
Abstract

Mobile robots operating in vast outdoor unstructured
environments often only have incomplete maps and must
deal with new objects found during traversal. Path plan-
ning in such sparsely occupied regions must be incremen-
tal to accommodate new information, and, must use
efficient representations. In previous work we have devel-
oped an optimal method, D*, to plan paths when the envi-
ronment is not known ahead of time, but, rather is
discovered as the robot moves around. To date, D* has
been applied to a uniform grid representation for obsta-
cles and free space. In this paper we propose the use of
D* with framed quadtrees to improve the efficiency of
planning paths in sparse environments. The new system
has been tested in simulation as well on an autonomous
jeep, equipped with local obstacle avoidance capabili-
ties. We show how the use of framed quadtrees improves
performance in terms of path length, computation speed,
and memory requirements.

1 Introduction

Path planning for a mobile is typically stated as getting
from one place to another. The robot must successfully
navigate around obstacles, reach its goal and do so effi-
ciently. Outdoor environments pose special challenges
over the structured world that is often found indoors. Not
only must a robot avoid colliding with an obstacle such as
a rock, it must also avoid falling into a pit or ravine and
avoid travel on terrain that would cause it to tip over. Vast
areas have their own associated issues. Such areas typi-
cally have large open areas where a robot might travel
freely and are sparsely populated with obstacles. However,
the range of obstacles that can interfere with the robot’s
passage is large— the robot must still avoid a rock as well
as go around a mountain. Vast areas are unlikely to be
mapped at high resolution a priori and hence the robot
must explore as it goes, incorporating newly discovered
information into its database. Hence, the solution must be
incremental by necessity. Another challenge is dealing
with a large amount of information and a complex model
(our autonomous vehicle is a three degree of freedom,
non-linear, non-holonomic system). Taken as a single
problem, so much information must be processed to deter-

mine the robot’s next action that it is not possible for the
robot to perform at any reasonable rate. We deal with this
issue by using alayered approach to navigation.

We have adopted the approach of decomposing navigation
into two levels—local andglobal. The job of local plan-
ning is to avoid obstacles, reacting to sensory data as
quickly as possible while driving towards a subgoal [4][5].
A more deliberative process, operating at a coarser resolu-
tion of information is used to decide how best select the
subgoals such that the goal can be reached. This approach
has been used successfully in the past in several systems at
Carnegie Mellon [1][12]. In this paper we concentrate the
discussion on global planning.

Approaches to path planning for mobile robots can be
broadly classified into two categories— those that use
exact representations of the world (e.g. [14]), and those
that use a discretized representation (e.g. [3][6]). The main
advantage of discretization is that the computational com-
plexity of path planning can be controlled by adjusting the
cell size. In contrast, the computational complexity of
exact methods is a function of the number of obstacles
and/or the number of obstacle facets, which we cannot
normally control. Even with discretized worlds path plan-
ning can be computationally expensive and on-line perfor-
mance is typically achieved by use of specialized
computing hardware as in [3][6]. By comparison the pro-
posed method requires general purpose computing only.
This is made possible by precomputing an optimal path
off-line given whatever a priori map is available, and then
optimally modifying the path as new map information
becomes available, on-line.

Methods that use uniform grid representations must allo-
cate large amounts of memory for regions that may never
be traversed, or contain any obstacles. Efficiency in map
representation can be obtained by the use of quadtrees, but
at a cost of optimality. Recently, a new data structure
called aframed quadtree has been suggested as means to
overcome some of the issues related to the use of
quadtrees[2]. We have used this data structure to extend an
existing path planner that has in the past used uniform
(regular) grid cells to represent terrain. This path planner,
D* [10][11] has been shown to be optimal in cases where
the environment is incrementally discovered.

Framed-Quadtree Path Planning for Mobile Robots Operating in
Sparse Environments

Alex Yahja, Anthony Stentz, Sanjiv Singh, and Barry L. Brumitt

Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213

In Proceedings, IEEE Conference on Robotics and Automation,
(ICRA), Leuven, Belgium, May 1998.

In this paper we discuss the advantages and implications
of using framed quadtrees with D*. We present results of
the path planner operating in simulated fractal worlds and
results from implementation on an autonomous jeep.

2 Map Representation

Apart from the fact that discretization of space allows for
control over the complexity of path planning, it also pro-
vides a flexible representation for obstacles and cost maps,
and eases implementation. One method of cell decomposi-
tion is to tessellate space into equal sized cells each of
which is connected to its neighbors with four or eight arcs.
This method, however, has two drawbacks: resulting paths
can be suboptimal and memory requirements high.
Quadtrees address the latter problem, while framed
quadtrees address both problems, especially in sparse
environments.

2.1 Regular Grids

Regular grids represent space inefficiently. Natural terrains
are usually sparsely populated and are often not com-
pletely known in advance. In the absence of map informa-
tion unknown environments are encoded sparsely during
initial exploration and many areas remain sparsely popu-
lated even during execution. Many equally sized cells are
needed to encode these empty areas making search expen-
sive since more cells are processed than actually needed.
Moreover, regular grids allow only eight angles for direc-
tion, resulting in abrupt changes in path direction and an
inability, in some cases, to generate a straight path through
empty areas (Fig. 1a). It is possible to smooth such jagged
paths, but there is no guarantee that the smoothed path will
converge to the truly optimal path.

2.2 Quadtrees

One way to reduce memory requirements is to use a
quadtree instead of a regular grid. A quadtree [8][9] is
based on the successive subdivision of region into four
equally sized quadrants. A region is recursively subdi-
vided until either a subregion free of obstacles is found or
the smallest grid cell is reached. Quadtrees allow efficient
partitioning of the environment since single cells can be
used to encode large empty regions. However, paths gener-
ated by quadtrees are suboptimal because they are con-
strained to segments between the centers of the cells. Fig.
1b shows an example path generated using a quadtree.

2.3 Framed Quadtrees

To remedy the above problem, we have used a modified
data structure in which cells of the highest resolution are
added around the perimeter of each quadtree region. This
augmented representation is called aframed quadtree. A
path generated using this representation is shown in Fig.
1c. The small grey rectangles around the cells are the bor-
der cells of each quadrant. This representation permits
many angles of direction, instead of just eight angles as in

the case of regular grids. A path can be constructed
between two border cells lying far away from each other.
Most importantly, the paths generated more closely
approximate optimal paths.

The drawback of using framed quadtrees is that they can
require more memory than regular grids in uniformly,
highly cluttered environments because of the overhead
involved in the book-keeping.

Fig. 1 An example of a path generated using (a) regular grid
representation, (b) quadtree, (c) framed-quadtree. The black cul-
de-sac is an obstacle.

start

goal

start

goal

start

goal

3 Incremental Planning

Unstructured outdoor environments are often not only
sparse but also typically only partial maps are available. If
complete and accurate maps were available, it would be
sufficient to use A* [7] once to search the map and pro-
duce a path. The robot could simply follow this path dur-
ing its traverse. Furthermore, errors in control and
perception often introduce erroneous and changing infor-
mation. Ideally, the robot should gather new information
about the environment, and efficiently replan new paths
based on this new information. In these partially known
environments, a traverse can be achieved by incrementally
incorporating information as it becomes available.

The idea is to produce a path based on all available infor-
mation and replan from the current position to the goal
every time new information is discovered. This is called
“Best Information Planning”. This approach [13] is intu-
itively satisfying and has been shown to produce lower-
cost traverses on average than other selected algorithms
for unknown and partially-known environments. Further-
more, Best Information Planning is able to make use of
prior information to reduce the traversal cost.

Obviously, we can just use A* to replan a new path every
time it is needed, but this approach is computationally
expensive. Our approach is to use the incremental planner,
D* [10][11], that allows replanning to occur in realtime.
Incremental replanning makes it possible to greatly reduce
computational cost, as it only updates the path locally,
when possible, to obtain the globally optimal path. D*
produces the same results as planning from scratch with
A* for each new piece of information, but for large envi-
ronments it is hundreds of times faster.

4 Simulation Results

We have run simulations to compare the performance of
D* when used with framed quadtrees as opposed to regu-
lar grids in incrementally discovered environments. The
simulation environment is a binary 256 x 256 cell world
with obstacles (each 1 x 1 cell) distributed by a fractal ter-
rain generator.

Two sets of simulations were done. In the first set, the
environment is completely known in advance, that is, a
perfect a priori map is assumed. In the second set none of
the obstacle cells are known— all obstacles must be dis-
covered by vehicle sensors. In the simulated world, the
vehicle is able to detect obstacles within a radius of 4 cells.
For each of these sets, we varied the density of the fractal
obstacles and for each of the ten fractal densities, we cre-
ated 100 simulated worlds. Hence each data point shown
in the graphs below is the mean value obtained from 100
runs. Fig. 2 shows traverses generated by the use of a regu-
lar grid and a framed quadtree in a world that is com-
pletely unknown to the planner when the vehicle starts.

The more the world is cluttered, the less advantage is pro-
vided by the use of framed quadtrees. For instance, Fig. 3
shows a traverse generated in a densely populated fractal
world. Although the traverses generated are more natural,
the difference in the traverse length over a regular grid is
small.

Below we compare simulation results using three criteria:
traverse length, memory usage, and execution time.

4.1 Traverse Length

Traverse length is measured in cell units. Horizontal and
vertical traverses between smallest cells count as 1 unit,
while diagonal traverses count as units. Traverses
through a large empty area (that is, across a large framed-
quadtree cell) count as the distance between the centers of
the starting and ending border cells. Fig. 4 shows the com-
parison. The fractal gain controls the span and the density
of fractal area. The larger the fractal gain, the wider and
denser the fractal area. For simplicity, we will use fractal
gain and fractal density to denote the same notion.

Fig. 2 Traverses generated in a fractal world using regular
grids (left) and frame quadtrees (right). The lighter cells represent
occupied areas that are unknown in advance. The dark cells
represent the obstacles that are discovered by the vehicle’s
sensors. This world has a fractal gain of 12.

Fig. 3 Traverse in a dense environment (fractal gain=25) using
a framed-quadtree, starting with no knowledge of the obstacles.

2

As expected, traverses in known worlds are shorter than in
unknown worlds because in the latter case, newly sensed
obstacles force replanning of the path. Traverses generated
using framed quadtrees are shorter than those generated
when regular grids are used primarily because the path is
not forced to travel on diagonals. This effect is particularly
noticeable when the environment is sparse or unknown.
Correspondingly, the difference in traverse length is
smaller as the fractal environments become denser.

4.2 Memory Usage

Memory usage is the maximum memory (in bytes) used
by the program during a run (Fig. 5). For known worlds, as
the fractal gain increases, framed quadtrees use more
memory to encode the environment than regular grids. As
the result, beyond a certain fractal density, framed
quadtrees require more memory. For unknown worlds,
framed quadtrees use less memory in the range of densi-
ties with which we have experimented. Comparing known
and unknown worlds, framed quadtrees use much less
memory when the world is unknown because the world is
assumed to be empty initially, allowing framed quadtrees
to use large cells.

Our experimental results show that for unknown worlds,
framed quadtrees reduces memory usage by over 40%. For
sparse known worlds below fractal gain of 10, framed-
quadtrees reduces memory usage by over 30%.

4.3 Execution Time

We have compared the execution time required by D*
when a framed quadtree is used versus when a regular grid
is used. Results are summarized in Fig. 6. Total time is
measured in seconds and is the sum of off-line time and
on-line time. Off-line time measures the time needed to
create the map data structure and to produce the initial
path before the vehicle starts moving. Hence in the com-
pletely known world, the full path can be planned right
away. When the world is unknown, the vehicle finds obsta-
cles as it moves and the total time required includes the
off-line time as well as the time necessary to incorporate
new information.

In the fully known environment, use of a framed quadtree
reduces the execution time below a certain fractal density
over the use of regular-grids. For a completely unknown
environment, the total time is consistently lower when
framed quadtrees are used but the on-line time is higher
due to increased overhead in maintaining a complex data
structure. For completely known environments, regular-
grid D* propagates costs to fewer cells as the fractal den-
sity increases, resulting in reduced off-line time, while
framed-quadtree D* must create more subcells, resulting
in larger off-line time.

For an unknown environment, the off-line time represents
a time to propagate D* values in an empty initial environ-
ment. This explains why the off-line times for both repre-

Fig. 4 Traverse length comparison in the fully-known and the
completely unknown worlds as a function of fractal gain.

tr
av

er
se

 le
ng

th
 (

ce
ll

un
its

)

fractal gain

Known World

Unknown World

Fig. 5 Memory usage in the fully known and the completely
unknown worlds.

m
em

or
y

us
ag

e
(b

yt
es

)

Known World

Unknown World

fractal gain

sentations are almost constant with respect to the fractal
density. However, the use of framed quadtrees signifi-
cantly reduces the off-line time over regular grids, since
very few cells are needed the represent the assumed free
space. Some of this savings is lost during the on-line
phase, as the algorithm builds the quadtree, but in general
the total time is less since the framed quadtree is only par-
tially constructed.

5 Test Results on Autonomous Vehicle

We have performed several tests on an automated military
jeep (Fig. 7). Our vehicle uses a vertical-baseline stereo
system to generate range images. The resulting images are
processed by the SMARTY local navigator [4], which
handles local obstacle detection and avoidance. This
obstacle map is fed to a global navigator running a path
planning algorithm, such as framed-quadtree D*. Both the
local and global navigators submit steering advice to an
arbiter, which selects a steering command each time inter-
val and passes it to the controller [12]. Fig. 8 shows the
system modules and data flow.

The first set of tests shows that use of framed quadtrees
remedies one drawback of regular grids— the inability to
drive a straight diagonal traverse, in certain cases, through
an empty area (Fig. 9). As can be seen, use of a framed

quadtree results in a straight diagonal traverse, while use
of a regular grid does not.

Fig. 10 shows a successful traverse of the vehicle that cov-
ered 200 meters in 6 minutes. During this traverse, the
vehicle detected and avoided 80 obstacles.

Fig. 6 Time comparison in the fully known and the completely
unknown worlds.

tim
e

(s
ec

on
ds

)

fractal gain

Known World

Unknown World

regular-grid (total time)

regular-grid (off-line time)

framed-quadtree (total time)

framed-quadtree (off-line time)

regular-grid (total time & off-line time)

framed-quadtree (total time & off-line time)

Fig. 7 The autonomous vehicle (HMMWV) that used for our
experiments.The vehicle is equipped with stereo vision, inertial
guidance and GPS positioning.

Fig. 8 Data flow in the implemented system.

Fig. 9 Traverse of a free area using (a) regular grid (b) a
framed quadtree

Vehicle Controller

Arbiter

Local Navigator Global Path Planner
(SMARTY) (D*)

steering
commands

driving
advice

driving
advice

sensor data

obstacle
 map

start

goal

start

goal

(b)(a)

Fig. 11 shows a close-up of the data structure produced
after the above run. As expected, a large part of the envi-
ronment that is not explored is represented by a small
number of cells.

6 Conclusions

We have implemented a method for global path planning
suited to autonomous vehicles. Our method combines the
D* algorithm, which allows dynamic path replanning in
real time, and a framed quadtree data structure, which
allows efficient spatial representation.

The results for sparse and unknown worlds are encourag-
ing, giving us shorter traverse lengths when framed
quadtrees are used as opposed to regular grids especially
when the environment is sparse or when the map has to be
built incrementally. Future work will extend the represen-
tation to continuously varying worlds as opposed to the
binary worlds considered to date. Additionally, we will
show the utility of this method in partially known environ-
ments, that is where maps exist but at a coarser scale.

Acknowledgments

The authors would like to thank Dr. Martial Hebert and Dr.

Bruce Digney for their help with vehicle field tests, and,
Daniel Huber and Stewart Moorehead for their helpful
comments. This research was sponsored in part by
DARPA, under contract DAAE07-96-C-X075 “Technol-
ogy Enhancements for Unmanned Ground Vehicles” and
by the Defense Research Establishment Suffield, Canada,
under contract W7702-6-R577/001 “Performance
Improvements for Autonomous Cross-Country Naviga-
tion”.

References

[1] Brumitt, B.L., Stentz, A., “Dynamic Mission Planning for
Multiple Mobile Robots,” Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, May 1996.

[2] Chen, Szczerba, Uhran, “Planning Conditional Shortest
Paths through an Unknown Environment: A Framed-
Quadtree Approach,” Proceedings of the IEEE International
Conference on Robotics and Automation, May 1995.

[3] Connolly and Grupen, “The Application of Harmonic Func-
tions to Robotics,” Journal of Robotic Systems, 10(7):931-
946.

[4] Hebert, Martial H., “SMARTY: Point-Based Range Process-
ing for Autonomous Driving,” Intelligent Unmanned
Ground Vehicle, Martial H. Hebert, Charles Thorpe, and
Anthony Stentz, editors, Kluwer Academic Publishers,
1997.

[5] Kelly, A, “An Intelligent Predictive Control Approach to the
High Speed Cross Country Autonomous Navigation Prob-
lem,” Ph.D Thesis, 1995, Carnegie Mellon University, Pitts-
burgh, PA 15213.

[6] Lengyel, J. and Reichert, M. and Donald, B. R. and Green-
berg, D. P., “Real Time Robot Motion Planning Using Ras-
terizing Computer Graphics Hardware,” In Proc.
SIGGRAPH. 1990.

[7] Russell, S., Norvig, P.,Artificial Intelligence: A Modern
Approach, Prentice Hall, 1995.

[8] Samet, H., “Neighbor Finding Techniques for Images Rep-
resented by Quadtrees,” Computer Graphics and Image Pro-
cessing 18, 37-57, 1982.

[9] Samet, H., “An Overview of Quadtrees, Octrees, and Related
Hierarchical Data Structures,” NATO ASI Series, Vol. F40,
1988.

[10] Stentz, A., “The Focussed D* Algorithm for Real-Time
Replanning,” Proceedings of the International Joint Confer-
ence on Artificial Intelligence, August 1995.

[11] Stentz, A., “Optimal and Efficient Path Planning for Par-
tially-Known Environments,” Proceedings of the IEEE
International Conference on Robotics and Automation, May
1994.

[12] Stentz A., Hebert, M., “A Complete Navigation System for
Goal Acquisition in Unknown Environments,” Autonomous
Robots, 2(2), 1995.

[13] Stentz, A., “Best Information Planning for Unknown,
Uncertain, and Changing Domains,” AAAI-97 Workshop
on On-line-Search.

[14] Whitcomb, L. L. and Koditschek, D. E. “Automatic Assem-
bly Planning and Control via Potential Functions,” In Proc.
IEEE/RSJ International Workshop on Intelligent Robots
and Systems. 1991.

Fig. 10 Successful long traverse of the vehicle using framed-
quadtree D* through a terrain with obstacles to the goal. The dark
rectangles are obstacles detected and avoided during the
traverse. The shaded areas surrounding the dark obstacles are
potentially dangerous zones.

Fig. 11 A close up of the data structure produced from the
execution of the path in Fig. 10.

start

goal

goal

start

