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Abstract
Finding the lowest-cost path through a graph is
central to many problems, including route planning
for a mobile robot. If arc costs change during the
traverse, then the remainder of the path may need to
be replanned. This is the case for a sensor-equipped
mobile robot with imperfect information about its
environment. As the robot acquires additional
information via its sensors, it can revise its plan to
reduce the total cost of the traverse. If the prior
information is grossly incomplete, the robot may
discover useful information in every piece of sensor
data. During replanning, the robot must either wait
for the new path to be computed or move in the
wrong direction; therefore, rapid replanning is
essential. The D* algorithm (Dynamic A*) plans
optimal traverses in real-time by incrementally
repair ing paths to the robot’s state as new
information is discovered. This paper describes an
extension to D* that focusses the repairs to
significantly reduce the total time required for the
initial path calculation and subsequent replanning
operat ions.  This  extens ion completes the
development of the D* algori thm as a ful l
generalization of A* for dynamic environments,
where arc costs can change during the traverse of
the solution path.1

1 Introduction
The problem of path planning can be stated as finding a
sequence of state transitions through a graph from some ini-
tial state to a goal state, or determining that no such sequence
exists. The path is optimal if the sum of the transition costs,
also called arc costs, is minimal across all possible
sequences through the graph. If during the “traverse” of the
path, one or more arc costs in the graph is discovered to be

1.  This research was sponsored by ARPA, under contracts “Per-
ception for Outdoor Navigation” (contract number DACA76-89-C-
0014, monitored by the US Army TEC) and “Unmanned Ground
Vehicle System” (contract number DAAE07-90-C-R059, moni-
tored by TACOM).

incorrect, the remaining portion of the path may need to be
replanned to preserve optimality. A traverse is optimal if
every transition in the traverse is part of an optimal path to
the goal assuming, at the time of each transition, all known
information about the arc costs is correct.

An important application for this problem, and the one
that will serve as the central example throughout the paper, is
the task of path planning for a mobile robot equipped with a
sensor, operating in a changing, unknown or partially-known
environment. The states in the graph are robot locations, and
the arc values are the costs of moving between locations,
based on some metric such as distance, time, energy
expended, risk, etc. The robot begins with an initial estimate
of arc costs comprising its “map”, but since the environment
is only partially-known or changing, some of the arc costs
are likely to be incorrect. As the robot acquires sensor data,
it can update its map and replan the optimal path from its
current state to the goal. It is important that this replanning
be fast, since during this time the robot must either stop or
continue to move along a suboptimal path.

A number of algorithms exist for producing optimal
traverses given changing arc costs. One algorithm plans an
initial path with A* [Nilsson, 1980] or the distance transform
[Jarvis, 1985] using the prior map information, moves the
robot along the path until either it reaches the goal or its
sensor discovers a discrepancy between the map and the
environment, updates the map, and then replans a new path
from the robot’s current state to the goal [Zelinsky, 1992].
Although this brute-force replanner is optimal, it can be
grossly inefficient, particularly in expansive environments
where the goal is far away and little map information exists.

Boult [1987] maintains an optimal cost map from the
goal to all states in the environment, assuming the
environment is bounded (finite). When discrepancies are
discovered between the map and the environment, only the
affected portion of the cost map is updated. The map
representation is limited to polygonal obstacles and free
space. Trovato [1990] and Ramalingam and Reps [1992]
extend this approach to handle graphs with arc costs ranging
over a continuum. The limitation of these algorithms is that
the entire affected portion of the map must be repaired
before the robot can resume moving and subsequently make
additional corrections. Thus, the algorithms are inefficient
when the robot is near the goal and the affected portions of
the map have long “shadows”. Stentz [1994] overcomes



these limitations with D*, an incremental algorithm which
maintains a partial, optimal cost map limited to those
locations likely to be of use to the robot. Likewise, repair of
the cost map is generally partial and re-entrant, thus reducing
computational costs and enabling real-time performance.

Other algorithms exist for addressing the problem of
path planning in unknown or dynamic environments [Korf,
1987; Lumelsky and Stepanov, 1986; Pirzadeh and Snyder,
1990], but these algorithms emphasize fast operation and/or
low memory usage at the expense of optimality.

This paper describes an extension to D* which focusses
the cost updates to minimize state expansions and further
reduce computational costs. The algorithm uses a heuristic
function similar to A* to both propagate cost increases and
focus cost reductions. A biasing function is used to
compensate for robot motion between replanning operations.
The net effect is a reduction in run-time by a factor of two to
three. The paper begins with the intuition behind the
algorithm, describes the extension, presents an example,
evaluates empirical comparisons, and draws conclusions.

2 Intuition for Algorithm
Consider how A* solves the following robot path planning
problem. Figure 1 shows an eight-connected graph repre-
senting a Cartesian space of robot locations. The states in the
graph, depicted by arrows, are robot locations, and the arcs
encode the cost of moving between states. The white regions
are locations known to be in free space. The arc cost for
moving between free states is a small value denoted by

. The grey regions are known obstacle locations, and
arcs connected to these states are assigned a prohibitively
high value of . The small black square is a
closed gate believed to be open (i.e.,  value). With-
out a loss of generality, the robot is assumed to be point-size
and occupies only one location at a time. A* can be used to
compute optimal path costs from the goal, , to all states in
the space given the initial set of arc costs, as shown in the
figure. The arrows indicate the optimal state transitions;
therefore, the optimal path for any state can be recovered by
following the arrows to the goal. Because the closed gate is
assumed to be open, A* plans a path through it.

The robot starts at some initial location and begins
following the optimal path to the goal. At location , the
robot’s sensor discovers the gate between the two large
obstacles is closed. This corresponds to an incorrect arc
value in the graph: rather than , it has a much higher
value of , representing the cost of first opening the
gate and then moving through it. All paths through this arc
are (possibly) no longer optimal, as indicated by the labelled
region. A* could be used to recompute the cost map, but this
is inefficient if the environment is large and/or the goal is far
away.

Several characteristics of the problem motivate a better
approach. First, changes to the arc costs are likely to be in
the vicinity of the robot, since it typically carries a sensor
with a limited range. This means that most plans need only
be patched “locally”. Second, the robot generally makes
near-monotonic progress toward the goal. Most obstructions
are small and simple path deflections suffice, thus avoiding
the high computational cost of backtracking. Third, only the
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remaining portion of the path must be replanned at a given
location in the traverse, which tends to get progressively
shorter due to the second characteristic.

Figure  1: Invalidated States in the Graph

As described in Stentz [1994], D* leverages on these
characteristics to reduce run-time by a factor of 200 or more
for large environments. The paper proves that the algorithm
produces correct results regardless--only the performance
improvement is affected by the validity of the problem
characteristics.

Like A*, D* maintains an  list of states for
expansion; however, these states consist of two types:

 and .  states transmit path cost
increases due to an increased arc value, and  states
reduce costs and re-direct arrows to compute new optimal
paths. The  states propagate the arc cost increase
through the invalidated states, by starting at the gate and
sweeping outward, adding the value of  to all states in
the region. The  states activate neighboring
states which sweep in behind to reduce costs and re-direct
pointers.  states compute new, optimal paths to the
states that were previously raised.

States are placed on the  list by theirkey value,
, which for  states is the currentpath cost,

(i.e., cost from the state  to the goal), and for  states
the previous, unraised  value. States on the list are
processed in order of increasing key value. The intuition is
that the previous optimal path costs of the  states
define a lower bound on the path costs of  states they
can discover. Thus, if the path costs of the  states
currently on the  list exceed the previous path costs of
the  states, then it is worthwhile processing
states to discover (possibly) a better  state.

The process can terminate when the lowest value on the
 list equals or exceeds the robot’s path cost, since

additional expansions cannot possibly find a better path to
the goal (see Figure 2). Once a new optimal path is
computed or the old one is determined to be valid, the robot
can continue to move toward the goal. Note in the figure that
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only part of the cost map has been repaired. This is the
efficiency of the D* algorithm.

The D* algorithm described in Stentz [1994] propagates
cost changes through the invalidated states without
considering which expansions will benefit the robot at its
current location. Like A*, D* can use heuristics to focus the
search in the direction of the robot and reduce the total
number of state expansions. Let thefocussing heuristic

 be the estimated path cost from the robot’s location
to . Define a new function, theestimated robot path cost, to
be , and sort all  states on the

 list by increasing  value. The function  is
the estimated path cost from the state  through  to .
Provided that  satisfies the monotone restriction, then
since  is optimal when  state  is removed from
the  list, an optimal path will be computed to
[Nilsson, 1980]. The notation  is used to refer to a
function independent of its domain.

Figure  2:  States Reach the Robot

In the case of  states, the previous  value
defines a lower bound on the  values of  states
they can discover; therefore, if the same focussing heuristic

 is used for both types of states, the previous  values
of the  states define lower bounds on the  values of
the  states they can discover. Thus, if the  values
of the  states on the  list exceed the previous

 values of the  states, then it is worthwhile
processing  states to discover better  states.
Based on this reasoning, the  states should be sorted
on the  l ist by . But since

 for  states, the  state definition
for  suffices for both kinds of states. To avoid cycles in
the backpointers, it should be noted that ties in  are sorted
by increasing  on the  list [Stentz, 1993].

The process can terminate when the lowest value on the
 list equals or exceeds the robot’s path cost, since the

subsequent expansions cannot possibly find a  state
that 1) has a low enough path cost, and 2) is “close” enough
to the robot to be able to reduce the robot’s path cost when it
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reaches it through subsequent expansions. Note that this is a
more efficient cut-off than the previous one, which considers
only the first criterion.

Figure 3 shows the same example, except that a
focussed search is used. All states in the  state wave
front have roughly the same  value. The wave front is
more “narrow” in the focussed case since the inclusion of the
cost to return to the robot penalizes the wide flanks.
Furthermore, the  states activated by the
state wave front have swept in from the outer sides of the
obstacles to compute a new, optimal path to the robot. Note
that the two wave fronts are narrow and focussed on the
robot’s location. Compare Figure 3 to Figure 2. Note that
both the  and  state wave fronts have covered
less ground for the focussed search than the unfocussed
search in order to compute a new, optimal path to . Therein
is the efficiency of the Focussed D* algorithm.

The problem with focussing the search is that once a
new optimal path is computed to the robot’s location, the
robot then moves to a new location. If its sensor discovers
another arc cost discrepancy, the search should be focussed
on the robot’s new location. But states already on the
list are focussed on the old location and have incorrect
and  values. One solution is to recompute  and
for all states on the  list every time the robot moves
and new states are to be added. Based on empirical evidence,
the cost of re-sorting the  list more than offsets the
savings gained by a focussed search.

Figure  3: Focussed  States Reach Robot

The approach in this paper is to take advantage of the
fact that the robot generally moves only a few states between
replanning operations, so the  and  values have only a
small amount of error. Assume that state  is placed on the

 list when the robot is at location . Its  value at
that point is . If the robot moves to location , we
could calculate  and adjust its position on the
list. To avoid this computational cost, we compute a lower
bound  on  g iven  by
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on  since i t  assumes the robot moved in the
“direction” of state , thus subtracting the motion from

. The parameter  is an arbitrarily small positive
number. If  is repositioned on the  list by ,
then since  is a lower bound on ,  will be
selected for expansion before or when it is needed. At the
time of expansion, the true  value is computed, and
is placed back on the  list by .

At first this approach appears worse, since the
list is first re-sorted by  and then partially adjusted to
replace the  values with the correct  values. But since

 is subtracted fromall states on the  list,
the ordering is preserved, and the list need not be re-sorted.
Furthermore, the first step can be avoided altogether by
adding  to the states to be inserted on the
list rather thansubtracting it from those already on the list,
thus preserving the relative ordering between states already
on the list and states about to be added. Therefore, the only
remaining computation is the adjustment step. But this step
is needed only for those states that show promise for
reaching the robot’s location. For typical problems, this
amounts to fewer than 2% of the states on the  list.

3 Definitions and Formulation
To formalize this intuition, we begin with the notation and
definitions used in Stentz [1994], and then extend it for the
focussed algorithm. The problem space can be formulated as
a set ofstates denoting robot locations connected bydirec-
tional arcs, each of which has an associated cost. The robot
starts at a particular state and moves across arcs (incurring
the cost of traversal) to other states until it reaches thegoal
state, denoted by . Every visited state except  has a
backpointer to a next state  denoted by . D* uses
backpointers to represent paths to the goal. The cost of tra-
versing an arc from state  to state  is a positive number
given by thearc costfunction . If  does not have an
arc to , then  is undefined. Two states  and  are
neighbors in the space if  or  is defined.

D* uses an  list to propagate information about
changes to the arc cost function and to calculate path costs to
states in the space. Every state  has an associatedtag ,
such that  if  has never been on the  list,

 if  is currently on the  list, and
 if  is no longer on the  list. For

each visited state , D* maintains an estimate of the sum of
the arc costs from  to  given by the path cost function

. Given the proper conditions, this estimate is equivalent
to the optimal (minimal) cost from state  to . For each
state  on the  list (i.e., ), the key
function, , is defined to be equal to the minimum of
before modification and all values assumed by  since
was placed on the  list. The key function classifies a
state  on the  list into one of two types: a
state if , and a  state if . D*
uses  s ta tes  on the  l i s t  to  propagate
information about path cost increases and  states to
propagate information about path cost reductions. The
propagation takes place through the repeated removal of
states from the  list. Each time a state is removed from
the list, it isexpanded to pass cost changes to its neighbors.
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These neighbors are in turn placed on the  list to
continue the process.

States are sorted on the  list by abiased
value, given by , where  is the state on the
list and  is the robot’s state at the time  was inserted or
adjusted on the  list. Let  be the
sequence of states occupied by the robot when states were
added to the  list. The value of  is given by

, where  is the estimated
robot path cost given by  and  is
the accrued  b ias func t ion  g iven  by

 i f
 and  if . The function  is the

focussing heuristic, representing the estimated path cost
from  to . The  list states are sorted by increasing

 value, with ties in  ordered by increasing , and
ties in  ordered by increasing . Ties in  are
ordered arbitrarily. Thus, a vector of values
is stored with each state on the list.

Whenever a state is removed from the  list, its
 value is examined to see if it was computed using the

most recent focal point. If not, its  and  values are
recalculated using the new focal point and accrued bias,
respectively, and the state is placed back on the list.
Processing the  values in ascending order ensures that
the first encountered  value using the current focal point
is the minimum such value, denoted by . Let  be its
corresponding  value. These parameters comprise an
important threshold for D*. By processing properly-focussed

 values in ascending order (and  values in ascending
order for a constant  value), the algorithm ensures that for
all states , if  or (  and ),
then  is optimal. The parameter  is used to store the
vector  for the purpose of this test.

Let  be the current state on which the search is
focussed, initialized to the robot’s start state. Define the
robot state function , which returns the robot’s state
when  was last inserted or adjusted on the  list. The
parameter  is the accrued bias from the robot’s start
state to its current state; it is shorthand for  and is
in i t i a l i zed  to .  The  fo l low ing
shor thand  no ta t ion  i s  used  fo r  and :

 and .

4 Algorithm Description
The D* algorithm consists primarily of three functions:

, ,  and
.  computes optimal

path costs to the goal,  changes the arc cost
function  and enters affected states on the  list, and

 uses the two functions to move the robot
op t ima l l y.  The  a lgor i thms fo r ,

,  and  are presented
below along with three of the more detailed functions for
managing the  list: , , and

. The user provides the function ,
which computes and returns the focussing heuristic .

The embedded routines are:  returns the
minimum of the two scalar valuesa andb;  takes a
vector of values  for  and a vector  for
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and returns  if  or (  and );
 takes two vectors  and  and returns

if  or (  and );  computes
 and returns the vector of

values  for a state ;  deletes
state  from the  list and sets ;

 sets  and inserts  on the
 list according to the vector ; and

 returns the state on the  list with
minimum vector value (  if the list is empty).

The  function, given below, changes the value
of  to  and inserts or repositions  on the
list. The value for  is determined at lines L1 through  L5.
The remaining two values in the vector are computed at line
L7, and the state is inserted at line L8.

Function: INSERT (X, hnew)

L1 if  then
L2 else
L3 if  then
L4 ;
L5 else
L6 ;
L7 ;
L8

The function , given below, returns the
state on the  list with minimum  value. In order to
do this, the function retrieves the state on the  list with
lowest  value. If the state was placed on the  list
when the robot was at a previous location (line L2), then it is
re-inserted on the  list at lines L3 and  L4. This
operation has the effect of correcting the state’s accrued bias
using the robot’s current state while leaving the state’s
and  values unchanged.  continues to
retrieve states from the  list until it finds one that was
placed on the  list with the robot at its current state.

Function: MIN-STATE ()

L1 while
L2 if  then
L3 ;
L4 ;
L5 else return
L6 return

The  function, given below, returns the
and  values of the state on the  list with minimum

 value, that is, .

Function: MIN-VAL ()

L1
L2 if  then return
L3 else return

In funct ion  cost changes are
propagated and new paths are computed. At lines L1 through
L3, the state  with the lowest  value is removed from
the  list. If  is a  state (i.e., ), its
path cost is optimal. At lines L9 through L14, each neighbor

 of  is examined to see if its path cost can be lowered.
Additionally, neighbor states that are  receive an initial
path cost value, and cost changes are propagated to each

TRUE a1 b1< a1 b1= a2 b2<
LESSEQ a b,( ) a b TRUE

a1 b1< a1 b1= a2 b2≤ COST X( )
f X Rcurr,( ) h X( ) GVAL X Rcurr,( )+=

f X Rcurr,( ) h X( ),〈 〉 X DELETE X( )
X OPEN t X( ) CLOSED=

PUT STATE– X( ) t X( ) OPEN= X
OPEN fB X( ) f X( ) k X( ), ,〈 〉
GET STATE– OPEN

NULL
INSERT

h X( ) hnew X OPEN
k X( )

t X( ) NEW= k X( ) hnew=

t X( ) OPEN=
k X( ) MIN k X( ) hnew,( )= DELETE X( )

k X( ) MIN h X( ) hnew,( )=
h X( ) hnew= r X( ) Rcurr=
f X( ) k X( ) GVAL X Rcurr,( )+= fB X( ) f X( ) dcurr+=
PUT STATE– X( )

MIN STATE–
OPEN f°( )

OPEN
fB °( ) OPEN

OPEN

h °( )
k °( ) MIN STATE–

OPEN
OPEN

X GET STATE– ( ) NULL≠=
r X( ) Rcurr≠
hnew h X( )= h X( ) k X( )=
DELETE X( ) INSERT X hnew,( )

X
NULL

MIN VAL– f °( )
k °( ) OPEN

f °( ) fmin kval,〈 〉

X MIN STATE– ( )=
X NULL= NO VAL–

f X( ) k X( ),〈 〉
PROCESS STATE–

X f °( )
OPEN X LOWER k X( ) h X( )=

Y X
NEW

neighbor  that has a backpointer to , regardless of
whether the new cost is greater than or less than the old.
Since these states are descendants of , any change to the
path cost of  affects their path costs as well. The
backpointer of  is redirected, if needed. All neighbors that
receive a new path cost are placed on the  list, so that
they will propagate the cost changes to their neighbors.

Function: PROCESS-STATE ()

L1
L2 if  then return
L3 ; ;
L4 if  then
L5 for each neighbor  of :
L6 if  and  and
L7  then
L8 ;
L9 if  then
L10 for each neighbor  of :
L11 if  or
L12 (  and ) or
L13 (  and ) then
L14 ;
L15 else
L16 for each neighbor  of :
L17 if  or
L18 (  and ) then
L19 ;
L20 else
L21 if  and  and
L22  then
L23
L24 else
L25 if  and  and
L26  and
L27  then
L28
L29 return

If  is a  state, its path cost may not be optimal.
Before  propagates cost changes to its neighbors, its
optimal neighbors are examined at lines L4 through L8 to
see if  can be reduced. At lines L16 through L19, cost
changes are propagated to  states and immediate
descendants in the same way as for  states. If  is
able to lower the path cost of a state that is not an immediate
descendant (lines L21 through L23),  is placed back on the

 list for future expansion. This action is required to
avoid creating a closed loop in the backpointers [Stentz,
1993]. If the path cost of  is able to be reduced by a
suboptimal neighbor (lines L25 through L28), the neighbor
is placed back on the  list. Thus, the update is
“postponed” until the neighbor has an optimal path cost.

In function , the arc cost function is
updated with the changed value. Since the path cost for state

 will change,  is placed on the  list. When  is
expanded via , i t  computes a new

 and p laces  on the  l is t .
Additional state expansions propagate the cost to the
descendants of .
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h X( )
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X
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X
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h Y( ) h X( ) c X Y,( )+= Y OPEN

Y



Function: MODIFY-COST (X, Y, c val)

L1
L2 if  then
L3 return

The function  illustrates how to use
 and  to  move the

robot from state  through the environment to  along an
op t ima l  t raverse .  A t  l i nes  L1  th rough   L4  o f

,  is set to  for all states, the
accrued bias and focal point are initialized,  is set to
zero, and  is placed on the  list.
is called repeatedly at lines L6 and L7 until either an initial
path is computed to the robot’s state (i.e., )
or it is determined that no path exists (i.e.,
and ). The robot then proceeds to follow the
backpointers until it either reaches the goal or discovers a
discrepancy (line  L11) between thesensor measurement of
an arc cost  and the stored arc cost  (e.g., due to a
detected obstacle). Note that these discrepancies may occur
anywhere, not just on the path to the goal. If the robot moved
since the last time discrepancies were discovered, then its
state  is saved as the new focal point, and the accrued bias,

, is updated (lines  L12 and  L13).  is
called to correct  and place affected states on the
list at line  L15.  is then called repeatedly
at line L17 to propagate costs and compute a new path to the
goal. The robot continues to follow the backpointers toward
the goal. The function returns  if the
goal is found and  if it is unreachable.

Function: MOVE-ROBOT (S, G)

L1 for each state  in the graph:
L2
L3 ;
L4
L5
L6 while  and
L7
L8 if  then return
L9
L10 while :
L11 if  for some  then
L12 if  then
L13 ;
L14 for each  such that :
L15
L16 while  and
L17
L18
L19 return

It should be noted that line L8 in  only
detects the condition that no path exists from the robot’s
state to the goal if, for example, the graph is disconnected. It
does not detect the condition that all paths to the goal are
obstructed by obstacles. In order to provide for this
capability, obstructed arcs can be assigned a large positive
value of  and unobstructed arcs can be assigned
a small positive value of .  should be
chosen such that it exceeds the longest possible path of

c X Y,( ) cval=
t X( ) CLOSED= INSERT X h X( ),( )

MIN VAL– ( )
MOVE ROBOT–

PROCESS STATE– MODIFY COST–
S G

MOVE ROBOT– t °( ) NEW
h G( )

G OPEN PROCESS STATE–

t S( ) CLOSED=
val NO VAL–=

t S( ) NEW=

s °( ) c °( )

R
dcurr MODIFY COST–

c °( ) OPEN
PROCESS STATE–

GOAL REACHED–
NO PATH–

X
t X( ) NEW=

dcurr 0= Rcurr S=
INSERT G0,( )
val 0 0,〈 〉=

t S( ) CLOSED≠ val NO VAL–≠
val PROCESS STATE– ( )=
t S( ) NEW= NO PATH–

R S=
R G≠

s X Y,( ) c X Y,( )≠ X Y( , )
Rcurr R≠
dcurr dcurr GVAL R Rcurr,( ) ε+ += Rcurr R=

X Y( , ) s X Y,( ) c X Y,( )≠
val MODIFY COST– X Y s X Y,( ), ,( )=

LESS val COST R( ),( ) val NO VAL–≠
val PROCESS STATE– ( )=

R b R( )=
GOAL REACHED–

MOVE ROBOT–

OBSTACLE
EMPTY OBSTACLE

 arcs in the graph. No unobstructed path exists to the
goal from  if  after exiting the loop at
line L6. Likewise, no unobstructed path exists to the goal
from a state  during the traverse if  after
exiting the loop at line L16. Since  for a robot
state  undergoing path recalculations, then  and

. Therefore, optimality is guaranteed for a
state , if  or (  and ).

5 Example
Figure 4 shows a cluttered 100 x 100 state environment. The
robot starts at state  and moves to state . All of the obsta-
cles, shown in black, are unknown before the robot starts its
traverse, and the map contains only  arcs. The robot
is point-size and is equipped with a 10-state radial field-of-
view sensor. The figure shows the robot’s traverse from  to

 using the Basic D* algorithm. The traverse is shown as a
black curve with white arrows. As the robot moves, its sen-
sor detects the unknown obstacles. Detected obstacles are
shown in grey with black arrows. Obstacles that remain
unknown after the traverse are shown in solid black or black
with white arrows. The arrows show the final cost field for
all states examined during the traverse. Note that most of the
states are examined at least once by the algorithm.

Figure  4: Basic D* Algorithm

Figure 5 shows the robot’s traverse using the Focussed
D* algorithm. The number of  states examined is fewer
than Basic D*, since the Focussed D* algorithm focuses the
initial path calculation and subsequent cost updates on the
robot’s location. Note that even for those states examined by
the algorithm, fewer of them end up with optimal paths to
the goal. Finally, note that the two trajectories are not fully
equivalent. This occurs because the lowest-cost traverse is
not unique, and the two algorithms break ties in the path
costs arbitrarily.
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S h S( ) OBSTACLE≥

R h R( ) OBSTACLE≥
R Rcurr=

R g R R,( ) 0=
f R R,( ) h R( )=

R fmin h R( )> fmin h R( )= kval h R( )≥
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EMPTY

S
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S G
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Figure  5: Focussed D* Algorithm

6 Experimental Results
Four algorithms were tested to verify optimality and to com-
pare run-time results. The first algorithm, the Brute-Force
Replanner (BFR), initially plans a single path from the goal
to the start state. The robot proceeds to follow the path until
its sensor detects an error in the map. The robot updates the
map, plans a new path from the goal to its current location
using a focussed A* search, and repeats until the goal is
reached. The focussing heuristic, , was chosen to be
the minimum possible number of state transitions between
and , assuming the lowest arc cost value for each.

The second and third algorithms, Basic D* (BD*) and
Focussed D* with Minimal Initialization (FD*M), are
described in Stentz [1994] and Section 4, respectively. The
fourth algorithm, Focussed D* with Full Initialization
(FD*F), is the same as FD*M except that the path costs are
propagated to all states in the planning space, which is
assumed to be finite, during the initial path calculation,
rather than terminating when the path reaches the robot’s
start state.

The four algorithms were compared on planning
problems of varying size. Each environment was square,
consisting of a start state in the center of the left wall and a
goal state in center of the right wall. Each environment
consisted of a mix of map obstacles known to the robot
before the traverse and unknown obstacles measurable by
the robot’s sensor. The sensor used was omnidirectional with
a 10-state radial field of view. Figure 6 shows an
environment model with approximately 100,000 states. The
known obstacles are shown in grey and the unknown
obstacles in black.

The results for environments of 104, 105, and 106 states
are shown in Table 1. The reported times are CPU time for a
Sun Microsystems SPARC-10 processor. For each
environment size, the four algorithms were compared on five
randomly-generated environments, and the results were
averaged. Theoff-line time is the CPU time required to

S G

g X Y,( )
Y

X

compute the initial path from the goal to the robot, or in the
case of FD*F, from the goal to all states in the environment.
This operation is “off-line” since it could be performed in
advance of robot motion if the initial map were available.
The on-line time is the total CPU time for all replanning
operations needed to move the robot from the start to the
goal.

Figure  6: Typical Environment for Comparison

The results for each algorithm are highly dependent on
the complexity of the environment, including the number,
size, and placement of the obstacles, and the ratio of known
to unknown obstacles. For the test cases examined, all
variations of D* outperformed BFR in on-line time, reaching
a speedup factor  o f  approx imate ly  300 for  large
environments. Generally, the performance gap increased as
the size of the environment increased. If the user wants to
minimize on-line time at the expense of off-line time, then
FD*F is the best algorithm. In this algorithm, path costs to
al l  states are computed ini t ial ly and only the cost
propagations are focussed. Note that FD*F resulted in lower
on-line times and higher off-line times than BD*. The FD*M
algorithm resulted in lower off-line times and higher on-line

Focussed D*
with Full Init

Focussed D*
with Min Init

Basic D*
Brute-Force
Replanner

Off-line: 104 1.85 sec 0.16 sec 1.02 sec 0.09 sec

On-line: 104 1.09 sec 1.70 sec 1.31 sec 13.07 sec

Off-line: 105 19.75 sec 0.68 sec 12.55 sec 0.41 sec

On-line: 105 9.53 sec 18.20 sec 16.94 sec 11.86 min

Off-line: 106 224.62 sec 9.53 sec 129.08 sec 4.82 sec

On-line: 106 10.01 sec 41.72 sec 21.47 sec 50.63 min

Table 1: Results for Empirical Tests

GS



times than BD*. Focussing the search enables a rapid start
due to fewer state expansions, but many of the unexplored
states must be examined anyway during the replanning
process resulting in a longer execution time. Thus, FD*M is
the best algorithm if the user wants to minimize thetotal
time, that is, if the off-line time is considered to be on-line
time as well.

Thus, the Focussed D* algorithm can be configured to
outperform Basic D* in either total time or the on-line
portion of the operation, depending on the requirements of
the task. As a general strategy, focussing the search is a good
idea; the only issue is how the computational load should be
distributed.

7 Conclusions
This paper presents the Focussed D* algorithm for real-time
path replanning. The algorithm computes an initial path from
the goal state to the start state and then efficiently modifies
this path during the traverse as arc costs change. The algo-
rithm produces an optimal traverse, meaning that an optimal
path to the goal is followed at every state in the traverse,
assuming all known information at each step is correct. The
focussed version of D* outperforms the basic version, and it
offers the user the option of distributing the computational
load amongst the on- and off-line portions of the operation,
depending on the task requirements. The addition of a heu-
ristic focussing function to D* completes its development as
a generalization of A* to dynamic environments--A* is the
special case of D* where arc costs do not change during the
traverse of the solution path.
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