[9]

[10]

[11]

[19]

[20]

0. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In
Proceedings of the IFEFE Conference on Robotics and Aultomation, pages 500-505,
1985.

J. J. Leonard and H. F. Durrant-Whyte. Directed sonar sensing for mobile robots
navigation. Kluwer academic publishers, Boston, London, Dordrecht, 1992.

Y. H. Liu and S. Arimoto. Path planning using a tangent graph for mobile robots
among polygonal and curved obstacles. International Journal of Robotic Research,
11(4):376-382, 1992.

V. J. Lumelsky and T. Skewis. Incorporating range sensing in the robot navigation
function. IEEE Transactions on Systems, Man, and Cybernetics, 20(5):1058-1068,
1990.

V. J. Lumelsky and A. A. Stepanov. Path-planning strategies for a point mobile
automaton moving amidst obstacles of arbitrary shape. Algoritmica, 2:403-430, 1987.

V. J. Lumelsky and S. Tiwari. An algorithm for maze searching with azimuth input.
In Proceedings of the IEEFE Conference on Robotics and Automation, pages 111-116,
1994.

H. Noborio. A sufficient condition for designing a family of sensor based deadlock
free path planning algorithms. Advanced Robotics, 7(5):413-433, 1993.

H. Noborio and T. Yoshioka. An on-line and deadlock-free path-planning algorithm
based on world topology. In Proceedings of the IEEE/RSJ Conference on Intelligent
Robots and Systems, IROS, pages 1425-1430, 1993.

P. Reignier. Molusc: an incremental approach of fuzzy learning. In Proceedings of
the International symposium on Intelligent Robolics Systems, pages 178-186, 1994.

W. D. Rencken. Concurrent localization and map building for mobile robots using
ultrasonic sensors. In Proceedings of the IEEE/RSJ Conference on Intelligent Robots
and Systems, IROS, pages 2192-2197, 1993.

E. Rimon and J. F. Canny. Construction of c-space raodmaps from local sensory
data. what should the sensors look for 7 In Proceedings of the IEEE Conference on
Robotics and Automation, pages 117-123, 1994.

A. Sankaranarayanan and M. Vidyasagar. A new path planning algorithm for a point
object moving amidst unknown obstacles in a plane. In Proceedings of the IFEFE
Conference on Robolics and Automation, pages 1930-1936, 1990.

A. Stentz. Optimal and efficient path planning for partially known environments. In
Proceedings of the IEEFE Conference on Robotics and Automation, pages 3310-3317,
1994.

A. Zelinsky. Using path transforms to guide the search for findpath in 2d. The
International Journal of Robotic Research, 13(4):315-325, 1994.

27

is by modifying the expected path length from LTG nodes to the target.

The expected path length from LTG nodes to the target can be estimated by applying
additional reasoning on the L'TG, by using a global model of the environment, or by using
more informative sensing modalities. Additional reasoning may distinguish between nodes
which result from obstruction or from the sensor range limit, and nodes which are tangent
points on real obstacles. The path length to the target from the first type of nodes is
expected to be longer than the direct distance from such a node to the target. When a
global model of the environment is available, it can be used to estimate the path length
from the LTG nodes to the target, and thus affect the choice of locally optimal direction
while moving towards the target, and the choice of boundary following direction. More
informative sensing modalities, i.e. vision, can provide better estimations of the expected
path length from LTG nodes to the target. For example, if the LTG node is recognized
as a door opening it should have a shorter expected path length than a node which is
recognized as a cupboard edge.

References

1] R. C. Arkin. Motor schema based navigation for a mobile robot: an approach for
g
programming by behavior. In Proceedings of the IEEE Conference on Robotics and
Automation, pages 264-271, 1987.

[2] R. Bauer, W. Feiten, and G. Lawitzky. Steer angle field: an approach to robust ma-
neuvering in cluttered, unknown environments. Robotics and Autonomous Systems,
12:209-212, 1994.

[3] J. Borenstein and Y. Koren. Real time obstacle avoidance for fast mobile robots
in cluttered environments. In Proceedings of the IFEE Conference on Robotics and
Automation, pages 572-577, 1990.

[4] H. Choset and J. W. Burdick. Sensor based planning, part ii: Incremental construc-
tion of the generalized voronoi graph. In IFEE International Conference on Robotics
and Automation, Nagoya, Japan, May 1995.

[5] James L. Crowley and Yves Demazeau. Principles and techniques for sensor data
fusion. Signal Processing, 32:5-27, 1993.

[6] G. Foux, M. Heymann, and A. Bruckstein. Two dimensional robot navigation among
unknown stationary polygonal obstacles. IFEF Transactions on Robotics and Au-
tomation, 9(1):96-102, 1993.

[7] S. G. Goodridge and R. C. Luo. Fuzzy behavior fusion for reactive control of an
autonomous mobile robot: Marge. In Proceedings of the IEFE Conference on Robolics
and Automation, pages 1622-1627, 1994.

[8] V. Guillemin and A. Pollack. Differential Topology. Prentice-Hall, Inc., New Jersey,
1974.

26

which result from obstruction, because the obstacle boundary left to O, is not visible to
the robot, and thus expected path length to the target through O; is shorter than the
expected path length to the target through O,. When the robot reaches P, the node O,
in the LTG is replaced by Os;, and the robot moves towards Oz. Only when the robot
reaches Pj it realizes that it is not possible to reach the target bypassing Oz from the left,
and moves towards Op, from which it proceed to the target.

6 Discussion

We presented Tangent Bug, a new range-sensor based globally convergent navigation al-
gorithm for mobile robots. We incorporated the idea of the locally shortest path, using
the tangent graph, into the Bug paradigm, which guarantees reaching the target without
building a global world model. We adjusted the structure of the tangent graph, which
was defined for a completely known environment, and introduced a local range-data based
version of it, termed the local tangent graph, or LTG. We re-formulated the basic behaviors
of the Bug family, and defined new transition conditions for switching between them.

The TangentBug algorithm uses the basic behaviors of motion towards the target
and obstacle boundary following. Let d(z,T) be the distance of the robot, located at a
point z, from the target 7. Then during the motion towards the target, d(z,T) decreases
monotonically. During the boundary following, the robot attempts to escape from a local
minimum of d(z,7"). While moving towards the target, the robot chooses a locally optimal
direction, which is the direction along the shortest path to the target according to the
current LTG. The motion towards the target terminates when the robot detects that
moving in the locally optimal direction would drive it into a local minimum. The obstacle
boundary following is then invoked to drive the robot away from the local minimum.
The robot first chooses a boundary following direction, then it moves along the boundary
while continuously monitoring the LTG. The robot uses the LTG to make shortcuts along
the obstacle boundary, but it may not leave the boundary before the following leaving
condition is met. Let dp, (7") be the minimal distance of the robot from 7" observed along
the path so far. Then the robot leaves the obstacle boundary when the shortest path to
the target on the current LTG is guaranteed to achieve a distance d(z,T") which is smaller
than dpy, (7).

The Tangent Bug algorithm uses range data for choosing the locally optimal direction
while moving towards the target, for choosing the boundary following direction when
boundary following behavior is initiated, and for the leaving condition. The simula-
tion results showed improvement (from 0.71 to 0.28 in the complex environment) in the
path length as the sensor range increases. The results indicate a significant advantage of
Tangent Bug relative to the algorithm VisBug from [12], in all the tested scenarios.

The Tangent Bug algorithm is simple for implementation because it is purely reactive
and does not require exact positioning along the path °. However, additional information
can be easily incorporated to improve performance in practical scenarios. The LTG can be
improved when accumulated sensory data, e.g. using occupancy grids, is used to increase
both sensor reliability and the effective sensor range. Another way to improve performance

SExact positioning is necessary only for detection of target reaching and completion of a loop around
an obstacle

25

d

Figure 14: Simulation results of VisBug in “world2” environment. Left - using contact sensors
(path length 1.00). Middle - using limited range sensor 50 (path length 0.89). Right - using
unlimited range sensor (path length 0.48).

Figure 15: Simulation results of T'angentBug in “world2” environment. Left - using contact
sensors (path length 0.79 relative to Visbug); Note that the boundary following direction is chosen
based on local information. Middle - using limited range sensor 50 (path length 0.70). Right -
using unlimited range sensor; The path length is 0.09 relative to Visbug with contact sensors. The

path was changed significantly, relative to the previous examples, using the additional range data.

*S

Figure 16: The incomplete knowledge of the robot leads to local decisions which may be different
from the globally optimal ones. From P; the robot moves towards O1, because the expected path
length to the target through O; is shorter than through O2. From P, the robot moves towards
O3, because of the same reason. Only when the robot reaches Ps it realizes that it is not possible
to reach the target bypassing Oz from the left, and moves towards O;, from which it proceed to
the target.

24

Figure 12: Simulation results of VisBug in “world1” environment. Left - using contact sensors
(path length 1.00). Middle - using limited range sensor 50 (path length 0.82). Right - using
unlimited range sensor (path length 0.76).

Figure 13: Simulation results of TangentBug in “world1” environment. Left - using contact
sensors (path length 0.63 relative to Visbug). Middle - using limited range sensor 50 (path length
0.61). Right - using unlimited range sensor (path length 0.60).

cases, implying that range data was used only for choosing the locally optimal direction.
However, using this information decreased path length relative to VisBug. The minor
improvement in the path length as the sensor range increases, from 0.77 to 0.73, suggests
that in simple environments small sensor range is sufficient, because the local data usually
leads to the globally correct decisions regarding the detour direction left/right.

In “world2”, the effect of the range sensors is more apparent. Significant local shortcuts
can be performed by scanning the boundaries of concave obstacles, using the range sensors,
instead of actually following them. This advantage is used by both algorithms. The ability
to choose the boundary following direction, based on local information, and the ability
to leave an obstacle boundary before the line [Start,Target] is visible, are the main
advantages of TangentBug in this environment. It is interesting to note that local range
data is informative for choosing the boundary following direction even in this relatively
complex environment.

dv

As the sensor range increases, edges of the global tangent graph become edges of the
LTG, and the robot has a higher probability to move along the the globally shortest path.
However, the incomplete knowledge of the robot leads to local decisions which may be
different from the globally optimal ones. Our modeling approach considers the observed
obstacles as thin walls which are the only obstacles in the environment, thus obstructed
obstacles are not taken into consideration. The underestimation of the obstacles leads to
non-optimal decisions, as shown in the example in figure 16. In this example, we consider
a robot with unlimited sensor range. Starting from S, the robot moves to P; on an edge
of the global tangent graph. From P, the robot moves towards the node O; of the LTG,

23

world1 world2
R VisBug ‘ Tangent Bug ‘ VisBug ‘ Tangent Bug
0 1.00 0.77 1.00 0.71
10 0.99 0.77 0.99 0.70
50 0.88 0.74 0.87 0.64
250 0.81 0.73 0.49 0.29
00 0.81 0.73 0.49 0.28

Table 1: The performance of Tangent Bug algorithm compared to VisBug2l algorithm. The
algorithms were tested in two simulated environments. Five maximal sensor range values, ranging
from 0 to oo, were tested in each environment. The average path length, measured over 100 runs
in each scenario, is presented relative to VisBug21 performance with contact sensors.

5 Simulation results

Simulations were performed to study the dependence of the resulting paths on the sensor
range R. The simulations show that Tangent Bug often generates paths that approach the
shortest path as R increases. The simulations also compare Tangent Bug with the classical
VisBug algorithm, showing that TangentBug generates significantly shorter paths in
congested office-like scenarios.

The algorithm was tested in two simulated environments. The simple environment
“world1” consists of convex non-intersecting obstacles, while the complex one “world2”
consists of concave obstacles with “office-like” shape. One hundred start/target points
were used for in each environment. In “world1”, the y coordinates were fixed * and the
z coordinates were chosen randomly within a given range. In “world2”, the start/target
points were chosen randomly within the freespace.

We used the algorithm VisBug21 from [12] for comparison. This algorithm plans local
shortcuts, based on range data ®, relative to the path that would be planned by algorithm
Bug?2 from [13] . Under Bug2, the robot moves directly towards the target until hitting an
obstacle. It then follows the obstacle boundary, using a predefined direction (clockwise),
until reaching the line [Start, Target]. The robot then leaves the obstacle boundary and
moves directly towards the target again.

The results are summed in table 1. The paths produced by Tangent Bug were shorter
in all the scenarios. Increasing the maximal range of the sensors improved the performance
of both algorithms. However, Tangent Bug makes better use of the range data. Range
data is used for choosing the locally optimal direction while moving towards the target, for
choosing the boundary following direction when boundary following behavior is initiated,
and for the leaving condition, which is not restricted to the line [Start,Target] as in
VisBug.

In “world1”, the paths produced by TangentBug, using unlimited range sensors, were
optimal in most cases. Only the moving-towards-the-target behavior was used in most

*We used the upper and lower sides of the environment in order to produce longer paths, so that the
effect of the range sensors was more apparent.
®Using contact sensors, VisBug21 performance is identical to Bug2.

22

The total path length of the first type subsegments is bounded by %, because the

distance to the target decreases along them with the minimal rate Tresh.
Obviously, all the subsegments of the second type, in which ;—Sd(P(s),T) > —Tresh,
are sliding subsegments, in which the robot motion is influenced by blocking obsta-
cles. To bound the path length of these subsegments we first show that the path
length traversed by the focus point, which is the LTG node towards which the robot
is moving, is bounded by >, F;. We then show that the number of these subsegments
can be bounded by some constant K, and use Lemma 4.9 to argue that the addition
to the path length of the robot in each subsegment, relative to the path length of
the focus point, is bounded by R.

The focus point F can not traverse the same part of the boundary twice during a
single sliding subsegment. Lemma 4.9 state this fact for the case when the detour
direction and the blocking obstacle are fixed. The distance d(F,T') strictly decreases
either when the detour direction is changed, because this is explicitly required by
the detour constrain, or when the blocking obstacle is changed, as shown in Lemma
4.8, thus the focus point can not traverse twice parts of the boundary which were
traversed in previous subsegments.

We next show that the distance from the focus point to the target d(F,7) de-
creases between moving-towards-the-target segments. When the robot switches
into boundary-following behavior, in a switch point Sw;, it registers a minimum
point M; which is a local minimum of d(z,T"). The focus point F; in Sw; satisfies
d(Fy,T) > d(M;,T). When the robot switches into moving-towards-the-target in
leave point L;, the leaving condition holds and therefore its focus point F, satisfies
d(M;,T) > d(F,,T). It follows that d(#,,T) > d(F,,T), therefore the distance from
the focus point to the target d(F,T) decreases between moving-towards-the-target
segments. It follows that the focus point F can not traverse the same part of the
boundary twice during all moving-towards-the-target segments, and its path length
can be bounded by the perimeter of the obstacles it touches >, P;.

We next show that the number of subsegments on which Ld(P(s),T) > —Tresh
can be bounded by a constant K. After the detour direction becomes fixed, it can
be changed only when the blocking obstacle is changed or the moving-towards-the-
target behavior is terminated. The blocking obstacle can be changed only in a finite
number of tangent points on each obstacle i, §Tangent;, The moving-towards-the-
target behavior can be terminated only in a finite number of local minima points on
each obstacle 7, {Minima;. We therefore have K =" ({Tangent; + § Minima;).

In Lemma 4.9 we show that the addition to the path length of the robot in each
subsegment with fixed detour direction, relative to the path length of the focus point,
is bounded by R W < W; + R. Therefore the total path length of subsegments on
which £d(P(s),T) > —Tresh can be bounded by Y, P, + R x Y ;({Tangent; +

t Minima;).

21

olv—+ 02
delta?’"

R "
@ (b)

Figure 11: (a) Small detour angle implies that the distance to the target decreases rapidly. (b)
Big detour angle implies that the distance to the target decreases slowly. When delta > A the
detour direction becomes fixed.

To bound the length of the path produced by the algorithm, using range sensors, we
introduce an additional constrain on changing the detour direction while moving-towards-
the-target. The detour direction is allowed to change only as long as the robot’s distance
to the target decreases “fast enough”; the robot path can be defined as a parametric
curve P(s); the rate of decreasing the distance from the target is £d(P(s),); the detour
direction is allowed to change when £d(P(s),T) < —Tresh, for some threshold 0 <
Tresh < 1. This constrain can be defined in terms of the detour angle §: £d(P(s),T) <
—Tresh < abs(6) < A, where A = arccos(Tresh) (see figure 11). When abs(6) > A
the detour direction becomes fixed until the blocking obstacle is changed or the moving-
towards-the-target behavior is terminated.

Proposition 4.14 The Upper bound W,,,, for the path length produced by the algorithm
TangentBug, using sensors with mazimal range R, is:

[15: 7|

Wma:c -
Tresh

—|—ZP +Rx K +Z P; + R) x {Minima;

where), P; refers to the perimeter of the obstacles intersecting the disc of radius
|5, T centered at T, K is a constant, and §Minima; is the number of local minima of
d(z,T) on the boundary of obstacle i.

Proof: The first three elements of the sum bound the path length of moving-towards-
the-target segments, while the fourth element bounds the path length of boundary-
following segments. The length of each boundary-following segment is bounded by
P;+ R, as explained in corollary 4.11. The total length of these segments is therefore
i (P + R) x §Minima;, as explained in proposition 4.7. We now explain the first
three elements of the upper bound.

The moving-towards-the-target segments can be divided into two types of subseg-
ments: subsegments on which £d(P(s),T) < —Tresh, and subsegments on which

Ld(P(s),T) > —Tresh.

20

Figure 10: (a) The range based leaving condition enables the robot to leave an obstacle boundary
from the leaving point L1 s.t. d(L1) > dfoniowea(T) = d(M). The robot leaves the boundary
because dreqch(T) < dfottowed(T), Where dreqen(I') = d(O1,T). (b) The robot moves towards the
node O; € LTG using moving-towards-the-target behavior until Swy, where O; reaches a local
minimum. The robot then switches to boundary following and moves until Lo, where it leaves the

obstacle and moves directly towards the target.

To insure that d(M;,T) < d,eqen(T), and thus d(M;,T) < d(M;,T), we want to
guarantee that d(M,T) < dreaen(T). During moving-towards-the-target behavior
the point M is one of the endpoints of the blocking obstacle, because otherwise it is
a local minimum and the behavior is terminated ®. To guarantees that d(M,T) <
dreacn(T') during the motion towards the target, we use an additional constrain on
the direction choosing mechanism. A node v € LTG is considered as a candidate for
the locally optimal direction only if d(v,T) < d,eqen(T). The distance d(v,T’) can
only decrease while moving towards v, because a local minimum is detected when
d(v,T) increases, and the motion towards the target is terminated.

The additional constrain is activated by transferring the parameter dy..1arin (1), set
t0 dyeetmin(1) — dreaen (1), from the boundary-following behavior to the moving-
towards-the-target behavior. The constrain is used as long as the robot’s distance
from the target satisfies d(z,T) > dreacn(T). When d(z,T) < dyeqen(T) the constrain
is not necessary anymore because it is guaranteed that d(A;,T) < d(z,T).

Corollary 4.13 Using range sensors, the algorithm reaches the target T in a finite path
iof it is reachable from S. Otherwise the algorithm lerminales after a finite path.

Proof: The proof follows the lines of Theorem 1 and Theorem 2 for the contact sensors
case.

O

?Note that the leaving condition from obstacle Or may hold in L;, where the closest point M on
the blocking obstacle Op is a local minimum. The robot will immediately swith to boundary following
Swiy1 = L;, where the new followed obstacle is Op. This scenario may happen on non-smooth obstacles.

19

along the subsegment is towards F. The distance from the robot to F along the
subsegment is not bigger than the sensor range d(z, F) < R, and this distance is
non-increasing because F is not faster than the robot. It follows that the path length

W of the robot is bounded by W < W; + R.

a

Lemma 4.10 The path length of a moving-towards-the-target segment, using range sen-
sors, is finite.

Proof: We consider a moving-towards-the-target segment starting from L; and ending
in M;. The total length of direct subsegments is bounded by the distance from the
starting point to the target ||L;,T||, as shown in Lemma 4.3.

The sliding subsegments are divided into separate parts, in which the blocking ob-
stacle and the detour direction are fixed. The number of these parts is finite because
the detour direction can be changed only a finite number of times, because of the
detour constrain, and the blocking obstacle can be changed only in a finite number
of point on each obstacle. The path length of each part is finite, as shown in Lemma
4.9, therefore the total path length of the sliding subsegments is finite.

a

Corollary 4.11 The path length of a boundary-following segment, using range sensors,
is finite.

Proof: If the starting point Sw; of the boundary-following segment is on an obstacle
boundary, the path planned using the LTG is bounded by the perimeter of the
obstacle. It may be shorter because it may contain local shortcuts relative to the
obstacle boundary. If Sw; is not on an obstacle boundary, its distance from the
followed obstacle is not larger than the sensor range R. Therefore the bound for the
path length is R + P, where P is the perimeter of the obstacle.

O

Corollary 4.12 Using range sensors, the distance to the largel decreases belween succes-
sive minima points d(M;,T) > d(M;,T) where i < j.

Proof: Moving from M; to M; the robot must leave an obstacle in a leaving point
L;, in which the leaving condition holds d,.qch (1) < dfontowea(T) < d(M;,T). If a
blocking obstacle is sensed from L; then d,.,.,(7) is the distance to the target from
the closest point M on its boundary and d(M,T) = d,cqcn (7). If no blocking obstacle
is sensed from L; then the robot moves from L; directly towards the target until it
senses a blocking obstacle (or reaches the target - which is not considered here).
In this case the closest point to the target M on the blocking obstacle’s boundary
satisfies d(M,T) < dyeqen(T). The closest point to the target M is monitored during
the moving-towards-the-target behavior, and it becomes the next minima point M;
when this behavior is terminated.

18

@

Figure 9: (a) A change in the blocking obstacle takes place when the robot is heading directly
towards the target and there is a discontinuity of the distance in this direction. In the example
the blocking obstacle 01 will be replaced by 02. (b) A change in the blocking obstacle may happen
only in a finite number of tangent points tgl,%g2,tg3,tg4.

d(0,T) - d(0,T) > Step for some constant Step > 0. The detour constrain guarantees
that the detour direction will be changed only a finite number of times along the path.

Corollary 4.8 The blocking obstacle may be changed, during moving-towards-the-target
segment, only in a finite number of tangent points on each obstacle.

Proof: A change in the blocking obstacle takes place when the robot is heading directly
towards the target and there is a discontinuity of the distance in this direction (see
figure 9). This situation may happen only when the focus point is located in a
tangent point with a line that pass through the target. The number of these tangent
point on each obstacle ¢ is finite fTangent;. When the blocking obstacle changes
from O; to O,, the focus point Fy € O, is closer to the target than the focus point
Fy € 0y, d(F,T) > d(F,,T).

Lemma 4.9 The path length of a sliding subsegment, along which the detour direction
and the blocking obstacle are fixed, is finite.

Proof: We consider a sliding subsegment, which is a part of a moving-towards-the-
target segment, along which the detour direction and the blocking obstacle are fixed.
The robot moves towards the focus point F which slides along the boundary of a
single obstacle. We first show that the path length W} traversed by the focus point
is finite, and then show that the path length W traversed by the robot is bounded
by W < W; + R.

The sliding direction of F on the boundary is fixed. It can not complete a loop
around the obstacle boundary, because the blocking obstacle is changed when the
focus point reaches a tangent point with a line that pass through the target. It
follows that the path length of F along the boundary is finite. The robot heading

17

« T

blocking obstacle /' right2

X2 %
X1

Figure 8: An unstable behavior may happen when the the robot motion changes the location of
the sensed endpoints of the blocking obstacle. The detour direction in X; is left. Moving from X;
to X5 makes the right obstacle endpoint right2 closer to the target, and the detour direction will
be changed from left to right.

sensors case, some distinguished points along the path. We show that the path length of
each motion segment is finite, prove completeness of the algorithm for the range sensors
case and derive an upper bound for the path length in this case.

In the following, we consider sensors with maximal range R, and use the notion of
the blocking obstacle, which is the obstacle positioned between the robot location and
the target, within the sensor range R. A hit point H; is a point where the robot first
senses the blocking obstacle; a departure point De; is a point where the blocking obstacle
changes during moving-towards-the-target behavior; a switch point Sw; is a point where
the robot switches from moving-towards-the-target to boundary-following; each switch
point has a corresponding minimum point M;, which is a local minimum of the function
d(z,T), visible from Sw; within the sensor range R; a leave point L; is a point where
the the leaving condition holds; the robot leaves an obstacle boundary and switches to
moving-towards-the-target. We also define the focus point F as the location of the LTG
node towards which the robot is heading.

Using range sensors usually reduces path length. Moving from a hit point H;, the robot
moves in the locally optimal direction towards the focus point F’, which is an endpoint of
the blocking obstacle. Moving towards F’ can be viewed as a local shortcut relative to the
path that would be planned using contact sensors, in which the robot moves towards the
target until touching the obstacle and then follows the obstacle boundary until reaching
F. However, the robot’s policy to change its detour direction right/left, based on locally
optimal decisions, can cause unstable behavior and increase the path length.

Unstable behavior may happen when the robot motion changes the location of the
sensed endpoints of the blocking obstacle, and thus affects the choice of the locally optimal
direction (see figure 8). The problem is more apparent when the endpoints of the blocking
obstacle are defined by the limited sensor range or by obstruction. However, this problem
can also be observed while moving amidst smooth obstacles, when the endpoints are
defined by the tangents to the real obstacle.

To avoid changing the detour direction due to infinitesimal improvements in the ex-
pected path length to the target (as may happen in the example presented in figure 8),
we introduce the detour constrain. The detour direction is changed from moving towards
0, to moving towards O,, where O, O, are the endpoints of the blocking obstacle, only if

16

a

Proposition 4.7 The Upper bound W,,., for the path length produced by the algorithm
TangentBug, using conlact sensors, 1s:

Wma:c = HsvTH + ER ‘|‘ ZB X ﬁ]\hnzmal

where Y, P; refers to the perimeter of the obstacles intersecting the disc of radius ||9,T|
centered at T, and § Minima; is the number of local minima of d(z,T) on the boundary of
obstacle 1.

Proof: = The first element of the sum ||.5,7|| bounds the path length of direct subseg-
ments of the moving-towards-the-target behavior. These are straight subsegments
which satisfy the following properties: the endpoint of each subsegment is closer to
the target than the starting point of the same subsegment and the starting point of
each subsegment is closer to the target than the endpoint of the previous subsegment
(see Lemma 4.3).

The second element of the sum), P; bounds the path length of sliding subsegments
of the moving-towards-the-target behavior. The robot cannot traverse the same
part of the boundary twice during a single segment because the distance to the
target decreases during motion towards the target. Successive segments are non-
overlapping, because the leaving condition guarantees d(L;,T) > d(H;;1). It follows
that the total length of the sliding subsegments is bounded by the perimeter of
the obstacles which the robot hits on its way. The distance from hit points to the
target decreases along the path, therefore d(H;,T) < d(S5,T) holds for every ¢. This
property implies that the robot may hit only obstacles that intersect the disc of radius
|5, T|| centered at T', thus), P; bounds the length of the sliding subsegments.

The third element of the sum }, P; x §Minima; bounds the path length of the
boundary-following segments. To bound the number of these segments, we use the
fact that the robot switches to boundary-following only in local minim points of
d(z,T) on the boundary of obstacles which the robot hits, and that the robot may
switch into boundary-following only once in every local minimum. The path length
of a single boundary-following segment is bounded by the perimeter of the followed
obstacle. The bound for the path length of boundary following segments on a single
obstacle 7 is the obstacle perimeter multiplied by the number of local minima on the
obstacle’s boundary §Minima;. This bound must be summed over all the obstacles
that the robot may hit along its way >, P; X §Minima;.

4.2 Using range sensors

Using range sensors, the robot’s path becomes more complex; moving between obstacles
is not limited to the direction towards the target, and following obstacle boundaries is
performed while the robot senses the obstacles but not necessarily touches them. Conse-
quently, bounding the path length becomes more difficult. We next re-define, for the range

15

Proof: Follows directly from Lemma 4.4. If the target is reachable then the robot
will leave any obstacle before completing a loop around it, thus completing a loop
around an obstacle means that the target is unreachable.

a

Corollary 4.6 The distance to the target decreases belween successive minima points
d(M;,T) > d(M;,T) where i < j.

Proof: Moving from M; to M;, the robot follows an obstacle boundary until reaching
a leave point L;, which satisfies d(M;,T) > d(L;,T). The robot then switches to
moving-towards-the-target behavior. The leaving condition guarantees d(L;,T) >
d(H;;1,T). The distance d(z,T) decreases during the motion towards the target,
thus d(H;41) > d(M;). It follows that d(M;,T) > d(M;,T).

Theorem 1 The algorithm terminates after a finite path.

Proof: Using contact sensors, swithching from moving-towards-the-target to boundary-
following takes place in minima points M;, which are local minima of the distance
from the target function d(z,T’). Corollary 4.6 states that the distance to the tar-
get decreases between successive minima points along the path, thus switching to
boundary-following can happen only once in each local minimum of d(z,7"). Lemma
4.1 states that the number of local minima points of d(z,T’) in the free configuration
space is finite. It follows directly that the number of motion segments along the path
is finite. Lemma 4.3 and Lemma 4.4 guarantee that the path length for each motion
segment is finite, thus the total path length is finite.

a

Theorem 2 If the target T is reachable from the starting point S then the robol will reach
it in a finite path.

Proof: Corollary 4.2 determines that the every moving-towards-the-target segment
terminates either in the target or in a local minimum. When a local minimum M;
is reached, the robot switches to boundary-following. If T is reachable from S then
Lemma 4.4 guarantees that every boundary-following segment will be terminated
in a leave point L; and followed by a moving-towards-the-target segment. We will
show that the robot will eventually reach the target, because the number of boundary
following segments is finite, and consequently there will be the last moving-towards-
the-target segment, which terminates in the target.

We denote by N the number of local minima points of d(z,T"). Corollary 4.6 implies
that switching to boundary-following can happen only once in each local minimum
of d(z,T). If the robot does not reach the target after leaving N — 1 obstacles, it
must reach the N* minimum point My. Lemma 4.4 guarantees that the robot will
leave the N'* obstacle. The N + 1* moving-towards-the-target segment cannot be
terminated in a local minimum My, because the robot have already visited all the
local minima in the free space, thus it must be terminated in 7.

14

it into a local minimum. Using contact sensors, a local minimum can be detected
only when the robot reaches it, therefore the segment must terminate in a minimum
point.

a

Lemma 4.3 The path length of a moving-towards-the-target segment, using contact sen-
sors, is finite.

Proof: We consider a segment starting from L;, ending in M; and including several
hit/departure points L;, H;y1, Deiyr, ..., Hj 1, Dej_y, H;, M;. ?

The total length of the direct subsegments is bounded by the distance from the
starting point to the target

1 Lis Hoal| + |1 Deigs, Hipo|l + oo + [Dej_a, hy|| < 1L, T

This property holds because the endpoint of each subsegment Hj,; is closer to
the target than the starting point of the same subsegment d(L;,T) > d(H;;1,T),
d(Dey,T) > d(Hy41,T), and the starting point of each subsegment De, is closer to
the target than the endpoint of the previous subsegment d(Hy,T) > d(Dey,T).

The total length of the sliding subsegments is bounded by the perimeter of the
obstacles which the robot hits on its way. The robot cannot traverse the same part
of the boundary twice during a single segment because the distance to the target
decreases along the segment.

a

Lemma 4.4 If the target T is reachable from a minimum point M; then the leaving con-
dition will enable the robot to leave the obstacle boundary after a finite path.

Proof: Consider a minimum point M;, where the robot touches the obstacle O. The
robot can reach any point on O’s boundary using the boundary-following behavior.
If the target is reachable from M;, then there exist at least one point on the boundary
of O from which the leaving condition holds. In particular we can look at a point C'
on the boundary of O which is closest to the target. When the robot reaches C', the
minimal distance to the target on the followed obstacle is updated to d;ouowea (1) —
d(C,T). The target T is reachable from C because it is reachable from M;, therefore
it is possible to move from C' directly towards 1. In this case T,.,4. € LTG and
d(Thoae,T) < d(C,T). The minimal distance to the target within the visible ¢
environment is updated to d,.ocn(T) — d(Thoae,T). The leaving condition holds
dreach(T) < dfotiowea(T). The robot path from M to C is finite because we assumed
that the perimeter of every obstacle is finite.

a

Lemma 4.5 If the robot completes a loop around an obstacle then the target is unreach-

able.

In the general case the number of [Hy, Deg] pairs may be zero. If M; = T then the last hit point H,
is eliminated.

13

Figure 7: The segments of T'angent Bug path. The first moving towards the target segment starts
from S, hits and departures from two obstacles [h1, deq, ho, des], hits the third obstacle at hs and
ends at the minimum point Ms. The direct subsegments are [S, hi], [dey, hs], [des, hs], and the
sliding subsegments are [hy, de1], [ha, des], [hs, M3]. The robot switches to boundary-following in
M3 and follows the obstacle boundary until the leave point Lz. The next moving-towards-the-
target segment is [Ls, ha, dea, hs, M5]. The robot follows the obstacle boundary from Ms to Ls

and then leaves the obstacle and moves directly towards the target T'.

4.1 Using contact sensors

We first define several distinguished points and segments along the robot path: a hit
point H; is a point where the robot first touches an obstacle; a departure point De;
is a point where the moving-towards-the-target behavior drives the robot away from an
obstacle boundary; a switch point Sw; is a point where the robot switches from moving-
towards-the-target to boundary-following; using contact sensors, each switch point is also
a minimum point M;, which is a local minimum of the function d(z,T); a leave point
L; is a point where the leaving condition holds; the robot leaves an obstacle boundary
and switches to moving-towards-the-target. We define the starting point S as Lg, and the
target 1" as My, for some k > 0 (because 71’ is the global minimum of d(z,1")).

The robot path consists of several (1 to k) moving-towards-the-target segments, each
starting from a leave point L; and ending at a minimum point M;. FEach segment is
divided into two types of subsegments: direct subsegments [L;, H; 1], [Dey, Hy41] in which
the robot moves in straight line directly towards the target, and sliding subsegments
[Hy, Der], in which the robot slides along the boundary of a blocking obstacle. The
moving-towards-the-target segments are interleaved with boundary-following segments, in
which the robot moves from a minimum point M; to its corresponding leave point L;
(see figure 7). Note that the robot’s distance from the target d(z,7’) decreases along
sliding subsegments, in contrast to boundary-following segments in which this distance
may increase.

Corollary 4.2 A moving-towards-the-target segment terminates in a minimum point M;,
which is either the target or a local minimum of d(z,T).

Proof: The moving-towards-the-target behavior is terminated when the robot either
reaches the target or detects that moving in the locally optimal direction will drive

12

figure (b) with dashed line, the resulting path is completely different. The LTG created
at the starting point 5 consist of two obstacle endpoints O1,02. The locally optimal
direction is towards the endpoint O2, and the robot uses the moving towards the target
behavior until the target is reached.

4 Convergence proof

The convergence of TangentBug algorithm is based on the following main ideas: using
the moving-towards-the-target behavior, the robot’s distance from the target is reduced
and the path length is guaranteed to be finite. The robot may switch into boundary-
following behavior only in a finite number of local minima points of the distance from
the target function. The algorithm terminates after a finite time because switching to
boundary-following may happen only once in each minimum point. Reaching the target is
guaranteed because the leaving condition enables the robot to leave an obstacle boundary
if the target is reachable. We will next present some assumptions and definitions, describe
the convergence proof for the contact sensors case, and then consider range sensors.

We consider a point robot in a planar unknown configuration space populated with
arbitrary obstacles. Assuming that the workspace is bounded, it follows directly that the
perimeter of any obstacle is finite, and that the number of obstacles is finite. We define
the function d(z,T) over the free configuration space to be the Euclidean distance from z
to the target T.

Lemma 4.1 There is a finite number of isolated local minima points of d(z,T) over the
free configuration space.

Proof: In the following, we will need the basic topological fact that any set of isolated
points in a compact space (i.e. closed and bounded) is finite. Further, in the following
we will assume that the obstacle boundaries are smooth curves (the result can be
extended to piecewise smooth boundaries). First, d(x,T) clearly can have critical
points only on the obstacle boundaries, never in the interior of the free space. The
restriction of d(x,T) to the i’th boundary is a smooth function. The critical points
of d(x,T) on the boundary are precisely those points where the vector (x-T) is
orthogonal to the boundary. Recall now the definition of Morse function. It is a
smooth function whose second derivative matrix is non-singular at all the critical
points of the function. It is known that almost all smooth functions on a given
smooth manifold (the i’th obstacle boundary in our case) are Morse [8]. Moreover,
the critical points of a Morse function are always isolated. Hence d(x,T) has finitely
many local minima on almost any obstacle boundary. In our case the obstacle
boundaries on which d(x,T) is non-Morse can be characterized as follows. These are
the obstacle boundary which have a critical point of d(x,T) at which the circle of
curvature of the boundary has the target T at its center. This is clearly a non-generic
situation. Moreover, it seems that even then the only way by which the critical point
can be non-isolated is when the boundary contains a circular segment centered at T.

O

11

following behavior is not strictly reactive; the followed obstacle is determined initially and
then traced in the successive steps, considering the displacement of the robot between
steps. Note that, during boundary following, the followed obstacle may differ from the
blocking obstacle, when the followed obstacle does not block the direction towards the
target.

Another initial action is choosing a minimum point M, which is a closest point to the
target on the observed boundary of the followed obstacle. The minimum point is used for
detection of loop completion around the followed obstacle.

The boundary following direction (clockwise/counterclockwise) is chosen using the
detour direction, defined by the moving towards the target behavior, in the switch point
Sw. For example, if the detour direction is left then the boundary following direction is
clockwise.

At each step the robot constructs the LTG, locates the followed obstacle in it, and
focuses on those nodes of the LTG which lie on the followed obstacle. The motion direction
during boundary following is towards the left/right endpoint of the followed obstacle, in
the defined following direction.

As the robot moves around the followed obstacle it updates two variables, which reg-
ister minimal distances observed along the path. The shortest distance from the target
of the followed obstacle’s boundary is registered in djouopeqa(1), which is initialized
to dyontowea(T) — d(M,T). The shortest distance from the target within the visible
environment is registered in d,..., (7). To insure that the robot stays on locally opti-
mal paths, we constrain the update of d,...(7") in the following way. When there is a
blocking obstacle, d,...»(T") is updated by the shortest distance from the target of the
blocking obstacle’s boundary. When there is no blocking obstacle, d,...»(7T") is updated
by d(Tnodey T)

The robot leaves an obstacle boundary when it can reach, via free space, a point which
is closer to the target than the distance dfoyopeq (7). This test guarantees that the robot
will not be trapped again in local minima which it passed during the boundary following
motion. The following leaving condition is tested is every step:
if dyeaen(T) < dyotiowea(T) then leave the obstacle boundary.

The parameter dyeziarin (1) — dreacn (T) is transfered to the motion towards the target
behavior (the role of this parameter will be described in corollary 4.12).

3.4 An example

An example of T'angent Bug algorithm, compared to Bug2 algorithm from [13], is pre-
sented below (see figure 1). The path planned by Bug2 using contact sensors is presented
in figure (a) with solid line. The algorithm VisBug2l from [12], with unlimited sensor
range, plans local shortcuts relative to Bug2 path, as presented in figure (a) with dashed
line. Using VisBug21 the robot leaves the obstacle boundary in L2, as soon as the straight
line [, 7] is visible to the robot.

The path planned by T'angent Bug using contact sensors is presented in figure (b) with
solid line. The robot switches from motion towards the target to boundary following at
point Switch, where it reaches a local minimum of the distance from the target. It leaves
the first obstacle at the point L1 and moves towards the target, going around the second
obstacle, until the target is reached. When unlimited sensor range is used, as presented in

10

blocking obstacle

oL+
deltd, -
R

o2

Figure 6: An example of moving towards the target behavior. There is a blocking obstacle, and
the locally optimal direction is towards node O of the LTG. The detour angle is delta, and the
detour direction is left.

between the motion direction and the direction towards the target. We define the detour
direction, right/straight/left, as sign(9).

Lemma 3.1 IfT,,;. € LTG, meaning that there is no blocking obstacle, then the shortest
path will be along the edge towards T, ,q4.. Otherwise the endpoints of the blocking obstacle
are the only candidates for the shortest path.

The motion towards the target terminates when the robot detects that moving in the
locally optimal direction will drive it into a local minimum. This situation happens when
the blocking obstacle creates a local minimum in the distance from the target function.
As the robot moves towards the target, it monitors the closest point to the target M on
the boundary of the blocking obstacle. If the distances from the endpoints O;, 0, to the
target satisfy d(O,,7) > d(M,T) and d(O,,1") > d(M,T’) then the robot concludes that
it is within the basin of attraction of the local minimum M and switches to boundary
following behavior.

An additional constrain to the direction choosing mechanism, which is necessary for
preserving convergent properties when the robot switches from boundary following to
moving towards the target, is presented below (the role of this constrain will be described
in corollary 4.12). Given the parameter dyezinin (1) and as long as d(z,T) > dyewtmrin(T),
a node v € LTG is considered as a candidate for the locally optimal direction only if

d(’l],T) S dNextMin (T)

3.3 Following an obstacle boundary

The obstacle boundary following behavior is used to drive the robot away from a local
minimum. A boundary following direction is first chosen, and the robot moves around the
obstacle until either the leaving condition holds or a loop around the obstacle is completed.
The LTG is used to plan local shortcuts relative to the obstacle boundary and for testing
the leaving condition. We will describe the initial actions performed when this behavior
is activated, present the motion planning mechanism, and define the leaving condition.
When obstacle boundary following behavior is initiated, in a switch point Sw, the
algorithm first defines the followed obstacle as the current blocking obstacle. It can be
verified that this obstacle is the one which caused the local minimum. The boundary

Figure 5: The robot motion near a concave obstacle. The motion towards the target terminates
at P, where the robot detects that moving in the locally optimal direction will drive it into a local
minimum. The robot then switches to boundary following. (a) using contact sensors; (b) using
limited sensor range R. The sensed boundary from location P is marked with a bold line; (c¢) using

unlimited sensor range. The robot switches into boundary following mode at the starting location

S.

2. Choose a boundary following direction. Move along the boundary using the current
LTG while recording dyoyopea(7’), the minimal distance from the target along the
followed obstacle’s boundary and d,.q.,(7), the minimal distance from the target
within the visible environment, until one of the following events occurs:

e The target is reached. Stop.
o The “leaving condition” holds: d,.qcr (1) < dfontowea(T’). Go to step 1.

e The robot completed a loop around the obstacle. The target is unreachable.
Stop.

Note that the motion toward the target (step 1) includes both motion between the
obstacles and sliding along obstacle boundaries. This motion mode persists as long as the
distance function d(z,T’) decreases and the robot is not trapped in the basin of attraction
of a local minimum.

3.2 Moving towards the target

While moving towards the target, the robot moves in a greedy locally optimal direction,
which is the direction along the shortest path to the target according to the LTG. The
candidate motion directions are the directions towards LTG nodes. A node O, is considered
as a candidate only if it is closer to the target than the current robot location d(0;,T) <
d(z,T). The expected path length to the target is calculated for each candidate direction,
assuming that the sensed obstacles are thin walls and that they are the only obstacles in
the environment 1.

If an obstacle is detected, within the sensor range, between the robot and the target,

we term it the blocking obstacle. We define the detour angle 6 € [-7, 7] as the angle

'The expected path length from an obstacle endpoint O; to the target is d(0;,T) if the straight line
[O;, T] does not intersect any sensed obstacle. If there is an intersection then the shortest path length to
the target must be calculated considering the geometry of the sensed boundary.

Figure 4: The robot path in a simple environment using the moving towards the target behavior.

(a) using contact sensors; (b) using limited sensor range R; (¢) using unlimited sensor range. Note

the global change in the path caused by the increase of the sensor range.

3.1 Algorithm description

The Tangent Bug algorithm plans the motion of a point robot in a planar unknown con-
figuration space populated with arbitrary obstacles. The algorithm is based on two basic
behaviors, which are governed by the function d(z,T"), which measures the distance of the
robot, located at the point z, from the target. The two behaviors, or modes of motion, are
moving towards the target and following an obstacle boundary. The motion towards the
target decreases d(z,T), while the boundary following motion attempts to escape from a
local minimum of d(z,T’). In every step the robot creates a local tangent graph, LTG,
based on its immediate range readings. It uses the LTG to plan the next action in the
following way. While moving towards the target, the robot chooses a greedy locally opti-
mal direction, which is the direction along the shortest path to the target according to the
LTG. In simple scenarios, where the local decisions of turning right/left are correct from a
global point of view, this behavior will drive the robot in the optimal path considering the
robot’s incomplete information (see figure 4). The motion towards the target terminates
when the robot detects that moving in the locally optimal direction will drive it into a
local minimum. This situation happens when an obstacle, placed between the robot and
the target, creates a local minimum in the distance from the target function (see figure
5). The obstacle boundary following behavior is then used to drive the robot away from
the local minima in the following way. A boundary following direction is chosen, then the
robot moves along the obstacle boundary while continuously monitoring the LTG. The
LTG is used to plan local shortcuts relative to the obstacle boundary, but the robot may
not leave the boundary before the following leaving condition is met. The leaving condi-
tion checks that d(z,T) can be decreased relative to the shortest distance to the target
observed along the path so far. We now describe the TangentBug algorithm in detail,
and provide several examples of its operation.

1. Move towards the target along the locally optimal direction, until one of the following
occurs:

e The target is reached. Stop.

e Moving in the locally optimal direction will drive the robot into a local mini-
mum. Go to step 2.

short edge
=~ of length 2&

@ (b)

Figure 3: (a) The LTG using detection range R. The sensed obstacles O,,...,0s are
modeled as thin walls. The LTG edges connect the robot location « with the endpoints of
the sensed obstacles and T},,4.. (Bi-tangent edges are not shown.) (b) The LTG when the
robot touches a convex obstacle boundary, using unlimited sensor range. The endpoints
of the touched boundary are represented as points at distance € from z. Note that O, and
(3 are distinct sensed obstacles in this case.

contact point. We represent the boundary by a short edge of length 2¢ tangent to the
boundary, as shown in Figure 3(b).

The nodes of the LTG are the current robot location z, the endpoints of the sensed
obstacles, and optionally an additional node in the direction of the target called T, ,4.. If
the line segment from z to T is not blocked by an obstacle, we set T},,4. at the furthest
point on this line within the visible set. In particular, T, .4, is set to T if the target lies
in the visible set. The edges of the LTG connect the robot location & with all the other
nodes of the LTG. The LTG additionally contains edges which are bi-tangent to the sensed
obstacles, but the algorithm never uses these edges and they are not explicitly constructed.
Two examples of the LTG are shown in Figure 3.

Contact sensors require a special treatment to fit the above definitions. We assume that
the contact sensors can determine if there is free space in the direction of the target, and
can recover the local orientation of a touched boundary. These two types of information
are modeled as distance readings in a small range R = ¢, where € > 0 is a small scalar.
If there is free space in the direction of 7', it is represented by placing T, ,4. at a distance
¢ from z in the direction of 7. The boundary touched by the robot is represented by a
short edge of length 2¢ tangent to the boundary, and the endpoints of this edge become
vertices of the LTG.

3 The Tangent Bug algorithm

First we describe the global structure of the algorithm, and then present the details of the
motion behaviors and the transition conditions.

(b)

Figure 2: (a) The visibility graph compared to (b) the tangent graph

|E:| < 2M?+ N. Since M is typically much smaller than N, we see that || E,|| is O(N)
while [|E,|| is O(N?).

The tangent graph was also generalized in [11] to curved obstacles. In this case the
boundary of each obstacle is partitioned into convex and concave arcs. The edges of TG
are the convex boundary arcs, and the edges which are bi-tangent to convex boundary
arcs. In that case the number of edges in T'G is bounded by | E:|| < 2M? + N, where
M is the number of convex obstacles and N is the number of distinct convex arcs on the
obstacle boundaries.

2.2 The Local Tangent Graph

We assume a range finder which provides readings 360° around the robot. The range finder
provides perfect readings of the distance to the obstacles within the wisible setl, which is
the star-shaped set centered at the robot whose maximal radius is R. The local langent
graph, or LTG, is a tangent graph that includes only the portion of the obstacles which
lie in the visible set. The LTG is constructed as if the local range information represents
all the obstacles in the environment. This assumption allows the robot to base its local
decisions only on the currently observable obstacles, thereby greatly simplifying the data
processing. The local range data is first divided into distinct sensed obstacles by a process
described below. Each sensed obstacle is then modeled as a thin wall in the real world.
This assumption would always underestimate the obstacles’ size. However a more accurate
model would require sophisticated and computationally expensive modeling techniques.
Next we describe the process of partitioning the range data into sensed obstacles. The
range information can be represented as a function r(#), defined on the interval [0,27),
where 6 is the angle relative to a predefined direction and r(#) is the distance, in direction
0, from z to the nearest point on an observed boundary. The range data is divided into
distinct sensed obstacles based on the fact that the range changes continuously along the
boundary of a single visible part of an obstacle. The function r(¢) has a finite number
of discontinuity points, since discontinuities occur only at angles where an obstacle is
obstructed. A continuous ranges interval (r(a),r(3)), whose endpoints are either discon-
tinuity points or points where r(f) = R, is considered a distinct sensed obstacle. Note
that a single real obstacle can give rise to several sensed obstacles, as shown in Figure
3(a). A special sensed obstacle occurs when the robot touches an obstacle boundary at
a convex point. In that case the visible set locally intersects the boundary only at the

Figure 1: An example comparing TangentBug with Bug2 and VisBug. (a) The path
generated by Bug2 using contact sensors (solid line) is modified and shortened by VisBug
with unlimited sensor range (dashed line). (b) The path generated by T'angentBug using
contact sensors (solid line), and the path generated by T'angent Bug using unlimited sensor
range (dashed line). This example is discussed in detail in Section 3.

2 The Tangent Graph

This section reviews the notion of tangent graph, a structure which requires global knowl-
edge of the environment. Then the sensor-based local tangent graph is introduced.

2.1 Review of the Global Tangent Graph

First recall the definition of the wvisibility graph. Consider a polygonal environment in
which a starting point S and a target T are specified. The visibility graph, denoted
VG(V,, E,), is the undirected graph whose vertices V, are the obstacle vertices and the
points S and 7', and whose edges F, are the collision-free line segments which connect the
graph vertices (Figure 2(a)). It is known that the shortest collision-free path from S to T
always lies on the visibility graph. Thus, an optimal path from S to T in the environment
can always be found by limiting the search to the visibility graph. However, the visibility
graph contains many edges which never participate in the shortest path. For purpose of
comparison with the tangent graph, if there are N obstacle vertices, the number of edges
in the visibility graph is bounded by || E,|| < NZ2.

The tangent graph, denoted T'G(V,, E;), was introduced in [11]. It is the subgraph
of VG obtained by retaining only the convex obstacle vertices and the edges which are
bi-tangent to convex obstacle vertices (Figure 2(b)). Like the visibility graph, the tangent
graph contains the shortest path in the environment. But the tangent graph is the minimal
such graph, as it can be shown that the removal of any of its edges would destroy its
optimality. The tangent graph has a significantly smaller number of nodes and edges
than the visibility graph, as Figure 2 shows. Thus searching for the shortest path is more
efficient on the tangent graph. To estimate the size of TG, assume that the obstacles are
comprised of union of M convex polyhedra, such that the boundary curves of any two
overlapping convex polyhedra intersect at two points. (This condition can always be met
by suitable subdivision of the polyhedra.) It is known that any two convex polyhedra
can have at most 4 bi-tangent edges. Hence the number of edges in T'G’ is bounded by

VisBug [12]. Several versions of leaving conditions and internal representations appear in
[14, 15, 16, 20].

The midway approach of the Bug algorithms reduces the reliance on a global model to
the essential minimum of loop detection, while augmenting the purely reactive navigation
decisions with a globally convergent criterion. This approach thus minimizes the compu-
tational burden on the planner while still guaranteeing global convergence to the target.
However, the Bug algorithms do not make the best use of the available local information
to produce short paths. These algorithms use mainly contact sensors, and range data
is used in VisBug only to find shortcuts to the path generated by Bug2 (Figure 1(a)).
This paper presents a new Bug algorithm which specifically exploits range-data. The new
algorithm, termed Tangent Bug, uses the recently introduced notion of tangent graph to
produce paths which often resemble the shortest path to the goal (Figure 1(b)). The tan-
gent graph of a planar configuration space is the smallest subgraph of the visibility graph
which still contains the shortest path [11]. Let us briefly outline the algorithm.

The TangentBug algorithm uses the basic behaviors of motion towards the target
and obstacle boundary following. We introduce a local range-data based version of the
tangent graph, termed the local tangent graph, or LTG. In every step the robot constructs
the LTG based on the local range-data, and uses it to plan the next action as follows. Let
d(z,T) be the distance of the robot, located at a point z, from the target 7. Then during
the motion towards the target, d(z,7") decreases monotonically. During the boundary
following, the robot attempts to escape from a local minimum of d(z,T). While moving
towards the target, the robot chooses a locally optimal direction, which is the direction
along the shortest path to the target according to the current LTG. The motion towards
the target terminates when the robot detects that moving in the locally optimal direction
would drive it into a local minimum. The obstacle boundary following is then invoked
to drive the robot away from the local minimum. The robot first chooses a boundary
following direction, then it moves along the boundary while continuously monitoring the
LTG. The robot uses the LTG to make shortcuts along the obstacle boundary, but it may
not leave the boundary before the following leaving condition is met. Let djoopeqa(1) be
the minimal distance from T observed along the followed obstacle so far. Then the robot
leaves the obstacle boundary when it can reach a point P, within its visible environment,
such that d(P,T) < dyonowea(T).

The paper is organized as follows. Section 2 reviews the tangent graph and intro-
duces the LTG. Section 3 presents the TangentBug algorithm. In Section 4 we show
that TangentBug is globally convergent, and discuss general bounds on the performance
of the algorithm. We will present TangentBug as a l-parameter family of algorithms,
parameterized by the range-sensor detection distance R, where 0 < R < oo. In Section
5 we describe simulation results, where we study the dependence of the resulting paths
on the parameter R. The simulations show that TangentBug often generates paths that
approach the shortest path as R increases. The simulations also compare Tangent Bug
with the classical VisBug algorithm, showing that TangentBug generates significantly
shorter paths in congested office-like scenarios.

1 Introduction

Autonomous navigation of indoor mobile robots has received considerable attention in
recent years. Work in this area was motivated by applications such as office cleaning,
cargo delivery etc. In realistic settings the robot cannot base its motion planning on
complete apriori knowledge of the environment. The robot must rather use its sensors
to perceive the environment and plan accordingly. The two main sensor-based motion
planning approaches use either global planning or local planning. Let us briefly describe
these approaches and point out their limitations.

In the global sensor-based planning approach, the mobile robot builds a global world
model based on sensory information and use it for path planning [6, 21, 22]. This approach
guarantees that either the target will be reached, or the robot will map its entire accessible
environment and conclude that the goal is unreachable. However, the construction and
maintenance of a global model based on sensory information imposes a heavy computa-
tional burden on the robot. Moreover, the reliance on a global model for the navigation
requires frequent localization of the robot relative to the model, a process which is difficult
to attain due to the inherent uncertainties of practical sensors [5, 10, 18]. Recent works
also use the global approach to achieve sensor-based navigation of general robots, not just
mobile robots [4, 19]. These works propose algorithms for the incremental construction
of a roadmap for the robot configuration space as the global model. However several
implementation issues of these algorithms remain unsolved.

In contrast, local path-planners use the local sensory information in a purely reactive
fashion. In every control cycle the robot uses its sensors to locate the nearby obstacles,
and then it plans and performs the next action. Local planners are usually much simpler
to implement than the global ones, since they typically use navigation vector-fields which
directly map the sensor readings to actions. Different methods are used to choose or learn
these vector-fields, including the potential-field method and its variations [1, 9], fuzzy logic
approaches [7, 17], and methods which construct specialized data structures to make more
reliable decisions [2, 3]. However, while the local approaches are simple to implement, they
do not guarantee global convergence to the target. A local planner may get trapped in a
local minimum, and subsequently follow a diverging path or a loop while attempting to
escape from the local minimum. Once trapped in a loop, the robot has no way to escape
it since the sensory information is inherently local, and the same action will always be
taken for the same local situation.

Thus, the global approaches suffer from practical implementation problems, while the
local ones lack a global convergence guarantee. This paper focuses on a midway approach,
originated by Lumelsky and Stepanov [13], which combines local planning with global
information. This approach consists of two reactive modes of motion termed behaviors,
and transition conditions for switching between them. The two behaviors are moving
directly towards the target and following an obstacle boundary. When the robot hits
an obstacle it switches from moving towards the target to boundary following. It leaves
the obstacle boundary when a leaving condition, which monitors a globally convergent
criterion, holds. The leaving condition of [13] ensures that the distance to the target
decreases monotonically at successive hit points, thus guaranteeing global convergence.
However, the algorithms of [13], termed Bugl and Bug2, use only position and contact
sensors. Range data was incorporated only at a later stage, in an algorithm termed

Abstract

We present TangentBug, a new range-sensor based globally convergent navigation algo-
rithm for mobile robots. We incorporate the idea of the locally shortest path, using the
tangent graph, into the decisions of a local planner which exploits range-data to produce
short paths. We adjust the structure of the langent graph, which was defined for a com-
pletely known environment, and introduce a local range-data based version of it, termed
the local tangent graph, or LTG.

Our algorithm belongs to the Bug family from [12], which combines local planning with
global informaltion that guarantees convergence. We re-formulate the basic behaviors of
the Bug family, and define new transition conditions for switching between them. The
TangentBug algorithm uses the basic behaviors of motion towards the target and obstacle
boundary following. Let d(z,T) be the distance of the robot, located at a point x, from
the target T. Then during the motion towards the target, d(z,T) decreases monotonically.
During the boundary following, the robot attempts to escape from a local minimum of
d(z,T).

The TangentBug algorithm specifically exploits range-data, and uses it for choosing
the locally optimal direction while moving towards the target, for choosing the boundary
following direction when boundary following behavior is initiated, and for the transition
condition which terminates boundary following. The simulation results show improve-
ment in the path length as the sensor range increases. The results indicate a significant
advantage of TangentBug relative to the algorithm VisBug from [12], in all the tested
scenarios.

A New Range-Sensor Based

Globally Convergent Navigation
Algorithm for Mobile Robots

[shay Kamon Elon Rimon
Dept. of Computer Science Dept. of Mechanical Engineering
Technion Technion

Ehud Rivlin
Dept. of Computer Science
Technion

September 5, 1995

