of
matching a sensor measurement with an unrelated map feature.
Since NN does not reconsider the establishment of a measure-
ment-feature pairing, spurious pairings are easily formed and
never reconsidered.

We have shown that reconsideration of the validity of pair-
ings is necessary, and thus a constrained search algorithm, such
as the JCBB algorithm described in this paper, is required. The
combinatorial explosion of this backtracking algorithm with re-
spect to increase in vehicle error is controlled by the use of a
restrictive validation mechanism that determines the joint com-
patibility of a set of pairings in the hypothesis. This greatly re-
duces the number of nodes in the interpretation tree that must
be visited, as the algorithm traverses the tree in higher levels.
Experiments show that JCBB is not only more robust than NN
algorithms, but also feasible in terms of computational cost.

In this work, we have studied the problem of refining an avail-
able estimation of the vehicle and feature state. Complementary
techniques, applicable when there is no estimation of the vehicle
location, will constitute further work.
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