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Abstract We propose a truly incremental exact
navigation algorithm for general articulated robots: the
robot may start with no apriori information about its
environment, and is guaranteed to find the goal if it is
reachable, or halt otherwise. The algorithm, termed the
incremental roadmap algorithm, constructs a roadmap
based on distance data collected on-line and encoded
as repulsive potential field. The incremental behavior
is achieved with two novel abstract sensors: a critical
point detector and a minimum passage detector. We
show by examples which environmental features must
be measured by the detectors for a planar-body robot.
A companion paper will discuss implementation of the
detectors for navigation of 2D and 3D bodies. Actual
engineering of the detectors, and their implementation
for articulated robots, are open research problems.

1 Introduction

We are concerned with the classical path planning prob-
lem, where a robot has to navigate toward various goal
configurations amidst stationary obstacles, while avoid-
ing collision. There are currently four path-planning
methodologies that are known to be general. Unfor-
tunately, none of them can be considered practical.
The first two possess an algorithm for computing the
free path: Schwartz&Sharir’s cell decomposition algo-
rithm (1983) [15], and Canny’s roadmap, or silhouette,
method (1987) [2]. However, as of today both meth-
ods have been implemented only for robots with very
small number of degrees of freedom. The other two are
Yap’s retraction method (1987) [16], a generalization of
the Voronoi diagram to high dimensional configuration
spaces, and Rimon&Koditschek’s navigation functions
(1992) [14], which are based on potential fields.
Potential fields are very attractive for sensory based
navigation. A typical potential is constructed from a
combination of an attractive potential centered at the
goal and a repulsive potential based on distance from
the obstacles that is measured on-line by the robot. In
fact, to our knowledge the only commercially available
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path-planners that handle realistic articulated robots
are based on heuristic formulation of potential-fields
[1, 6]. These path-planners suffer, however, from the
presence of undesired local minima, which are typically
removed by human intervention or by random search.

The algorithm proposed here exploits sensory-based
repulsive potentials to achieve collision avoidance and
path safety. The problem of local minima is eliminated
by careful construction of a roadmap, akin to Canny’s
network of silhouette curves [2]. Roughly speaking, the
roadmap we construct consists of a collection of one-
dimensional curves, related to the “ridges” of the re-
pulsive potential, and termed ridge curves. The ridge
curves are interconnected by linking curves, through
two types of special points. The first kind are critical
points where the connectivity of the free configuration
space changes. The second kind are minimum clear-
ance configurations, that always lie between adjacent
ridge curves. Both types of points are detected by spe-
cialized sensors, the critical point detector and the min-
tmum passage detector, respectively.

The idea of merging potential functions with the
roadmap algorithm was originally proposed by Lin and
Canny (1990) [9]. (We use terminology suggestive
of the connection to their paper.) Their algorithm,
however, relies on distance data collected off-line for
the entire robot environment before navigation starts.
Their algorithm additionally relies on a preprocessing
step, in which the entire collection of critical points is
computed. In contrast, this paper focuses on on-line
sensory based navigation, where no apriori informa-
tion about the environment is known. Moreover, since
the incremental algorithm considers only the geometry
along the path taken by the robot, it promises to be
output sensitive i.e., fast in uncluttered environments
while taking longer time to run in complicated ones.

From another perspective, there is the important
open problem of sensory information [5]: which sensory
measurements must be collected on-line by the robot to
achieve provably correct global navigation? The off-line



methodologies of Schwartz&Sharir and Canny presume
that the geometry of the environment is first captured
in terms of symbolic polynomial representation. Gen-
eral symbolic algebra tools are then used to extract

what is essentially roots of polynomial systems, which’

in turn guide the construction of a free path. However,
it is well known that current symbolic algebra tools
are impractical even for very simple situations [8]. We
propose here to circumvent such computational bottle-
necks by direct sensory measurements. A companion
paper now under preparation describes which environ-
mental features must be measured by the detectors for
2D or 3D rigid-body navigation. The actual engineer-
ing of the detectors, as well as their implementation for
articulated robots, are important open problems.

There are several attempts in the robotics literature
to tackle the sensory information problem. Examples
are: Lumelsky’s work on two-dimensional configura-
tion spaces [10}, and Cox’s work on three-dimensional
configuration spaces [4]. In contrast, our algorithm
is completely general. Moreover, unlike other general
methodologies, its reliance on sensory measurements
suggests that it may become practical as well.

The paper is organized as follows. First we review
stratified sets, Morse theory, and bifurcation theory. As
these theories form the foundations for our algorithm.
Next, the naive version of the algorithm is described,
where only the critical point detector is used. Then
we show that the minimum passage detector must be
added. A proof that the algorithm based on the two de-
tectors always finds a path to the goal is then sketched.
We conclude with a discussion of related open prob-
lems, such as the need for active perception.

2 Preliminaries

The robot configuration space, called c-space, is glob-
a.llz' parametrized by a single copy of Euclidean space
IR", where k is the number of degrees of freedom of
the robot. There is no loss of generality in making this
choice, for coordinates representing rotational degrees
of freedom are periodic in 2x. Given a physical obsta-
cle, its corresponding c-obstacle is the set of all configu-
rations at which the robot intersects the obstacle. The
boundary of a c-obstacle is exactly those configurations
where the surfaces of the robot and an obstacle touch
each other, while their interiors are disjoint. The free
configuration space, called the freespace F, is the space
that remains after removing from c-space the interiors
of the c-obstacles.

2.1 Stratifled Sets

The freespace is typically a stratified set. A regularly
stratified set S is aset S C IR* decomposed into a union
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of disjoint smooth manifolds! called strata, satisfying
the Whitney condition. The dimension of the strata
varies between zero, which are isolated points, and &,
which are open subsets of the ambient IR*. The Whit-
ney condition requires that the tangents of two neigh-
boring strata “meet nicely.” For our purposes suffices
to say that this condition is almost always satisfied.
The boundary of F is a union of portions of the
boundaries of the c-obstacles. Thus F is naturally a
stratified set, consisting of portions of the individual c-
obstacle boundaries, their respective intersection along
lower dimensional manifolds, and the various connected
components of the interior of F. This is illustrated in
Figure 1, for a planar body and three obstacles.

2.2 Morse Theory on Stratified Sets

Let f be a smooth real-valued function defined on a
smooth manifold M C IR*. A point z € M is a critical
point of f if its derivative at z, D f(z), vanishes there.
A critical value of f is the image ¢ = f(z) € IR, of a
critical point z. f is a Morse function if all its critical
points are non-degenerate i.e., its second derivative ma-
trix D? f(z) is non-singular at the critical points. When
[ is defined on a stratified set S, its critical points are
the union of the critical points obtained by restricting
f to the individual strata. f is a Morse function on &
if it is, first of all, Morse in the classical sense on the
stratum containing the critical point z. And, second, if
Vf(z) = Df(z)is not normal to any of the other strata
meeting at z. For our purposes suffices to say that al-
most all the smooth functions on a given stratified set
are Morse in the extended sense.

Siratified Morse theory is concerned with such Morse
functions [7). The theory guarantees that as ¢ varies
within the open intervel between two adjacent critical
values of f, the level-sets S, = {x € 8: f(z) = ¢} are
topologically equivalent (homeomorphic) to each other.
In particular, the path-connectivity of the level-sets
S, is preserved between critical values. In our case
f is simply a linear functional, called the sweep func-
tion o, that sweeps F with hyperplanes along the k*"
coordinate of the parametrization of c-space by RF:
a(x1,...xx) = k. (If zx is periodic, the sweep wraps
around after a full period is complete.)

Any connectivity change of the slices F| = {z €
F : a(z) = ¢} must occur locally, in a neighborhood
about a critical point of & in F. In general, only some
of the critical points correspond to change in the path-
connectivity of the slices F| . Of those, only the follow-
ing two types are of interest to our algorithm. Critical
points at which locally distinct connected components

1Recall that a manifold M C IR* of dimension d is a hyper-
surface that locally looks like IR?, for a fixed d, 0 < d < k.



Figure 1. For a plane-sweep along 8, only the saddle is an
interesting critical point

of the freespace slices meet, called join points, and
critical points where two connected components split,
called split points. Their union is called the inter-
esting critical points.

Example: In Figure 1 c-space is swept along the orien-
tation axis #. The saddle is an interesting critical point,
since two connected components of the freespace slices
meet there and become a single component above it.
Non-interesting critical points, such as the local mini-
mum, may involve the appearance (or disappearance)
of a new connected component of the freespace slices.

2.3 Bifurcation Theory

In addition to the sweep function o, the algorithm uses
a distance function, d : F — IR, that serves as a repul-
sive potential. In general, it only has to be a smooth
function, that is zero on the boundary of F and is
strictly positive in its interior. In practice, however,
it is more natural to use the distance of the robot from
its environment, as measured by its sensors,

min

dz) = d(Ae),B) = _min _{la= I},

where A(z) is the set occupled by the robot when it is
at configurationz € R* , and Bis the union of the phys-
ical obstacles. An extensmn of [3, Proposition 2.4.1]
yields that d of (1) is differentiable almost everywhere.
We, however, shall treat d as a smooth function.

We will need to evaluate d on the individual level-

¢y

sets of 0. Since o(z) = zi, the restriction of d
to the slice F|, .. is simply d.(y) £ d(¥,c), where
7= (zl,...zk_:) and zx = c. The algorithm con-

structs curves, called ridge curves, by tracing the lo-
cal mazima of d.(y) as ¢ varies in JR. (The points y
are restricted to the slice F|_, while d.(y) is the dis-
tance between A(#, ¢) and the entire obstacle set B.) If
a ridge-curve has endpoints, they lie on the boundary
of F, or they are bifurcation points that lie in the in-
terior of . This is explained in the next paragraph.
The solid curves in Figure 2(a) are the ridge-curves of
a smooth potential on the planar freespace shown. For
comparison, Figure 2(b) shows the ridge-curves gener-
ated by the non-smooth Euclidean distance (1).
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(b)
Figure 2. (a) Ridge curves for a smooth potential (b) and
for the exact Euclidean distance

Bifurcation theory characterizes the behavior of the
equilibria of one-parameter families of smooth gradi-
ent vector-fields Vd.(y), as ¢ varies in IR [12]. It tells
us the following facts. First, the loci of the equilib-
ria of a generic one-parameter family Vd.(y) form a
collection of smooth one-dimensional curves. This is
shown in Figure 2(a), where the solid curves are the lo-
cal maxima and the dashed curves are the local minima.
Second, the equilibria curves meet each other at iso-
lated points, called bifurcation points. Third, a generic
Vd.(y) has only one type of bifurcation, a fold or saddle-
node bifurcation, where two equilibria curves meet each
other smoothly at some parameter value ¢ = ¢, and
cease to exist for parameter values beyond ¢,. Indeed,
all the bifurcation points in Figure 2(a) are of this type.

3 Description of the Naive Algorithm

A roadmap for a robot freespace is a graph R C F
satisfying the following three properties: 1) Connectiv-
ity: every connected component of F contains exactly
one component of R; 2) Accessibility: R can be ef-
fectively reached from any start configuration; 3) De-
partibility. every goal configuration can be effectively
reached from R. Traditionally, when a roadmap is built
off-line with complete information about the environ-
ment, there is no distinction between accessibility and
departibility. In our case accessibility is achieved by
uphill climb along the direction of increasing distance
until a ridge-curve is reached. Departibility is achieved
by invoking the incremental algorithm on a sequence of
c-space slices of decreasing dimension.

The naive algorithm uses the sweep functiono : F —
IR, the distance function d : ¥ — IR, and a criti-
cal point detector (described below). It constructs a
roadmap which consists of two types of curves. The
first are the ridge curves, traced by the local maz-
ima of d.(y) as ¢ varies in JR. The second are the
linking curves. Each linking-curve passes through an
interesting critical point of o in F, and connects two



ridge-curves. Let I be the set of interesting critical
points of o in F, consisting of join and split points.
Since Vo(zr) never vanishes in the interior of ¥, these
points occur only on the boundary of F. By definition,
a point z, of ¥ is a common boundary point of two
locally distinct connected components of F |z , Where
Fl,, denotes the slice F|,(, . Assuming that F is
bounded, d.(y) must attain a maximum on each con-
nected component of F|, . Hence z, is also a common
boundary point of two loca.lly distinct basins of attrac-
tion of Vd.(y). The linking-curve is a union of two
curves, each starting at . and moving uphill in one of
the two basins, until a ridge-curve is reached.

The robot must detect points 2. of T as it traverses
a ridge-curve. This is achieved by means of the critical-
point detector. It is required of this “sensor” that: from
a ridge-curve, it must detect all the interesting critical
points associated with the ridge-curve’s basin of attrac-
tion. The latter term needs explanation. If y*(c) is a
ridge-curve, its basin of attraction is the union of the
individual basins of the points y*(c) with respect to the
flow of Vd,(y), as ¢ varies in the domain of y*(c). It is
convenient to make the requirement that the critical-
point detector be monotonic: the order by which it
detects the critical points from a given ridge-curve is
identical to the order of their k** coordinate.

Implementation of the critical-point detector:
For 2D or 3D single-body robots, points of ¥ corre-
spond to passages between obstacles in the robot en-
vironment. This is exemplified in Figure 3, where an
ellipse robot navigates in an environment whose obsta-
cles are overlapping convex shapes. It is shown in the
companion paper that for a sweep along the orientation
axis, the interesting critical points are characterized by
the following two properties. First, they occur only at
configurations where the ellipse maintains simultane-
ous contact with two disjoint obstacles. Second, each
critical point is associated with a direction vector u,
such that the width of the ellipse in the direction u
is equal to the gap between the contacted obstacles
along the same direction u. Figure 3(b) shows the el-
lipse in a critical configuration. The fixed-orientation
slices of the freespace are disconnected just below the
critical orientation, Figure 3(a), and comprise a single
connected component just above it, Figure 3(c).

Given a detected point z, € L, the robot must de-
part from the ridge-curve and reach z,., from which it
continues with uphill motion to the other ridge-curve.
To reach z., the robot first moves to a point z = (,¢)
on the ridge-curve such that y lies in F|, . A curve
from z to z.. is then constructed within F| Lr by a re-
cursive call wi&h the start point &, z, goal point
2y =25 and F = .7-']%. Note that z, is guaranteed
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Figure 3. (a) freespace has two components (b) a critical
configuration (c) freespace is connected

to be reachable from z within F|, since by construc-
tion z,, belongs to the ridge-curve’s “basin of attraction.
The recursion ends when the dimension of the slice be-
comes unity, for the roadmap of a one-dimensional slice
is identical to the slice itself. This is a key characteristic
of our algorithm: the departure from the roedmap to-
ward a target outside it is achieved by construction of a
roadmap on e lower-dimensional slice within which the
target is guaranteed to be reachable.

Points on the roadmap from which excursion to a
target outside the roadmap begins are termed depar-
ture points (d-points). The goal, denoted z,, is found
by identifying d-points at points where the roadmap
crosses the slice through the goal, |, . Every such
point z serves as an intermediate sta.rtmg point, from
which a search after a path to z, is executed within
f|z. by recursive call with &, = z, &, = =z,, and
F=F |,. While z, is not automatically reachable
from z within F |, » it is shown in Section 5 that the
algorithm does ﬁmf one such z from which z, is reach-
able. The recursion ends when the dimension of F|,
becomes unity. Here is a schematic description of the
naive algorithm, starting with the required sensors.

Sensors: 1) A sensor that measures the robot con-
figuration z; 2) A sensor that measures the distance
between the robot and its environment, d(z); 3) A
critical-point detector, that detects from a ridge-curve
the interesting critical points associated with the ridge-
curve’s basin of attraction.

Input: start and goal configurations, z, and z,.
Output: If z, is reachable: a path from z, to z,. Oth-
erwise: a roadmap for the connected component of z.
Data structure: R—the explored roadmap.
Incremental Roadmap Algorithm:

1. Connect z, to a ridge-curve by following Vd.(y),
where ¢ = o(z,). Put z,, the curve, and its ridge-curve
endpoint in R (no other curves emanate from z,).

2. Repeat: Move to an explored node of R that has
an unexplored curve emanating from it. Explore the
curve until its endpoint z is found according to one of
the following events.

A departure point encountered:



(a) An interesting critical point z,. is detected: Move
on the ridge-curve to a point z in ¥|, . Make z a node
of R. Decide whether to make a recursive call with
2, =2, & = 2, F=7F | ; or to continue exploring
the ridge-curve first. If the first option is taken, after
z.. is reached, complete the linking-curve by following
Vd.(y) to the other ridge-curve. Add the linking-curve
and its other endpoint to R.
(b) The goal slice F| s, is encountered at z: Make z a
node of R. Decide whether to make a recursive call with
i, =2, &, = 24, and F= Fl, gorto continue explor-
ing the ridge-curve first. If a recursive call is made,
STOP if z, is found.
A ridge-curve endpoint encountered:

(c) A fold-bifurcation encountered at : Make z a node
of R (no other curves emanate from z).

(d) A boundary point of F is encountered at z: Make
z a node of R (typically no other curves emanate from
z, but the ridge-curve might be continuing through z
if z is a single-point stratum of F).
(e) An explored node is encountered again: a full circle
along R has been completed (e.g. when z; is a periodic
coordinate). Add the explored curve to R.

Until the explored roadmap contains no nodes with un-

explored curves. In that case z, is NON-REACHABLE.

4 The Complete Algorithm

We now show that the naive algorithm must be aug-
mented with a minimum passage detector.

4.1 The Naive Algorithm can Fail

The naive algorithm employs two means for departing
from a ridge-curve: recursive calls in F|, and recur-
sive calls in F|, . It might happen that all the in-
teresting critical pomts lie beyond the closure of the
current ridge-curve basin. It might also happen that
the same ridge-curve doesn’t cross F|, . In Figure 4,
the freespace is the interior of two vertical pipes joined
by a horizontal pipe. There is an inner c-obstacle in
the shape of a plate “hiding” the entrance to the con-
necting pipe. For the @ sweep direction, there are three
ridge-curves: Ry, R, (associated with the plate), and
R3. Paths from the basin of R; to the basin of R3 must
pass through the basin of R;. However, the interest-
ing critical points x; and z, lie between the basins of
R, and Rj i.e., outside the closure of the basin of R;.
The algorithm, after exploring the entirety of R, erro-
neously concludes that the goal is not reachable. This
false conclusion persists even if we make local changes
in the sweep direction.

4.2 The Minimum Passage Detector
Although many issues concerning the critical-point de-
tector are still open, it is unreasonable to require that
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Figure 4. There are no interesting critical points between
the basins of R: and R,

it would be able to detect critical points beyond the
closure of the current ridge-curve basin. The minimum
passage detector we now describe enables the robot to
move between adjacent basins whose common bound-
ary is not marked by interesting critical points.

Let d(z) be a general smooth repulsive potential. Bi-
furcation theory (Section 2) guarantees that the equi-
libria of a generic Vd,(y) form smooth curves. Let the
saddle curves be the ones traced by saddles of d..(y), as
¢ varies in JR. Analogous to interesting critical points,
only the following type of saddles is of interest to our
algorithm. They are described in terms of the Morse
indez. Given a Morse function f, its Morse index at a
critical point y; is the number, A, of negative eigenval-
ues of its second derivative matrix D? f(yo).
Definition 1 Let X C R™ be a stratified set with non-
empty interior, and let f be a Morse function on X. A
saddle point of f in the interior of X* is an interest-
ing saddle if A\=1orA=m—1.

In our case f(y) = d.(y), X = F|,and m = k- 1.
An interesting saddle would be, using the case A =
m—1= k-2 for example, a local maximum along k—2
directions, and a local minimum along the remaining
single direction in F|,. Curves traced by an interesting
saddle are termed interesting saddle curves. It is shown
in Section 5 that between any two adjacent ridge-curve
basins lies at least one interesting saddle curve.

It is required of the minimum passage detector that:
from a ridge-curve, it must detect the local minima of
d(z) on the interesting saddle curves associated with
the ridge-curve’s basin of attraction. (Points z are re-
stricted to the saddle curve, while d(z) is the distance
between the robot .A(z) and the entire obstacle set B.)
The local minima of d(z) along the interesting saddie
curves are termed minimum passage points (Figure 6).

2This can be extended to interesting saddles on X’s boundary.
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Implementation of the minimum passage detec-
tor: Consider Figure 5 as an example. The robot is
an ellipse with major axis M. The repulsive poten-
tial is the Euclidean distance d(z) = dst(A(z), B). For
a sweep along the orientation axis, the minimum pas-
sage points are characterized as follows. Consider a
pair of disjoint obstacles, ©; and O, shown in the fig-
ure. Let gap(O;,O;) be the minimal distance between
them, and let u be the direction of the line along which
gap(04,0,) is attained. gap(04,0;) is larger than
M, hence the c-obstacles corresponding to O, and O,
are disjoint. The ellipse orientation that maximizes its
width along u is the one where its major axis is collinear
with u. Let ¢y be the corresponding ellipse orientation.
Further, let 2y = (§o,¢q) be the ellipse configuration
where its center is at the center of the gap.

Intuitively, yo is a local minimum of d,,(y) for trans-
lations perpendicular to u, and is a local maximum
for translations parallel to u. Hence y, is an interest-
ing saddle point. Moreover, z, is a local minimum of
d(z) along the saddle curve containing z,. To see this,
consider translations of the ellipse with its orientation
fixed to ¢ close to ¢y. Consider, in particular, transla-
tions perpendicular to u, such that the ellipse crosses
the gap from one side to the other, while maximizing its
distance from both obstacles. It can be intuitively ob-
served that the minimum value of d along this motion
is larger than d(zy). Hence z, is a local minimum of
d(x) on the saddle curve. Research now under progress
will make this statement precise, as well as extend it to
solid bodies.

The complete algorithm is identical to the one de-
scribed in Section 3. Only that the sensor list is aug-
mented by the minimum passage detector, and step
2(a) is augmented with recursive calls for construction
of linking-curves through the minimum passage points.

4.3 Connection Between the Two Detectors

The following lemma establishes a connection between
interesting critical points and minimum passage points.
Lemma 4.1 ([13]) Let d(z) be a smooth repulsive po-
tential on F (not necessarily the Euclidean distance).
The interesting critical points are ezactly the min-

imum passage points that occur on the boundary of
F (Figure 6(b)).
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Figure 8. (a) m‘inimum passage point in thefb i)nterior of F
(b) and on the boundary of ¥

It follows from the lemma that the minimum passage
detector generalizes the critical point detector. How-
ever, the interesting critical points (equivalently, the
minimum passage points on the boundary of F) corre-
spond to local change in the connectivity of  along the
sweep direction and depend only on F and on the sweep
function 0. The interior minimum-passage points ad-
ditionally depend on the specific repulsive potential d.

5 Correctness of the Algorithm

We are concerned with the following generic situation.
First, F is assumed to be a regularly stratified set (Sec-
tion 2). Second, F is assumed to be a regular set i.e.,
a set that is equal to the closure of its interior. This
ensures that each stratum of F is either an open set
in the ambient IR, or a lower dimensional manifold on
the boundary of such a set. Next, the repulsive poten-
tial d is assumed to be a Morse function on F. It is
known that almost all the smooth functions on a given
stratified set are Morse. We also assume that F has
no special symmetries, so that the one-parameter fam-
ily Vd.(y) is generic (Section 2). A curve traced by
an equilibrium of Vd,(y) of a specific type, as ¢ varies
in IR, is termed equilibria curve. For instance, ridge-
curves are equilibria curves of local maxima.

Lemma 5.1 ([13]) Under the generic assumptions
made above, and for a bounded robot workspace, there
are finitely many equilibria curves in F.

We are ready to show that the algorithm terminates.
Proposition 5.2 ([13]) Let the robot be an articu-
lated k degrees-of-freedom mechanism. Then the in-
cremental roadmap algorithm terminates on every
bounded workspace.

Sketch of proof: The main step is to show that there
are finitely many nodesin R. According to Lemma 5.1,
there are finitely many ridge-curves. Hence there are
finitely many ridge-curve endpoints. Lemma 5.1 also
asserts that there are finitely many interesting saddle-
curves, and according to Lemma 4.1 every interesting



critical point is the endpoint of an interesting saddle-
curve. Hence there are also finitely many interesting
critical points. Finally, we show that every interior
minimum-passage point is a critical point of d(z) in
the ambient IR*. There are finitely many such points
since d(z) is a Morse function. (]

We will need the following mountain pass theorem,
adapted for our purposes from [11]. Let X C R™ be a
stratified set with non-empty interior, which is closed
in R™. Let f be a Morse function on X, such that f
is zero on the boundary of & and is strictly negative in
its interior. Let B;,B; C X be two distinct basins of
attraction of the flow of — Vf, each attracted to a local
minimum of f. Let B; denote the closure of B;, for
i =1,2. The set ¥ = B; [ By, if non-empty, represents
a “mountain range”—a set separating B; from B, on
which f attains higher values.

Theorem 1 (Mountain pass theorem) If V s
non-empty, [ has an interesting saddle point in V.

In our case f(y) = —d.(y) and X = F|. By and B,
are two “mountains” separated by “valleys”. The inter-
esting saddle occurs along the path connecting the two
mountain tops that minimizes the amount of descent.
The following theorem is the main result of this paper.

Theorem 2 ([13]) Let the robot be an articulated k
degrees-of-freedom mechanism. If z, is reachable from
z,, the incremental roadmap algorithm finds at least
one d-point in F Iz. from whick z, is reachable.
Through recursive invocation of the algorithm from d-
points in .7"|z', a path to z, is found.

Sketch of proof: First we show that every point in
F lies in the closure of some ridge-curve basin. Then
we invoke the mountain pass theorem to show that an
interesting saddle curve lies between every two adjacent
ridge-curve basins. The critical-point detector and the
minimum-passage detector locate at least one point on
each interesting saddle curve. Hence linking-curves are
constructed to every ridge-curve reachable from z,. O

6 Discussion and Open Problems

The feasibility of the algorithm hinges on the need to
understand which environmental features correspond
to the c-space features sought by the critical point de-
tector and the minimum passage detector. In planar
body navigation, for instance, we have seen that these
features correspond to passages between obstacles in
the robot immediate environment. A companion paper
now under preparation will discuss this issue in detail,
for a rigid body navigation. We have not looked into
the more complex case of kinematic chains. But even
with rigid-body navigation we encountered the follow-
ing important problem of active perception. As the
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robot moves along a ridge-curve, some obstacles in the
robot immediate environment may occlude its view of
features that mark interesting critical points or mini-
mum passage points. Therefore, the associated prob-
lem is: given a sensor specification, how to augment
the incremental algorithm with active excursions away
from a ridge-curve, in a way that guarantees coverage
of the entire ridge-curve basin.
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