
In Proceedings of the International Joint Conference on Artificial Intelligence, August 1995.

The Focussed D* Algorithm for Real-Time Replanning

Anthony Stentz
Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

U. S. A.

Abstract
Finding the lowest-cost path through a graph is
central to many problems, including route planning
for a mobile robot. If arc costs change during the
traverse, then the remainder of the path may need to
be replanned. This is the case for a sensor-equipped
mobile robot with imperfect information about its
environment. As the robot acquires additional
information via its sensors, it can revise its plan to
reduce the total cost of the traverse. If the prior
information is grossly incomplete, the robot may
discover useful information in every piece of sensor
data. During replanning, the robot must either wait
for the new path to be computed or move in the
wrong direction; therefore, rapid replanning is
essential. The D* algorithm (Dynamic A*) plans
optimal traverses in real-time by incrementally
repair ing paths to the robot’s state as new
information is discovered. This paper describes an
extension to D* that focusses the repairs to
significantly reduce the total time required for the
initial path calculation and subsequent replanning
operat ions. This extens ion completes the
development of the D* algori thm as a ful l
generalization of A* for dynamic environments,
where arc costs can change during the traverse of
the solution path.1

1 Introduction
The problem of path planning can be stated as finding a
sequence of state transitions through a graph from some ini-
tial state to a goal state, or determining that no such sequence
exists. The path is optimal if the sum of the transition costs,
also called arc costs, is minimal across all possible
sequences through the graph. If during the “traverse” of the
path, one or more arc costs in the graph is discovered to be

1. This research was sponsored by ARPA, under contracts “Per-
ception for Outdoor Navigation” (contract number DACA76-89-C-
0014, monitored by the US Army TEC) and “Unmanned Ground
Vehicle System” (contract number DAAE07-90-C-R059, moni-
tored by TACOM).

incorrect, the remaining portion of the path may need to be
replanned to preserve optimality. A traverse is optimal if
every transition in the traverse is part of an optimal path to
the goal assuming, at the time of each transition, all known
information about the arc costs is correct.

An important application for this problem, and the one
that will serve as the central example throughout the paper, is
the task of path planning for a mobile robot equipped with a
sensor, operating in a changing, unknown or partially-known
environment. The states in the graph are robot locations, and
the arc values are the costs of moving between locations,
based on some metric such as distance, time, energy
expended, risk, etc. The robot begins with an initial estimate
of arc costs comprising its “map”, but since the environment
is only partially-known or changing, some of the arc costs
are likely to be incorrect. As the robot acquires sensor data,
it can update its map and replan the optimal path from its
current state to the goal. It is important that this replanning
be fast, since during this time the robot must either stop or
continue to move along a suboptimal path.

A number of algorithms exist for producing optimal
traverses given changing arc costs. One algorithm plans an
initial path with A* [Nilsson, 1980] or the distance transform
[Jarvis, 1985] using the prior map information, moves the
robot along the path until either it reaches the goal or its
sensor discovers a discrepancy between the map and the
environment, updates the map, and then replans a new path
from the robot’s current state to the goal [Zelinsky, 1992].
Although this brute-force replanner is optimal, it can be
grossly inefficient, particularly in expansive environments
where the goal is far away and little map information exists.

Boult [1987] maintains an optimal cost map from the
goal to all states in the environment, assuming the
environment is bounded (finite). When discrepancies are
discovered between the map and the environment, only the
affected portion of the cost map is updated. The map
representation is limited to polygonal obstacles and free
space. Trovato [1990] and Ramalingam and Reps [1992]
extend this approach to handle graphs with arc costs ranging
over a continuum. The limitation of these algorithms is that
the entire affected portion of the map must be repaired
before the robot can resume moving and subsequently make
additional corrections. Thus, the algorithms are inefficient
when the robot is near the goal and the affected portions of
the map have long “shadows”. Stentz [1994] overcomes

these limitations with D*, an incremental algorithm which
maintains a partial, optimal cost map limited to those
locations likely to be of use to the robot. Likewise, repair of
the cost map is generally partial and re-entrant, thus reducing
computational costs and enabling real-time performance.

Other algorithms exist for addressing the problem of
path planning in unknown or dynamic environments [Korf,
1987; Lumelsky and Stepanov, 1986; Pirzadeh and Snyder,
1990], but these algorithms emphasize fast operation and/or
low memory usage at the expense of optimality.

This paper describes an extension to D* which focusses
the cost updates to minimize state expansions and further
reduce computational costs. The algorithm uses a heuristic
function similar to A* to both propagate cost increases and
focus cost reductions. A biasing function is used to
compensate for robot motion between replanning operations.
The net effect is a reduction in run-time by a factor of two to
three. The paper begins with the intuition behind the
algorithm, describes the extension, presents an example,
evaluates empirical comparisons, and draws conclusions.

2 Intuition for Algorithm
Consider how A* solves the following robot path planning
problem. Figure 1 shows an eight-connected graph repre-
senting a Cartesian space of robot locations. The states in the
graph, depicted by arrows, are robot locations, and the arcs
encode the cost of moving between states. The white regions
are locations known to be in free space. The arc cost for
moving between free states is a small value denoted by

. The grey regions are known obstacle locations, and
arcs connected to these states are assigned a prohibitively
high value of . The small black square is a
closed gate believed to be open (i.e., value). With-
out a loss of generality, the robot is assumed to be point-size
and occupies only one location at a time. A* can be used to
compute optimal path costs from the goal, , to all states in
the space given the initial set of arc costs, as shown in the
figure. The arrows indicate the optimal state transitions;
therefore, the optimal path for any state can be recovered by
following the arrows to the goal. Because the closed gate is
assumed to be open, A* plans a path through it.

The robot starts at some initial location and begins
following the optimal path to the goal. At location , the
robot’s sensor discovers the gate between the two large
obstacles is closed. This corresponds to an incorrect arc
value in the graph: rather than , it has a much higher
value of , representing the cost of first opening the
gate and then moving through it. All paths through this arc
are (possibly) no longer optimal, as indicated by the labelled
region. A* could be used to recompute the cost map, but this
is inefficient if the environment is large and/or the goal is far
away.

Several characteristics of the problem motivate a better
approach. First, changes to the arc costs are likely to be in
the vicinity of the robot, since it typically carries a sensor
with a limited range. This means that most plans need only
be patched “locally”. Second, the robot generally makes
near-monotonic progress toward the goal. Most obstructions
are small and simple path deflections suffice, thus avoiding
the high computational cost of backtracking. Third, only the

EMPTY

OBSTACLE
EMPTY

G

R

EMPTY
GATE

remaining portion of the path must be replanned at a given
location in the traverse, which tends to get progressively
shorter due to the second characteristic.

Figure 1: Invalidated States in the Graph

As described in Stentz [1994], D* leverages on these
characteristics to reduce run-time by a factor of 200 or more
for large environments. The paper proves that the algorithm
produces correct results regardless--only the performance
improvement is affected by the validity of the problem
characteristics.

Like A*, D* maintains an list of states for
expansion; however, these states consist of two types:

 and . states transmit path cost
increases due to an increased arc value, and states
reduce costs and re-direct arrows to compute new optimal
paths. The states propagate the arc cost increase
through the invalidated states, by starting at the gate and
sweeping outward, adding the value of to all states in
the region. The states activate neighboring
states which sweep in behind to reduce costs and re-direct
pointers. states compute new, optimal paths to the
states that were previously raised.

States are placed on the list by theirkey value,
, which for states is the currentpath cost,

(i.e., cost from the state to the goal), and for states
the previous, unraised value. States on the list are
processed in order of increasing key value. The intuition is
that the previous optimal path costs of the states
define a lower bound on the path costs of states they
can discover. Thus, if the path costs of the states
currently on the list exceed the previous path costs of
the states, then it is worthwhile processing
states to discover (possibly) a better state.

The process can terminate when the lowest value on the
 list equals or exceeds the robot’s path cost, since

additional expansions cannot possibly find a better path to
the goal (see Figure 2). Once a new optimal path is
computed or the old one is determined to be valid, the robot
can continue to move toward the goal. Note in the figure that

Invalidated
Area

Known
Obstacle

Known
Obstacle

Unknown
Closed Gate

Optimal
Area

R

G

OPEN

RAISE LOWER RAISE
LOWER

RAISE

GATE
RAISE LOWER

LOWER

OPEN
k X() LOWER h X()

X RAISE
h X()

RAISE
LOWER

LOWER
OPEN

RAISE RAISE
LOWER

OPEN

only part of the cost map has been repaired. This is the
efficiency of the D* algorithm.

The D* algorithm described in Stentz [1994] propagates
cost changes through the invalidated states without
considering which expansions will benefit the robot at its
current location. Like A*, D* can use heuristics to focus the
search in the direction of the robot and reduce the total
number of state expansions. Let thefocussing heuristic

 be the estimated path cost from the robot’s location
to . Define a new function, theestimated robot path cost, to
be , and sort all states on the

 list by increasing value. The function is
the estimated path cost from the state through to .
Provided that satisfies the monotone restriction, then
since is optimal when state is removed from
the list, an optimal path will be computed to
[Nilsson, 1980]. The notation is used to refer to a
function independent of its domain.

Figure 2: States Reach the Robot

In the case of states, the previous value
defines a lower bound on the values of states
they can discover; therefore, if the same focussing heuristic

 is used for both types of states, the previous values
of the states define lower bounds on the values of
the states they can discover. Thus, if the values
of the states on the list exceed the previous

 values of the states, then it is worthwhile
processing states to discover better states.
Based on this reasoning, the states should be sorted
on the l ist by . But since

 for states, the state definition
for suffices for both kinds of states. To avoid cycles in
the backpointers, it should be noted that ties in are sorted
by increasing on the list [Stentz, 1993].

The process can terminate when the lowest value on the
 list equals or exceeds the robot’s path cost, since the

subsequent expansions cannot possibly find a state
that 1) has a low enough path cost, and 2) is “close” enough
to the robot to be able to reduce the robot’s path cost when it

g X R,() R
X
f X R,() h X() g X R,()+= LOWER

OPEN f°() f X R,()
R X G

g °()
h X() LOWER X

OPEN R
g °()

RAISE
States

LOWER
States

R

G
LOWER

RAISE h°()
h °() LOWER

g °() f °()
RAISE f°()

LOWER f°()
LOWER OPEN

f °() RAISE
RAISE LOWER

RAISE
OPEN f X R,() k X() g X R,()+=

k X() h X()= LOWER RAISE
f °()

f °()
k °() OPEN

OPEN
LOWER

reaches it through subsequent expansions. Note that this is a
more efficient cut-off than the previous one, which considers
only the first criterion.

Figure 3 shows the same example, except that a
focussed search is used. All states in the state wave
front have roughly the same value. The wave front is
more “narrow” in the focussed case since the inclusion of the
cost to return to the robot penalizes the wide flanks.
Furthermore, the states activated by the
state wave front have swept in from the outer sides of the
obstacles to compute a new, optimal path to the robot. Note
that the two wave fronts are narrow and focussed on the
robot’s location. Compare Figure 3 to Figure 2. Note that
both the and state wave fronts have covered
less ground for the focussed search than the unfocussed
search in order to compute a new, optimal path to . Therein
is the efficiency of the Focussed D* algorithm.

The problem with focussing the search is that once a
new optimal path is computed to the robot’s location, the
robot then moves to a new location. If its sensor discovers
another arc cost discrepancy, the search should be focussed
on the robot’s new location. But states already on the
list are focussed on the old location and have incorrect
and values. One solution is to recompute and
for all states on the list every time the robot moves
and new states are to be added. Based on empirical evidence,
the cost of re-sorting the list more than offsets the
savings gained by a focussed search.

Figure 3: Focussed States Reach Robot

The approach in this paper is to take advantage of the
fact that the robot generally moves only a few states between
replanning operations, so the and values have only a
small amount of error. Assume that state is placed on the

 list when the robot is at location . Its value at
that point is . If the robot moves to location , we
could calculate and adjust its position on the
list. To avoid this computational cost, we compute a lower
bound on g iven by

. is a lower bound

RAISE
f °()

LOWER RAISE

RAISE LOWER

R

OPEN
g °()

f °() g °() f °()
OPEN

OPEN

RAISE
States

LOWER
States

R

G
LOWER

g °() f °()
X

OPEN R0 f °()
f X R0,() R1

f X R1,() OPEN

f X R1,()
fL X R1,() f X R0,() g R1 R0,()– ε–= fL X R1,()

on since i t assumes the robot moved in the
“direction” of state , thus subtracting the motion from

. The parameter is an arbitrarily small positive
number. If is repositioned on the list by ,
then since is a lower bound on , will be
selected for expansion before or when it is needed. At the
time of expansion, the true value is computed, and
is placed back on the list by .

At first this approach appears worse, since the
list is first re-sorted by and then partially adjusted to
replace the values with the correct values. But since

 is subtracted fromall states on the list,
the ordering is preserved, and the list need not be re-sorted.
Furthermore, the first step can be avoided altogether by
adding to the states to be inserted on the
list rather thansubtracting it from those already on the list,
thus preserving the relative ordering between states already
on the list and states about to be added. Therefore, the only
remaining computation is the adjustment step. But this step
is needed only for those states that show promise for
reaching the robot’s location. For typical problems, this
amounts to fewer than 2% of the states on the list.

3 Definitions and Formulation
To formalize this intuition, we begin with the notation and
definitions used in Stentz [1994], and then extend it for the
focussed algorithm. The problem space can be formulated as
a set ofstates denoting robot locations connected bydirec-
tional arcs, each of which has an associated cost. The robot
starts at a particular state and moves across arcs (incurring
the cost of traversal) to other states until it reaches thegoal
state, denoted by . Every visited state except has a
backpointer to a next state denoted by . D* uses
backpointers to represent paths to the goal. The cost of tra-
versing an arc from state to state is a positive number
given by thearc costfunction . If does not have an
arc to , then is undefined. Two states and are
neighbors in the space if or is defined.

D* uses an list to propagate information about
changes to the arc cost function and to calculate path costs to
states in the space. Every state has an associatedtag ,
such that if has never been on the list,

 if is currently on the list, and
 if is no longer on the list. For

each visited state , D* maintains an estimate of the sum of
the arc costs from to given by the path cost function

. Given the proper conditions, this estimate is equivalent
to the optimal (minimal) cost from state to . For each
state on the list (i.e.,), the key
function, , is defined to be equal to the minimum of
before modification and all values assumed by since
was placed on the list. The key function classifies a
state on the list into one of two types: a
state if , and a state if . D*
uses s ta tes on the l i s t to propagate
information about path cost increases and states to
propagate information about path cost reductions. The
propagation takes place through the repeated removal of
states from the list. Each time a state is removed from
the list, it isexpanded to pass cost changes to its neighbors.

f X R1,()
X

g X R0,() ε
X OPEN fL X R1,()
fL X R1,() f X R1,() X

f X R1,() X
OPEN f X R1,()

OPEN
fL °()

fL °() f °()
g R1 R0,() ε+ OPEN

g R1 R0,() ε+ OPEN

OPEN

G X G
Y b X() Y=

Y X
c X Y,() Y

X c X Y,() X Y
c X Y,() c Y X,()

OPEN

X t X()
t X() NEW= X OPEN

t X() OPEN= X OPEN
t X() CLOSED= X OPEN

X
X G

h X()
X G

X OPEN t X() OPEN=
k X() h X()

h X() X
OPEN

X OPEN RAISE
k X() h X()< LOWER k X() h X()=

RAISE OPEN
LOWER

OPEN

These neighbors are in turn placed on the list to
continue the process.

States are sorted on the list by abiased
value, given by , where is the state on the
list and is the robot’s state at the time was inserted or
adjusted on the list. Let be the
sequence of states occupied by the robot when states were
added to the list. The value of is given by

, where is the estimated
robot path cost given by and is
the accrued b ias func t ion g iven by

 i f
 and if . The function is the

focussing heuristic, representing the estimated path cost
from to . The list states are sorted by increasing

 value, with ties in ordered by increasing , and
ties in ordered by increasing . Ties in are
ordered arbitrarily. Thus, a vector of values
is stored with each state on the list.

Whenever a state is removed from the list, its
 value is examined to see if it was computed using the

most recent focal point. If not, its and values are
recalculated using the new focal point and accrued bias,
respectively, and the state is placed back on the list.
Processing the values in ascending order ensures that
the first encountered value using the current focal point
is the minimum such value, denoted by . Let be its
corresponding value. These parameters comprise an
important threshold for D*. By processing properly-focussed

 values in ascending order (and values in ascending
order for a constant value), the algorithm ensures that for
all states , if or (and),
then is optimal. The parameter is used to store the
vector for the purpose of this test.

Let be the current state on which the search is
focussed, initialized to the robot’s start state. Define the
robot state function , which returns the robot’s state
when was last inserted or adjusted on the list. The
parameter is the accrued bias from the robot’s start
state to its current state; it is shorthand for and is
in i t i a l i zed to . The fo l low ing
shor thand no ta t ion i s used fo r and :

 and .

4 Algorithm Description
The D* algorithm consists primarily of three functions:

, , and
. computes optimal

path costs to the goal, changes the arc cost
function and enters affected states on the list, and

 uses the two functions to move the robot
op t ima l l y. The a lgor i thms fo r ,

, and are presented
below along with three of the more detailed functions for
managing the list: , , and

. The user provides the function ,
which computes and returns the focussing heuristic .

The embedded routines are: returns the
minimum of the two scalar valuesa andb; takes a
vector of values for and a vector for

OPEN

OPEN f°()
fB X Ri,() X OPEN

Ri X
OPEN R0 R1 … RN, , ,{ }

OPEN fB °()
fB X Ri,() f X Ri,() d Ri R0,()+= f °()

f X Ri,() h X() g X Ri,()+= d °()

d Ri R0,() g R1 R0,() g R2 R1,() … g Ri Ri 1–,() iε+ + + +=
i 0> d R0 R0,() 0= i 0= g X Y,()

Y X OPEN
fB °() fB °() f °()

f °() k °() k °()
fB °() f °() k °(), ,〈 〉

OPEN
f °()

f °() fB °()

fB °()
f °()

fmin kval
k °()

f °() k °()
f °()

X f X() f< min f X() fmin= h X() kval≤
h X() val

fmin kval,〈 〉
Rcurr

r X()
X OPEN

dcurr
d Rcurr R0,()

dcurr d R0 R0,() 0= =
fB °() f °()

fB X() fB X r X(),()≡ f X() f X r X(),()≡

PROCESS STATE– MODIFY COST–
MOVE ROBOT– PROCESS STATE–

MODIFY COST–
c °() OPEN

MOVE ROBOT–
PROCESS STATE–

MODIFY COST– MOVE ROBOT–

OPEN INSERT MIN STATE–
MIN VAL– GVAL X Y,()

g X Y,()
MIN a b,()

LESS a b,()
a1 a2,〈 〉 a b1 b2,〈 〉 b

and returns if or (and);
 takes two vectors and and returns

if or (and); computes
 and returns the vector of

values for a state ; deletes
state from the list and sets ;

 sets and inserts on the
 list according to the vector ; and

 returns the state on the list with
minimum vector value (if the list is empty).

The function, given below, changes the value
of to and inserts or repositions on the
list. The value for is determined at lines L1 through L5.
The remaining two values in the vector are computed at line
L7, and the state is inserted at line L8.

Function: INSERT (X, hnew)

L1 if then
L2 else
L3 if then
L4 ;
L5 else
L6 ;
L7 ;
L8

The function , given below, returns the
state on the list with minimum value. In order to
do this, the function retrieves the state on the list with
lowest value. If the state was placed on the list
when the robot was at a previous location (line L2), then it is
re-inserted on the list at lines L3 and L4. This
operation has the effect of correcting the state’s accrued bias
using the robot’s current state while leaving the state’s
and values unchanged. continues to
retrieve states from the list until it finds one that was
placed on the list with the robot at its current state.

Function: MIN-STATE ()

L1 while
L2 if then
L3 ;
L4 ;
L5 else return
L6 return

The function, given below, returns the
and values of the state on the list with minimum

 value, that is, .

Function: MIN-VAL ()

L1
L2 if then return
L3 else return

In funct ion cost changes are
propagated and new paths are computed. At lines L1 through
L3, the state with the lowest value is removed from
the list. If is a state (i.e.,), its
path cost is optimal. At lines L9 through L14, each neighbor

 of is examined to see if its path cost can be lowered.
Additionally, neighbor states that are receive an initial
path cost value, and cost changes are propagated to each

TRUE a1 b1< a1 b1= a2 b2<
LESSEQ a b,() a b TRUE

a1 b1< a1 b1= a2 b2≤ COST X()
f X Rcurr,() h X() GVAL X Rcurr,()+=

f X Rcurr,() h X(),〈 〉 X DELETE X()
X OPEN t X() CLOSED=

PUT STATE– X() t X() OPEN= X
OPEN fB X() f X() k X(), ,〈 〉
GET STATE– OPEN

NULL
INSERT

h X() hnew X OPEN
k X()

t X() NEW= k X() hnew=

t X() OPEN=
k X() MIN k X() hnew,()= DELETE X()

k X() MIN h X() hnew,()=
h X() hnew= r X() Rcurr=
f X() k X() GVAL X Rcurr,()+= fB X() f X() dcurr+=
PUT STATE– X()

MIN STATE–
OPEN f°()

OPEN
fB °() OPEN

OPEN

h °()
k °() MIN STATE–

OPEN
OPEN

X GET STATE– () NULL≠=
r X() Rcurr≠
hnew h X()= h X() k X()=
DELETE X() INSERT X hnew,()

X
NULL

MIN VAL– f °()
k °() OPEN

f °() fmin kval,〈 〉

X MIN STATE– ()=
X NULL= NO VAL–

f X() k X(),〈 〉
PROCESS STATE–

X f °()
OPEN X LOWER k X() h X()=

Y X
NEW

neighbor that has a backpointer to , regardless of
whether the new cost is greater than or less than the old.
Since these states are descendants of , any change to the
path cost of affects their path costs as well. The
backpointer of is redirected, if needed. All neighbors that
receive a new path cost are placed on the list, so that
they will propagate the cost changes to their neighbors.

Function: PROCESS-STATE ()

L1
L2 if then return
L3 ; ;
L4 if then
L5 for each neighbor of :
L6 if and and
L7 then
L8 ;
L9 if then
L10 for each neighbor of :
L11 if or
L12 (and) or
L13 (and) then
L14 ;
L15 else
L16 for each neighbor of :
L17 if or
L18 (and) then
L19 ;
L20 else
L21 if and and
L22 then
L23
L24 else
L25 if and and
L26 and
L27 then
L28
L29 return

If is a state, its path cost may not be optimal.
Before propagates cost changes to its neighbors, its
optimal neighbors are examined at lines L4 through L8 to
see if can be reduced. At lines L16 through L19, cost
changes are propagated to states and immediate
descendants in the same way as for states. If is
able to lower the path cost of a state that is not an immediate
descendant (lines L21 through L23), is placed back on the

 list for future expansion. This action is required to
avoid creating a closed loop in the backpointers [Stentz,
1993]. If the path cost of is able to be reduced by a
suboptimal neighbor (lines L25 through L28), the neighbor
is placed back on the list. Thus, the update is
“postponed” until the neighbor has an optimal path cost.

In function , the arc cost function is
updated with the changed value. Since the path cost for state

 will change, is placed on the list. When is
expanded via , i t computes a new

 and p laces on the l is t .
Additional state expansions propagate the cost to the
descendants of .

Y X

X
X
Y

OPEN

X MIN STATE()–=
X NULL= NO VAL–

val f X() k X(),〈 〉= kval k X()= DELETE X()
kval h X()<

Y X
t Y() NEW≠ LESSEQ COST Y() val,()
h X() h Y() c Y X,()+>
b X() Y= h X() h Y() c Y X,()+=

kval h X()=
Y X

t Y() NEW=
b Y() X= h Y() h X() c X Y,()+≠
b Y() X≠ h Y() h X() c X Y,()+>

b Y() X= INSERT Y h X() c X Y,()+,()

Y X
t Y() NEW=
b Y() X= h Y() h X() c X Y,()+≠

b Y() X= INSERT Y h X() c X Y,()+,()

b Y() X≠ h Y() h X() c X Y,()+>
t X() CLOSED=
INSERT X h X(),()

b Y() X≠ h X() h Y() c Y X,()+>
t Y() CLOSED=
LESS val COST Y(),()

INSERT Y h Y(),()
MIN VAL– ()

X RAISE
X

h X()
NEW

LOWER X

X
OPEN

X

OPEN

MODIFY COST–

Y X OPEN X
PROCESS STATE–

h Y() h X() c X Y,()+= Y OPEN

Y

Function: MODIFY-COST (X, Y, c val)

L1
L2 if then
L3 return

The function illustrates how to use
 and to move the

robot from state through the environment to along an
op t ima l t raverse . A t l i nes L1 th rough L4 o f

, is set to for all states, the
accrued bias and focal point are initialized, is set to
zero, and is placed on the list.
is called repeatedly at lines L6 and L7 until either an initial
path is computed to the robot’s state (i.e.,)
or it is determined that no path exists (i.e.,
and). The robot then proceeds to follow the
backpointers until it either reaches the goal or discovers a
discrepancy (line L11) between thesensor measurement of
an arc cost and the stored arc cost (e.g., due to a
detected obstacle). Note that these discrepancies may occur
anywhere, not just on the path to the goal. If the robot moved
since the last time discrepancies were discovered, then its
state is saved as the new focal point, and the accrued bias,

, is updated (lines L12 and L13). is
called to correct and place affected states on the
list at line L15. is then called repeatedly
at line L17 to propagate costs and compute a new path to the
goal. The robot continues to follow the backpointers toward
the goal. The function returns if the
goal is found and if it is unreachable.

Function: MOVE-ROBOT (S, G)

L1 for each state in the graph:
L2
L3 ;
L4
L5
L6 while and
L7
L8 if then return
L9
L10 while :
L11 if for some then
L12 if then
L13 ;
L14 for each such that :
L15
L16 while and
L17
L18
L19 return

It should be noted that line L8 in only
detects the condition that no path exists from the robot’s
state to the goal if, for example, the graph is disconnected. It
does not detect the condition that all paths to the goal are
obstructed by obstacles. In order to provide for this
capability, obstructed arcs can be assigned a large positive
value of and unobstructed arcs can be assigned
a small positive value of . should be
chosen such that it exceeds the longest possible path of

c X Y,() cval=
t X() CLOSED= INSERT X h X(),()

MIN VAL– ()
MOVE ROBOT–

PROCESS STATE– MODIFY COST–
S G

MOVE ROBOT– t °() NEW
h G()

G OPEN PROCESS STATE–

t S() CLOSED=
val NO VAL–=

t S() NEW=

s °() c °()

R
dcurr MODIFY COST–

c °() OPEN
PROCESS STATE–

GOAL REACHED–
NO PATH–

X
t X() NEW=

dcurr 0= Rcurr S=
INSERT G0,()
val 0 0,〈 〉=

t S() CLOSED≠ val NO VAL–≠
val PROCESS STATE– ()=
t S() NEW= NO PATH–

R S=
R G≠

s X Y,() c X Y,()≠ X Y(,)
Rcurr R≠
dcurr dcurr GVAL R Rcurr,() ε+ += Rcurr R=

X Y(,) s X Y,() c X Y,()≠
val MODIFY COST– X Y s X Y,(), ,()=

LESS val COST R(),() val NO VAL–≠
val PROCESS STATE– ()=

R b R()=
GOAL REACHED–

MOVE ROBOT–

OBSTACLE
EMPTY OBSTACLE

 arcs in the graph. No unobstructed path exists to the
goal from if after exiting the loop at
line L6. Likewise, no unobstructed path exists to the goal
from a state during the traverse if after
exiting the loop at line L16. Since for a robot
state undergoing path recalculations, then and

. Therefore, optimality is guaranteed for a
state , if or (and).

5 Example
Figure 4 shows a cluttered 100 x 100 state environment. The
robot starts at state and moves to state . All of the obsta-
cles, shown in black, are unknown before the robot starts its
traverse, and the map contains only arcs. The robot
is point-size and is equipped with a 10-state radial field-of-
view sensor. The figure shows the robot’s traverse from to

 using the Basic D* algorithm. The traverse is shown as a
black curve with white arrows. As the robot moves, its sen-
sor detects the unknown obstacles. Detected obstacles are
shown in grey with black arrows. Obstacles that remain
unknown after the traverse are shown in solid black or black
with white arrows. The arrows show the final cost field for
all states examined during the traverse. Note that most of the
states are examined at least once by the algorithm.

Figure 4: Basic D* Algorithm

Figure 5 shows the robot’s traverse using the Focussed
D* algorithm. The number of states examined is fewer
than Basic D*, since the Focussed D* algorithm focuses the
initial path calculation and subsequent cost updates on the
robot’s location. Note that even for those states examined by
the algorithm, fewer of them end up with optimal paths to
the goal. Finally, note that the two trajectories are not fully
equivalent. This occurs because the lowest-cost traverse is
not unique, and the two algorithms break ties in the path
costs arbitrarily.

EMPTY
S h S() OBSTACLE≥

R h R() OBSTACLE≥
R Rcurr=

R g R R,() 0=
f R R,() h R()=

R fmin h R()> fmin h R()= kval h R()≥

S G

EMPTY

S
G

S G

NEW

Figure 5: Focussed D* Algorithm

6 Experimental Results
Four algorithms were tested to verify optimality and to com-
pare run-time results. The first algorithm, the Brute-Force
Replanner (BFR), initially plans a single path from the goal
to the start state. The robot proceeds to follow the path until
its sensor detects an error in the map. The robot updates the
map, plans a new path from the goal to its current location
using a focussed A* search, and repeats until the goal is
reached. The focussing heuristic, , was chosen to be
the minimum possible number of state transitions between
and , assuming the lowest arc cost value for each.

The second and third algorithms, Basic D* (BD*) and
Focussed D* with Minimal Initialization (FD*M), are
described in Stentz [1994] and Section 4, respectively. The
fourth algorithm, Focussed D* with Full Initialization
(FD*F), is the same as FD*M except that the path costs are
propagated to all states in the planning space, which is
assumed to be finite, during the initial path calculation,
rather than terminating when the path reaches the robot’s
start state.

The four algorithms were compared on planning
problems of varying size. Each environment was square,
consisting of a start state in the center of the left wall and a
goal state in center of the right wall. Each environment
consisted of a mix of map obstacles known to the robot
before the traverse and unknown obstacles measurable by
the robot’s sensor. The sensor used was omnidirectional with
a 10-state radial field of view. Figure 6 shows an
environment model with approximately 100,000 states. The
known obstacles are shown in grey and the unknown
obstacles in black.

The results for environments of 104, 105, and 106 states
are shown in Table 1. The reported times are CPU time for a
Sun Microsystems SPARC-10 processor. For each
environment size, the four algorithms were compared on five
randomly-generated environments, and the results were
averaged. Theoff-line time is the CPU time required to

S G

g X Y,()
Y

X

compute the initial path from the goal to the robot, or in the
case of FD*F, from the goal to all states in the environment.
This operation is “off-line” since it could be performed in
advance of robot motion if the initial map were available.
The on-line time is the total CPU time for all replanning
operations needed to move the robot from the start to the
goal.

Figure 6: Typical Environment for Comparison

The results for each algorithm are highly dependent on
the complexity of the environment, including the number,
size, and placement of the obstacles, and the ratio of known
to unknown obstacles. For the test cases examined, all
variations of D* outperformed BFR in on-line time, reaching
a speedup factor o f approx imate ly 300 for large
environments. Generally, the performance gap increased as
the size of the environment increased. If the user wants to
minimize on-line time at the expense of off-line time, then
FD*F is the best algorithm. In this algorithm, path costs to
al l states are computed ini t ial ly and only the cost
propagations are focussed. Note that FD*F resulted in lower
on-line times and higher off-line times than BD*. The FD*M
algorithm resulted in lower off-line times and higher on-line

Focussed D*
with Full Init

Focussed D*
with Min Init

Basic D*
Brute-Force
Replanner

Off-line: 104 1.85 sec 0.16 sec 1.02 sec 0.09 sec

On-line: 104 1.09 sec 1.70 sec 1.31 sec 13.07 sec

Off-line: 105 19.75 sec 0.68 sec 12.55 sec 0.41 sec

On-line: 105 9.53 sec 18.20 sec 16.94 sec 11.86 min

Off-line: 106 224.62 sec 9.53 sec 129.08 sec 4.82 sec

On-line: 106 10.01 sec 41.72 sec 21.47 sec 50.63 min

Table 1: Results for Empirical Tests

GS

times than BD*. Focussing the search enables a rapid start
due to fewer state expansions, but many of the unexplored
states must be examined anyway during the replanning
process resulting in a longer execution time. Thus, FD*M is
the best algorithm if the user wants to minimize thetotal
time, that is, if the off-line time is considered to be on-line
time as well.

Thus, the Focussed D* algorithm can be configured to
outperform Basic D* in either total time or the on-line
portion of the operation, depending on the requirements of
the task. As a general strategy, focussing the search is a good
idea; the only issue is how the computational load should be
distributed.

7 Conclusions
This paper presents the Focussed D* algorithm for real-time
path replanning. The algorithm computes an initial path from
the goal state to the start state and then efficiently modifies
this path during the traverse as arc costs change. The algo-
rithm produces an optimal traverse, meaning that an optimal
path to the goal is followed at every state in the traverse,
assuming all known information at each step is correct. The
focussed version of D* outperforms the basic version, and it
offers the user the option of distributing the computational
load amongst the on- and off-line portions of the operation,
depending on the task requirements. The addition of a heu-
ristic focussing function to D* completes its development as
a generalization of A* to dynamic environments--A* is the
special case of D* where arc costs do not change during the
traverse of the solution path.

Acknowledgments
The author thanks Barry Brumitt and Jay Gowdy for feed-
back on the use of the algorithm.

References
 [Boult, 1987] T. Boult. Updating distance maps when
objects move. InProceedings of the SPIE Conference on
Mobile Robots, 1987.
 [Jarvis, 1985] R. A. Jarvis. Collision-free trajectory plan-
ning using the distance transforms.Mechanical Engineering
Trans. of the Institution of Engineers, ME10(3), September
1985.
 [Korf, 1987] R. E. Korf. Real-time heuristic search: first
results. InProceedings of the Sixth National Conference on
Artificial Intelligence, July 1987.
 [Lumelsky and Stepanov, 1986] V. J. Lumelsky and A. A.
Stepanov. Dynamic path planning for a mobile automaton
with limited information on the environment.IEEE Transac-
tions on Automatic Control, AC-31(11), November 1986.
 [Nilsson, 1980] N. J. Nilsson.Principles of Artificial Intelli-
gence, Tioga Publishing Company, 1980, pp. 72-88.
 [Pirzadeh and Snyder, 1990] A. Pirzadeh and W. Snyder. A
unified solution to coverage and search in explored and
unexplored terrains using indirect control. InProceedings of
the IEEE International Conference on Robotics and Automa-
tion, May 1990.
 [Ramalingam and Reps, 1992] G. Ramalingam and T. Reps.
An incremental algorithm for a generalization of the short-

est-path problem. University of Wisconsin Technical Report
#1087, May 1992.
 [Stentz, 1993] A. Stentz. Optimal and efficient path plan-
ning for unknown and dynamic environments. Carnegie
Mellon Robotics Institute Technical Report CMU-RI-TR-
93-20, August 1993.
 [Stentz, 1994] A. Stentz. Optimal and efficient path plan-
ning for partially-known environments. InProceedings of
the IEEE International Conference on Robotics and Automa-
tion, May 1994.
 [Trovato, 1990] K. I. Trovato. Differential A*: an adaptive
search method illustrated with robot path planning for mov-
ing obstacles and goals, and an uncertain environment.Jour-
nal of Pattern Recognition and Artificial Intelligence, 4(2),
1990.
 [Zelinsky, 1992] A. Zelinsky. A mobile robot exploration
algorithm.IEEE Transactions on Robotics and Automation,
8(6), December 1992.

