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The problem of path planning can be stated as finding
sequence of state transitions through a graph from some i

The Focussed D* Algorithm for Real-Time Replanning

Anthony Stentz
Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
U. S. A

Abstract

Finding the lowest-cost path through a graph is
central to many problems, including route planning
for a mobile robot. If arc costs change during the
traverse, then the remainder of the path may need to
be replanned. This is the case for a sensor-equipped
mobile robot with imperfect information about its
environment. As the robot acquires additional
information via its sensors, it can revise its plan to
reduce the total cost of the traverse. If the prior
information is grossly incomplete, the robot may
discover useful information in every piece of sensor
data. During replanning, the robot must either wait
for the new path to be computed or move in the
wrong direction; therefore, rapid replanning is
essential. The D* algorithm (Dynamic A*) plans
optimal traverses in real-time by incrementally
repairing paths to the robot’'s state as new
information is discovered. This paper describes an
extension to D* that focusses the repairs to
significantly reduce the total time required for the
initial path calculation and subsequent replanning
operations. This extension completes the
development of the D* algorithm as a full
generalization of A* for dynamic environments,
where arc costs can change during the traverse of
the solution pat.

Introduction

incorrect, the remaining portion of the path may need to be
replanned to preserve optimality. A traverse is optimal if
every transition in the traverse is part of an optimal path to
the goal assuming, at the time of each transition, all known
information about the arc costs is correct.

An important application for this problem, and the one
that will serve as the central example throughout the paper, is
the task of path planning for a mobile robot equipped with a
sensor, operating in a changing, unknown or partially-known
environment. The states in the graph are robot locations, and
the arc values are the costs of moving between locations,
based on some metric such as distance, time, energy
expended, risk, etc. The robot begins with an initial estimate
of arc costs comprising its “map”, but since the environment
is only partially-known or changing, some of the arc costs
are likely to be incorrect. As the robot acquires sensor data,
it can update its map and replan the optimal path from its
current state to the goal. It is important that this replanning
be fast, since during this time the robot must either stop or
continue to move along a suboptimal path.

A number of algorithms exist for producing optimal
traverses given changing arc costs. One algorithm plans an
initial path with A* [Nilsson, 1980] or the distance transform
[Jarvis, 1985] using the prior map information, moves the
robot along the path until either it reaches the goal or its
sensor discovers a discrepancy between the map and the
environment, updates the map, and then replans a new path
from the robot’s current state to the goal [Zelinsky, 1992].
Although this brute-force replanner is optimal, it can be
grossly inefficient, particularly in expansive environments
where the goal is far away and little map information exists.

Boult [1987] maintains an optimal cost map from the
goal to all states in the environment, assuming the

tial state to a goal state, or determining that no such sequergnvironment is bounded (finite). When discrepancies are

exists. The path is optimal if the sum of the transition costs
also called arc costs, is minimal across all possiblt
sequences through the graph. If during the “traverse” of th
path, one or more arc costs in the graph is discovered to |

1. This research was sponsored by ARPA, under contracts
ception for Outdoor Navigation” (contract number DACA76-89-

g_ethe entire affected portion of the map must be repaired

discovered between the map and the environment, only the
affected portion of the cost map is updated. The map
representation is limited to polygonal obstacles and free
space. Trovato [1990] and Ramalingam and Reps [1992]
extend this approach to handle graphs with arc costs ranging
over a continuum. The limitation of these algorithms is that

0014, monitored by the US Army TEC) and “Unmanned GrouncP€fore the robot can resume moving and subsequently make
Vehicle System” (contract number DAAE07-90-C-R059, moni-additional corrections. Thus, the algorithms are inefficient

tored by TACOM).

when the robot is near the goal and the affected portions of
the map have long “shadows”. Stentz [1994] overcomes
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these limitations with D*, an incremental algorithm which remaining portion of the path must be replanned at a given
maintains a partial, optimal cost map limited to thoselocation in the traverse, which tends to get progressively
locations likely to be of use to the robot. Likewise, repair oishorter due to the second characteristic.

the cost map is generally partial and re-entrant, thus reducit

computational costs and enabling real-time performance. B e P o e
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Consider how A* solves the following robot path planning i S St

problem. 'C::igure 1 shows afn el;ghtl—connectedhgraph repre Figure 1: Invalidated States in the Graph
senting a Cartesian space of robot locations. The states in . .
graph, depicted by arrows, are robot locations, and the ar __AS described in Stentz [1994], D* leverages on these
encode the cost of moving between states. The white regiocharactensths to reduce run-time by a factor of 200 or more
are locations known to be in free space. The arc cost sfor large environments. The paper proves that the algorithm
moving between free states is a small value denoted tProduces correct results regardless--only the performance
EMPTY. The grey regions are known obstacle locations, an'MProvement is affected by the validity of the problem
arcs connected to these states are assigned a prohibitivcharacteristics. o _
high value ofOBSTACLE. The small black square is a  Like A*, D* maintains anOPEN list of states for
closed gate believed to be open (iIEMPTY value). With€xpansion; however, these states consist of two types:
out a loss of generality, the robot is assumed to be point-siRAISEand LOWER RAISEstates transmit path cost
and occupies only one location at a time. A* can be used fncreases due to an increased arc value L&QWER states
compute optimal path costs from the gaal, , to all states ireduce costs and re-direct arrows to compute new optimal
the space given the initial set of arc costs, as shown in ttPaths. TheRAISE states propagate the arc cost increase
figure. The arrows indicate the optimal state transitionsthrough the invalidated states, by starting at the gate and
therefore, the optimal path for any state can be recovered [SWeeping outward, adding the value®ATE  to all states in
following the arrows to the goal. Because the closed gate the region. TheRAISE  states activate neighboril@WER
assumed to be open, A* plans a path through it. states which sweep in behind to reduce costs and re-direct
The robot starts at some initial location and begin®CiNters.LOWER states compute new, optimal paths to the
following the optimal path to the goal. At locati® , the States that were previously raised. _
robot’s sensor discovers the gate between the two lar¢ _States are placed on tiie’EN  list by thedy value
obstacles is closed. This corresponds to an incorrect ak(X), which for LOWER states is the currepath cost I X
value in the graph: rather th&MPTY , it has a much highe(i-€., cost from the stateé  to the goal), andReSE  states
value of GATE , representing the cost of first opening theth€ previous, unraised() ~ value. States on the list are
gate and then moving through it. All paths through this arProcessed in order of increasing key value. The intuition is
are (possibly) no longer optimal, as indicated by the labellethat the previous optimal path costs of RRISE  states
region. A* could be used to recompute the cost map, but thdefme_ a lower bound on the path costs OIWVER states they
is inefficient if the environment is large and/or the goal is facan discover. Thus, if the path costs of H®WER  states
away. currently on theOPEN |I$t _exceed the_prewous path costs of
Several characteristics of the problem motivate a bettet1€ RAISE states, then it is worthwhile processiRa\SE
approach. First, changes to the arc costs are likely to be Stat€s to discover (possibly) a bet@WER  state.
the vicinity of the robot, since it typically carries a sensor | h€ process can terminate when theylowest value on the
with a limited range. This means that most plans need on/OPEN list equals or exceeds the robot’s path cost, since
be patched “locally”. Second, the robot generally makeadditional expansions cannot possibly find a _better path to
near-monotonic progress toward the goal. Most obstructiorthe® goal (see Figure 2). Once a new optimal path is
are small and simple path deflections suffice, thus avoidincomputed or the old one is determined to be valid, the robot
the high computational cost of backtracking. Third, only theca@n continue to move toward the goal. Note in the figure that



only part of the cost map has been repaired. This is threaches it through subsequent expansions. Note that this is a
efficiency of the D* algorithm. more efficient cut-off than the previous one, which considers
The D* algorithm described in Stentz [1994] propagate:only the first criterion.
cost changes through the invalidated states withou Figure 3 shows the same example, except that a
considering which expansions will benefit the robot at itsfocussed search is used. All states inR#SE state wave
current location. Like A*, D* can use heuristics to focus thefront have roughly the sanf€)  value. The wave front is
search in the direction of the robot and reduce the totamore “narrow” in the focussed case since the inclusion of the
number of state expansions. Let floeussing heuristic cost to return to the robot penalizes the wide flanks.
g(X, R be the estimated path cost from the robot’s loca&ion Furthermore, thee OWER states activated by tRaISE
to X. Define a new function, thestimated robot path cqsb  state wave front have swept in from the outer sides of the
bef(X, R = h(X) +g(X R , and sort alLOWER states on the obstacles to compute a new, optimal path to the robot. Note
OPEN list by increasing{®) value. The functid(X, R is that the two wave fronts are narrow and focussed on the
the estimated path cost from the stte throdxgh Gto robot’s location. Compare Figure 3 to Figure 2. Note that
Provided thap(®) satisfies the monotone restriction, theiboth theRAISE andLOWER state wave fronts have covered
sinceh(X) is optimal whehOWER stat® is removed fromless ground for the focussed search than the unfocussed
the OPEN list, an optimal path will be computed ®  search in order to compute a new, optimal patR to . Therein
[Nilsson, 1980]. The notatiog(®) is used to refer to ais the efficiency of the Focussed D* algorithm.
function independent of its domain. The problem with focussing the search is that once a
new optimal path is computed to the robot’s location, the
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processingRAISE states to discover bettelDWER  states . .
Based on this reasoning, tRAISE  states should be sort Figure 3 Focussed OWER  States Reach Robot
on the OPEN list by {X B = k(X) +g(X, R . But since The approach in this paper is to take advantage of the
k(¥) = h(X) for LOWER states, theRAISE state definition fact that the robot generally moves only a few states between
for f(°) suffices for both kinds of states. To avoid cycles inreplanning operations, so the) el values have only a
the backpointers, it should be noted that tief°)n are sortesmall amount of error. Assume that state is placed on the
by increasing«(®) onth@PEN list [Stentz, 1993]. OPEN list when the robot is at locatioR, . §)  value at
The process can terminate when the lowest value on tithat point isf(X, R)) . If the robot moves to locatien , we
OPEN list equals or exceeds the robot’s path cost, since trcould calculaté(X, R;) and adjust its position on GrREN
subsequent expansions cannot possibly fin@s/ER stalist. To avoid this computational cost, we compute a lower
that 1) has a low enough path cost, and 2) is “close” enoucbound on fX, Ry) given by
to the robot to be able to reduce the robot’s path cost whenf, (X, R)) = f(X, R) —g(R;, Ry —€. f (X, R)) is a lower bound



on f(X,R) since it assumes the robot moved in theThese neighbors are in turn placed on GREN list to
“direction” of stateX , thus subtracting the motion from continue the process.
9(X Ry). The parametet is an arbitrarily small positive States are sorted on tlGePEN list byiased {°)
number. IfX is repositioned on th@PEN  list X, R) , value, given byf;(X, R) , wher® is the state on GREN
then since (X, R) is a lower bound 6, R)) X, will be listandR is the robot's state at the titie was inserted or
selected for expansion before or when it is needed. At thadjusted on th@©PEN list. Lef R.R,...Ry} be the
time of expansion, the tri¢X, R))  value is computed,Xand sequence of states occupied by the robot when states were
is placed back on thePEN  listbyx R) . added to theOPEN list. The value df°) is given by
At first this approach appears worse, since ®fREN fa(X, R) = f(X, R) +d(R, Ry, wheref(°) is the estimated
list is first re-sorted by, (°) and then partially adjusted torobot path cost given biyX, R) = h(X)+g(X, R) amf’) s
replace thé, (°) values with the corré(€} values. But sincthe accrued bias function given by
9(R;, Ry + ¢ is subtracted fronall states on th@PEN list, d(R,R) = 9(R;,R) +9(R, R) +... +g(R, R, _,) +i¢ if
the ordering is preserved, and the list need not be re-sortei >0 andd(R,, Ry = 0 ifi = 0. The functiorg(X, ¥) is the
Furthermore, the first step can be avoided altogether bfocussing heuristic, representing the estimated path cost
addingg(R, Ry + ¢ to the states to be inserted on@REN  from Y to X. The OPEN list states are sorted by increasing
list rather tharsubtractingit from those already on the list, f;(°) value, with ties irf;(°) ordered by increasiify , and
thus preserving the relative ordering between states alreaties in f(°) ordered by increasing°) . Ties k) are
on the list and states about to be added. Therefore, the orordered arbitrarily. Thus, a vector of valudg(®), f(°), k(°)O
remaining computation is the adjustment step. But this steis stored with each state on the list.
is needed only for those states that show promise fc  Whenever a state is removed from theEN list, its
reaching the robot’s location. For typical problems, thisf(°) value is examined to see if it was computed using the
amounts to fewer than 2% of the states onQR&N list. most recent focal point. If not, it¢) ang®) values are
o . recalculated using the new focal point and accrued bias,
3 Definitions and Formulation respectively, and the state is placed back on the list.
dProcessing thé,(°) values in ascending order ensures that
h'_the first gr)counteretd°) value using the current focal point
is the minimum such value, denotedfy, . kgf be its
corresponding(®) value. These parameters comprise an
important threshold for D*. By processing properly-focussed
f(°) values in ascending order (ak() values in ascending
order for a constarit°®) value), the algorithm ensures that for
all statesx , iff(X})<f_ .. or{X) =f_, anh(X) <k, )
thenh(X) is optimal. The parameteal  is used to store the
vector If . . k,, 0 for the purpose of this test.

To formalize this intuition, we begin with the notation an
definitions used in Stentz [1994], and then extend it for t
focussed algorithm. The problem space can be formulated
a set ofstatesdenoting robot locations connected diyec-

tional arcs each of which has an associated cost. The robc
starts at a particular state and moves across arcs (incurri
the cost of traversal) to other states until it reachegadhé

state, denoted bg . Every visited state except has
backpointerto a next statyy denoted by = Y . D* uses
backpointers to represent paths to the goal. The cost of tr . .
versing an arc from stat¢  to staXe s a positive numbe, €t Ry, b€ the current state on which the search is

given by thearc costfunctionc(x, v) . If Y does not have an focussed, initialized to the robot’s start state. Define the
arc toX , thenqX ) is undefined. Two states and  ard©oPot statefunctionr(X) , which returns the robot’s state
neighbo}sin the space if(X, ) oc(\.( X s defined. whenX was last inserted or adjusted on @REN list. The

* . . . parameterd is the accrued bias from the robot’s start
D* uses anOPEN list to propagate information abomstate to its current state; it is shorthandd@?_ .. R) and is

changes to the arc cost function and to calculate path costs. =~ ~ - .
states in the space. Every state  has an assotatgd), lnhltlalh|ze(; 10 deyy, = d(Ry Ry) _do .f Thoe following
such that(X) = NEW ifX has never been on theEN list, or_t an notatlon_ IS use 0f(*) ani)
t(X) = OPEN if X is currently on theOPEN list, and fg(9) =fg(X, (X)) andf(x) =f(x, r(x)) .

t(X) = CLOSEDIf X is no longer on theOPEN list. For . —
each visited stat® , D* maintains an estimate of the sum (4 Algorithm Description

the arc costs fronx t@& given by the path cost functiorThe D* algorithm consists primarily of three functions:
h(X) . Given the proper conditions, this estimate is equivalerPROCESS STATE MODIFY - COST, and

to the optimal (minimal) cost from state @ . For eachMOVE- ROBOT PROCESS STATEomputes optimal
stateX on theOPEN list (i.e.{% = OPEN ), the key path costs to the goalODIFY—- COST changes the arc cost
function, k(X , is defined to be equal to the minimunh@d functionc(°) and enters affected states onQIfEN list, and
before modification and all values assumechpx) siice MOVE- ROBOTuses the two functions to move the robot
was placed on thePEN list. The key function classifies éoptimally. The algorithms foPROCESS STATE,
stateX on theODPEN list into one of two types:RAISE  MODIFY- COST, and MOVE- ROBOT are presented
state ifk(X) <h(X) , and aOWER state ik X = h(X) . D* below along with three of the more detailed functions for
usesRAISE states on th@PEN list to propagatemanaging theOPEN list:INSERT , MIN- STATE, and
information about path cost increases aWER states IMIN -VAL. The user provides the functicdvAL(X §
propagate information about path cost reductions. Thwhich computes and returns the focussing heurigkcy)
propagation takes place through the repeated removal The embedded routines ar®liN(a, b)  returns the
states from th©PEN list. Each time a state is removed frorminimum of the two scalar valuesandb; LESS a b takes a

the list, it isexpandedo pass cost changes to its neighborsyector of valuesia, a,0 fom and a vectab, b, for



and returnsTRUE ifag<b, or4, =b, and,<b, ); neighbory that has a backpointer Xo , regardless of
LESSEQ a ptakes two vectora and and returRRUE  whether the new cost is greater than or less than the old.
if a,<b, or (a; = b, anda,<b, ); COSTX¥ computes Since these states are descendants of , any change to the
fX, R,p) = h(X) + GVALX R ) and returns the vector of path cost ofX affects their path costs as well. The
valuesi(X, R, ), h(X)O for a statX DELETH X deletes backpointer ofy is redirected, if needed. All neighbors that
stateX from theOPEN list and setg¥ = CLOSED ; receive a new path cost are placed onGR&EN list, so that
PUT- STATEX) setst(X) = OPEN and insert8 on the they will propagate the cost changes to their neighbors.

OPEN list according to the vectof(X), f(X), kX0 ; and fynction: PROCESS-STATE ()

GET- STATEreturns the state on th@PEN  list with

minimum vector valueNULL if the list is empty). L1 _X = MIN-STATH )

The INSERT function, given below, changes the valueb? I X = NULL then returnNO—- VAL
of h(X) to h . and inserts or repositions  on to@eEN L3 val = 00, KX k5 = k(X ; DELETEX
list. The value fok(X) is determined at lines L1 through L5.L4 if k,,<h(X) then
The remaining two values in the vector are computed at linL5  for each neighbovy oX :

L7, and the state is inserted at line L8. L6 if t(Y)#NEWand LESSEQ COST)yval) and
Function: INSERT (X, hpew) L7 h(X) >h(Y) +c(Y, X then
if 1) = - L8 b(¥) = Y: h(X) = h(Y)+c(Y, ¥
L1 if t((X) = NEWthenk(X) = h .
L2 else new L9 if k,,, = h(X) then

L10 for each neighbor oX

L3 if t(X) = OPENth
1) en L11  if(Y) = NEWor

L4 k(X = MIN(K(X), h.o,); DELETE X

_ L12 (b(Y) = X andh(Y) #h(X) +c(X, Y) ) or
tg h(;\)ls:ekém ?r'\o/'(')Nih(F?’ Mew L13 (b(Y) X andh(Y) > h(X) + c(X, Y) ) then
L7 100 = K9+ GVALX Ry f509 = 100+ e T XINSERTY RXX Y

L8 PUT-STATEX)
The functionMIN —STATE, given below, returns the
state on th@©PEN list with minimunf®)  value. In order to

L16 for each neighbor oX
L17 if t(tY) = NEWor

do this, the function retrieves the state on@®eN  list witr-18 (b(Y) = X andh(Y) # h(X) +c(X, ) ) then

lowestfy(?) value. If the state was placed on @REN lisit19 b(Y) = X;INSERTY b X+c(X V)

when the robot was at a previous location (line L2), then it iL20 else

re-inserted on th®PEN list at lines L3 and L4. This L21 if b(Y) #X andh(Y)>h(X) +c¢(X, V) and

operation has the effect of correcting the state’s accrued bilL22 t(X) = CLOSED then

using the robot’s current state while leaving the statg}s [ 23 INSERT X £ ¥

and k(°) values unchange®IN-STATE continues to| o4 else

retrieve states from thePEN list until it finds one that was) 5g if b(Y) £ X andh(X) > h(Y) + ¢(Y, ¥ and

placeq on th©PEN list with the robot at its current state. L26 {(Y) = CLOSED and

Function: MIN-STATE () L27 LESS val COS(T)Y then

L1 while X = GET- STATE )#NULL L28 INSERTY b )

L2 if rX)#R,,,, then L29 returnMIN —VAL( )

L3 hhew = D5 (X9 = k(X If X is a RAISE state, its path cost may not be optimal.
L4 DELETHX; INSERT X f,,) Before X propagates cost changes to its neighbors, its
L5 else returrX optimal neighbors are examined at lines L4 through L8 to
L6 returnNULL see ifh(X) can be reduced. At lines L16 through L19, cost

The MIN —VAL function, given below, returns tif(¢) changes are.propagated W states and |mmed|a}e
andk() values of the state on tB@EN list with minimumdescendants in the same way asfOWER ~ stateX. If is
) value, that is/7_. k] able to lower the path cost of a state that is not an immediate

. min' “val descendant (lines L21 through L23), is placed back on the
Function: MIN-VAL () OPEN list for future expansion. This action is required to

L1 X = MIN-STATE ) avoid creating a closed loop in the backpointers [Stentz,
L2 if X = NULL then returnNO— VAL 1993]. If the path cost oX is able to be reduced by a
L3 else returnt¥(X), k(XD suboptimal neighbor (lines L25 through L28), the neighbor

In function PROCESS STATEcost changes are is placed back_ on th@PEN list. Thu_s, the update is
propagated and new paths are computed. At lines L1 throu( Postponed” until the neighbor has an optimal path cost.
L3, the statex with the |owe$([°) value is removed from In function MODIFY - COST, the arc cost function is
the OPEN list. If X is a LOWER state (i.e.k X= h(X) ), its updated with the c_hanged value. Since the path cost for state
path cost is optimal. At lines L9 through L14, each neighboY Will change, X is placed on thePEN  list. Whex is
Y of X is examined to see if its path cost can be lowerecexpanded viaPROCESS STATE, it computes a new
Additionally, neighbor states that akew  receive an initiah(Y) = h(X) +c(X, ¥) and placesy on th©PEN list.

path cost value, and cost changes are propagated to e/Additional state expansions propagate the cost to the
descendants of



Function: MODIFY-COST (X, Y, Cya) EMPTY arcs in the graph. No unobstructed path exists to the
L1 oX V) = ¢,y goal fromsS if { 3= OBSTACLE after exiting the loop at
o v line L6. Likewise, no unobstructed path exists to the goal
tg LL:()E)M—MELOV%AELDthen INSERTX 0 ¥ from a stateR  during the traversehfl = OBSTACLE after
u -~ () exiting the loop at line L16. SincR = R,  for a robot

The functionMOVdE— ROBOT illustrates how torl]Jse stateR undergoing path recalculations, tigR B = 0 and
PROCESS STATEINd MODIFY-COST to move the ¢p p - yR . Therefore, optimality is guaranteed for a

robot from states through the environment@  along ar : l

optimal traverse. At lines L1 through L4 of StateR , il >N(R) - OF Gy = MR aNdhg MR ).

MOVE- ROBOT t(°) is set toNEW for all states, the

accrued bias and focal point are initializéxiz) is set t(5 Example

zero, ands is placed on tl@PEN  lieROCESS STATE Figure 4 shows a cluttered 100 x 100 state environment. The
is called repeatedly at lines L6 and L7 until either an initiarobot starts at stat¢  and moves to state . All of the obsta-
path is computed to the robot’s state (it¢s, = CLOSED  )cles, shown in black, are unknown before the robot starts its
or it is determined that no path exists (iva| = NO- VAL traverse, and the map contains oBIMPTY arcs. The robot
and t(S = NEW). The robot then proceeds to follow theis point-size and is equipped with a 10-state radial field-of-
backpointers until it either reaches the goal or discovers view sensor. The figure shows the robot’s traverse ffom to
discrepancy (line L11) between teensor measuremeaf G using the Basic D* algorithm. The traverse is shown as a
an arc cosg®) and the stored arc cest (e.g., due toblack curve with white arrows. As the robot moves, its sen-
detected obstacle). Note that these discrepancies may ocsor detects the unknown obstacles. Detected obstacles are
anywhere, not just on the path to the goal. If the robot moveshown in grey with black arrows. Obstacles that remain
since the last time discrepancies were discovered, then unknown after the traverse are shown in solid black or black
stateR is saved as the new focal point, and the accrued biwith white arrows. The arrows show the final cost field for
d.,r» IS updated (lines L12 and L13JODIFY-COST s all states examined during the traverse. Note that most of the
called to correct(®) and place affected states orDIPEN ~ States are examined at least once by the algorithm.

listatline L15.,PROCESS STATHS then called repeatedly
at line L17 to propagate costs and compute a new path to t
goal. The robot continues to follow the backpointers towart
the goal. The function returnGOAL— REACHED if the
goal is found andNO- PATH if it is unreachable.

Function: MOVE-ROBOT (S, G)

L1 for each statX in the graph:
L2  t(X) = NEW

L3 dcurr = 0' Rcurr = S g
L4 INSERT GO)

L5 val = [0, 00

L6 while t(S)# CLOSED andval# NO— VAL
L7 val = PROCESS STATBD

L8 if t(§ = NEWthen returnNO—- PATH
L9 R=S

L10whileR# G:

L11 if (X Y #c(X VY for some(X,Y) then
L12 if R, #R then

curr

S
S
S
S
S
S
S
S
S
S
i

L13 Oeurr = Aeurr FGVAUR R, +€; R, = R

L14 for each(X,Y) suchtha(X Y#c(X Y) : Figure 4: Basic D* Algorithm

L15 V_a' = MODIFY- COSTX, Y, £ X V) Figure 5 shows the robot’s traverse using the Focussed
L16  while LESE val COS(T)R andval# NO- VAL D* algorithm. The number oEW  states examined is fewer
L17 val = PROCESS STATH than Basic D*, since the Focussed D* algorithm focuses the
L18 R= KR initial path calculation and subsequent cost updates on the
L19 returnGOAL- REACHED robot’s location. Note that even for those states examined by

It should be noted that line L8 MOVE— ROBOT only the algorithm, fewer of them end up with optimal paths to
detects the condition that no path exists from the robot’the goal. Finally, note that the two trajectories are not fully
state to the goal if, for example, the graph is disconnected. equivalent. This occurs because the lowest-cost traverse is
does not detect the condition that all paths to the goal anot unique, and the two algorithms break ties in the path
obstructed by obstacles. In order to provide for thiscosts arbitrarily.
capability, obstructed arcs can be assigned a large positi'
value of OBSTACLE and unobstructed arcs can be assigne
a small positive value dEMPTY OBSTACLE should be
chosen such that it exceeds the longest possible path



compute the initial path from the goal to the robot, or in the
case of FD*F, from the goal to all states in the environment.
This operation is “off-line” since it could be performed in
advance of robot motion if the initial map were available.
Theon-linetime is the total CPU time for all replanning
operations needed to move the robot from the start to the
goal.

Figure 5: Focussed D* Algorithm

6 Experimental Results

Four algorithms were tested to verify optimality and to com-
pare run-time results. The first algorithm, the Brute-Force
Replanner (BFR), initially plans a single path from the goa
to the start state. The robot proceeds to follow the path unt
its sensor detects an error in the map. The robot updates 1
map, plans a new path from the goal to its current locatio
using a focussed A* search, and repeats until the goal

.,
Figure 6: Typical Environment for Comparison

reached. The focussing heuristitx, v) , was chosen to & Focussed D] Focussed DY o . | Brute-Force
the minimum possible number of state transitions between with Full Init | with Min Init| >8S'€ Replanner
and X , assuming the lowest arc cost value for each.

The second and third algorithms, Basic D* (BD*) and|Off-line: 10" | 1.85 sec 0.16 sec 1.02 sec 0.09 sec
Focussed D* with Minimal Initialization (FD*M), are -
described in Stentz [1994] and Section 4, respectively. Th On-ine: 16" |1.09 sec 1.70 sec 131 sec 13.07 seq
fourth algorithm, Focussed D* with Full Initialization |offline: 10° [19.75 sec 0.68 sec 12.55 sec 0.41 sec
(FD*F), is the same as FD*M except that the path costs a - .
assumed to be f_|n|t§:, during the initial path calculation| o« ... 16 124 62 sec | 953 sec 129.08 sed  4.82 sec
rather than terminating when the path reaches the robo
start state. on-line: 18 |10.01 sec 41.72 sec 21.47 sec 50.63 mi

The four algorithms were compared on plannin
problems of varying size. Each environment was square

consisting of a start state in the center of the left wall and i ,
goal state in center of the right wall. Each environmen  1Ne results for each algorithm are highly dependent on

consisted of a mix of map obstacles known to the robcthe complexity of the environment, including thg number,
before the traverse and unknown obstacles measurable SiZ€, and placement of the obstacles, and the ratio of known

the robot's sensor. The sensor used was omnidirectional wit0 Unknown obstacles. For the test cases examined, all
a 10-state radial field of view. Figure 6 shows anVvarations of D* outperformed BFR in on-line time, reaching

environment model with approximately 100,000 states. Th& Speedup factor of approximately 300 for large
known obstacles are shown in grey and the unknow€nvironments. Generally, the performance gap increased as
obstacles in black. the size of the environment increased. If the user wants to

The results for environments of 40.0°, and 18 states Minimize on-line time at the expense of off-line time, then
are shown in Table 1. The reported times are CPU time for FD*F is the best algorithm. In this algorithm, path costs to

Sun Microsystems SPARC-10 processor. For eacaII states are computed initially and only the cost
environment size, the four algorithms were compared on fiyPropagations are focussed. Note that FD*F resulted in lower

randomly-generated environments, and the results Welon-line times and h_igher off-Iing timgs than BD*. The FD*M
averaged. Theff-line time is the CF’>U time required to algorithm resulted in lower off-line times and higher on-line

Table 1: Results for Empirical Tests



times than BD*. Focussing the search enables a rapid steest-path problem. University of Wisconsin Technical Report

due to fewer state expansions, but many of the unexplore#1087, May 1992.

states must be examined anyway during the replannin [Stentz, 1993] A. Stentz. Optimal and efficient path plan-

process resulting in a longer execution time. Thus, FD*M ining for unknown and dynamic environments. Carnegie

the best algorithm if the user wants to minimize tht@l  Mellon Robotics Institute Technical Report CMU-RI-TR-

time, that is, if the off-line time is considered to be on-line93-20, August 1993.

time as well. [Stentz, 1994] A. Stentz. Optimal and efficient path plan-
Thus, the Focussed D* algorithm can be configured tning for partially-known environments. Rroceedings of

outperform Basic D* in either total time or the on-line the IEEE International Conference on Robotics and Automa-

portion of the operation, depending on the requirements cion, May 1994.

the task. As a general strategy, focussing the search is a gc [Trovato, 1990] K. I. Trovato. Differential A*: an adaptive

idea; the only issue is how the computational load should ksearch method illustrated with robot path planning for mov-

distributed. ing obstacles and goals, and an uncertain environdaunt:
. nal of Pattern Recognition and Artificial Intelligenek?2),
7 Conclusions 1990.

This paper presents the Focussed D* algorithm for real-tim [Z€linsky, 1992] A. Zelinsky. A mobile robot exploration
path replanning. The algorithm computes an initial path fronalgorithm.IEEE Transactions on Robotics and Automation
the goal state to the start state and then efficiently modifie8(6), December 1992.

this path during the traverse as arc costs change. The al¢

rithm produces an optimal traverse, meaning that an optim

path to the goal is followed at every state in the traverse

assuming all known information at each step is correct. Th

focussed version of D* outperforms the basic version, and

offers the user the option of distributing the computationa

load amongst the on- and off-line portions of the operatior

depending on the task requirements. The addition of a he

ristic focussing function to D* completes its development a:

a generalization of A* to dynamic environments--A* is the

special case of D* where arc costs do not change during t

traverse of the solution path.
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