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Abstract 
The problem of programming a robot t o  carry out 

a sys temat ic  exploration of i ts  environment  using 
realistic sensors  i s  considered in this paper.  The  
robot i s  modelled as  a single point moving in  a two- 
dimensional configuration space populaied wi th  visu- 
ally opaque and transparent obstacles. The  robot is 
equipped with proximity  sensors ,  a vision-based recog- 
ni t ion sys tem,  and a method of odometry,  all of which 
have some uncertainty  associated with their  measure- 
ments .  By using visually distinctive configurations of 
features i n  the world as  natural landmarks, a series  
of local maps  i s  constructed. The  geometrical rela- 
tionships between mutually visible landmarks are used 
t o  build a relational m a p  f r o m  this collection of local 
maps.  This  novel representat ion f o r m s  the basis f o r  
a sys temat ic  exploration algorithm. The  approach has 
been implemented i n  s imulat ion,  and results are pre- 
sented. 

1 Introduction 
Advanced mobile robots in applications such 

as planetary exploration, construction, toxic waste 
cleanup, office automation and even domestic servi- 
tude will be called on to search for recognizable ob- 
jects such as a mineral deposit, a particular I-beam, 
a leaking barrel of dioxin, a stapler or a lost baby’s 
toy. To perform these tasks, the robot must be capa- 
ble of systematically searching its environment using 
realizable sensing strategies. 

In this paper, we consider the problem of robot ex- 
ploration in a previously unknown environment. This 
task involves a number of sub-problems that have of- 
ten been considered in robotics including motion plan- 
ning, sensing, and uncertainty management. However, 
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in most approaches to motion planning [12], it is as- 
sumed that an accurate representation of the envi- 
ronment is known. Lumelsky’s work is an exception 
in that the motion planning strategies will achieve 
a goal without any prior description of the obs t a  
cles [17]. However, this work assumes that odome- 
try is perfect and that the goal location is precisely 
known. Unfortunately, in exploration tasks, the goal 
location is unknown by definition, and i t  is unrealis- 
tic to believe that the absolute location of a robot can 
be precisely determined because of cumulative odom- 
etry errors and the compounding of uncertainty from 
external sensor measurements [21]. 

The approach presented in this paper will be based 
on local represcntations, and all motions will  be spec- 
ified with respect to visually distinct and recogniz- 
able objects which we will term natural landmarks. A 
search strategy is developed which will find a recogniz- 
able object in  the presence of both odometric and sens- 
ing uncertainty. In order to cope with these uncertain- 
ties, new algorithms for building representations of the 
environment are presented along with algorithms that 
use these representations to  plan and execute paths 
from place to place in the environment. The basic 
approach is to divide the world up into a number of 
overlapping regions, each of which can be represented 
by a local map, and to record the relationships be- 
tween these regions. 

Relational maps of various types have been pro- 
posed before, though these are typically based on a 
qualitative representations of different places and ac- 
tions that link them [6, 11, 14, 181. Additionally, in- 
formation from multiple views can be integrated into 
a representation which acknowledges and attempts 
to remedy the errors due to odometric and sensor 
uncertainty [l, 2, 5, 10, 211. Motion planning al- 
gorithms that can account €or odometric and sens- 
ing uncertainty during path execution have been pre- 
sented [4, 131. Finally, Motion planning with respect 
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Figure 1: Major aspects of the robot’s world model: 
Note that obstacles can take on arbitrary shapes and 
can be either transparent or opaque. The textured 
region indicates the visibility region of landmark A ,  
that is, the region in freespace where this landmark is 
visible to the robot. 

to a number of observable landmarks has been studied, 
but their locations must be known a priori [13, 141. 

In the next section, the exploration problem is de- 
fined more precisely. In section 3, an algorithm for 
systematic exploration is presented. This algorithm 
employs a relational mapping system which it uses to 
plan paths in the presence of sensor uncertainty. This 
representation is discussed in section 4.  The algorithm 
h a s  been implemented in simulation and some exper- 
imental results demonstrating its behavior are shown 
in section 5. Finally, we are in the process of imple- 
menting this approach on our mobile robot, and our 
future directions are described in section 6. 

2 Problem Formulation 
In this paper, we will consider a circularly sym- 

metric robot traveling in a planar world; this allows 
us to model the robot as a moving point in a t w e  
dimensional configuration space (C-spa.ce). Figure 1 
shows the major aspects of this world model. The 
triangle in the figure represents the position and ori- 
entation of a point robot, the shaded regions repre- 
sent configuration space obstacles in the plane, and 
the crosses represent recognizable natural landmarks 
which will be defined below. 

Following Lumelsky [17], the configuration space 
obstacles are modeled as simple closed contours which 
can take on arbitrary shapes. These obstacles come 
in two flavors, transparent and opaque. The opaque 
obstacles can occlude landmarks from the view of the 
robot; the transparent ones do not. In the real world, 
opaque obstacles might include walls and book shelves; 
transparent obstacles will block a robot’s progress but 

the robot can either see through or over them (e.g. 
tables, windows, and wastepaper baskets). The ob- 
stacles and landmarks are assumed to  be static, that 
is, their positions do not change over time. 

The robot is equipped with a motion control system 
that accepts relative motion commands from the con- 
trol program. There will be some error associated with 
the execution of each motion command, so we cannot 
obtain an accurate estimate for the absolute position 
of the robot by integrating these displacements. We 
also consider the robot to be equipped with a range 
sensor that can be used to perform boundary follow- 
ing. Such sensing can be achieved with an infra-red 
proximity sensor, a set of ultrasonic sensors or a tactile 
sensor (bumper). 

The robot is also equipped with a recognition sys- 
tem which takes the image data obtained from a cam- 
era and returns the position and orientation of the 
robot with respect to any recognizable natural land- 
marks in the robot’s field of view. A landmark is sim- 
ply a group of features in the environment that can be 
reliably recognized by the vision system whenever it 
is in view. Various algorithms that can be employed 
to recognize objects and determine their position from 
image data are described by Grimson [7], Lowe [15], 
Ponce and Kriegman [9], Dhome et. al. [3] and others. 
One approach for recognizing landmarks would be to 
use one of the algorithms mentioned above to recog- 
nize specific objects from a library of models. Another 
approach would be to let the robot autonomously se- 
lect groups of features that appear to be salient and 
recognizable. 

Each landmark in this model is associated with a 
configuration space obstacle since every recognizable 
object must occupy a finite amount of space. Addi- 
tionally, for each landmark we can define the region in 
freespace where that landmark is visible (see Figure 1). 
Following Lazanas and Latombe, we will refer to this 
area as the visibitily region of the landmark [13]. 

3 Exploration Algorithm 
The proposed exploration algorithm maintains a 

list of all landmarks that the robot has seen; a land- 
mark in this list will be termed visited if the robot has 
circumnavigated the C-space obstacle containing the 
landmark. The goal of the exploration algorithm is to 
visit all of the landmarks in the environment. The al- 
gorithm repeatedly selects unvisited landmarks from 
this list, directs the robot toward the obstacle con- 
taining the landmark, and then circumnavigates this 
obstacle using sonar and tactile sensors. While the 
robot is executing this exploration algorithm it con- 
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' visibility region of landmark 

Figure 2: As the robot circumnavigates the C-Space 
obstacle i t  determines its closest approach to the land- 
mark. 

tinually collects sensor data which it uses to update 
its representation of the world and to determine which 
landmarks have been visited. 

When searching for a particular object, the algc- 
rithm can be terminated as Soon as it is found; since 
every landmark is eventually visited, the robot will ei- 
ther find the object or decide that it is not present. 

Figure 3: This figure shows the trajectory that a robot 
takes moving through a typical indoor environment 

If odometry and sensing were perfect, then this algo- 
rithm would simply be a variation of the seed-spreader 
algorithm presented by Lumelsky, Mukhopadhyay and 
Sun for sensor based terrain acquisition [IG]. 

In order to apply this algorithm we need to be able 
to use the sensor data to decide when a landmark has 
been visited. Consider the trajectory around the C- 
space obstacle shown in figure 2. Let A be the point in 
the visibility region of the landmark where the robot 
comes closest to that landmark. At that point the 
robot can decide whether the landmark is inside the 
current obstacle by considering the position of the 
landmark relative to the boundary of the C-space ob- 
stacle. If the boundary of the obstacle comes between 
the robot and the landmark at  that point, then the 
landmark must lie inside the C-space obstacle, other- 
wise, it must be outside. 

This observation provides us with a simple and ro- 
bust procedure for deciding when a landmark has been 
circumnavigated; as the robot circumnavigates an ob- 
stacle it continually updates its records for its closest 
approach to each of the landmarks that i t  observes. 
When it has completed its circuit of the obstacle it 
can then decide which landmarks lie within the C- 
Space obstacle from these records. This procedure 
works quite well even in the presence of significant 
positioning error. 

4 Sensors, Maps and Motion 

The exploration algorithm described in the previ- 
ous section assumed that the robot was  able to plan 
and execute paths through freespace. In order to do 
this, the robot must maintain a representation of the 
structure of its environment for use by a path planning 
algorithm. 

In deciding how the robot is to represent its envi- 
ronment, we need to account for the characteristics 
of the sensor data that will be used to build and up- 
date this map. In particular, we need to consider the 
types of errors that  can be expected from the sen- 
sors. We have assumed that the robot is equipped 
with a recognition system that can return the posi- 
tion and orientation of the robot with respect to ev- 
ery visible landmark. We can expect that  the error 
in these position estimates will grow as the distance 
from the landmark increases. For example, several in- 
vestigators have shown that the errors in positioning 
measurements from stereo systems grow quadratically 
with the distance to the feature [8, 10, 191. Similar er- 
ror analyses can be carried out for other feature-based 
pose recovery algorithms. 

To motivate the need for a relational represents 
tion, consider the environment shown in figure 3. As 
the robot in this figure moves through the world it 
tries to estimate its position, and the position of all 
the landmarks it encounters with respect to a global 
frame of reference attached to  landmark 1. Once the 
robot moves outside the visibility region of landmark 
1, it can no longer directly measure its position with 
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respect t o  the global frame of reference. Instead, it 
must calculate its position with respect to one or more 
of the visible landmarks and use its estimates for the 
positions of these landmarks to determine its location 
in the global map. This means that the error in the 
robot’s position estimate will be a function of the er- 
rors in the estimates for the positions of the landmarks 
used in this calculation. 

When a new landmark is subsequently encountered, 
the current estimate for the robot’s location is used 
to calculate the position of this new landmark in the 
global map; again, this new estimate will inherit any 
errors present in the robot’s location estimate. As 
the robot moves further away from its start position, 
the errors in the global map will simply accumulate, 
and the representation will become increasingly inac- 
curate. 

This can cause serious problems for pabh planning 
algorithms that assume accurate global representa- 
tions of the environment. In this case, a global map is 
simply the wrong coordinate system in  which to record 
the measurements since it does not allow the robot 
to represent the structure of the errors in these niea- 
surements. The robot in figure 3 may not, be able to 
accurately estimate the position of landmark 15 with 
respect to landmark 1, but it will be able to estimate 
the relationship between landmarks 14 and 15, and 
this information may be more relevant to the robot’s 
navigation task than the position of landmark 15 in 
an arbitrarily chosen global frame of reference. 

4.1 Local Maps 

This observation leads us to propose an alternative 
approach to map making; instead of estimating the 
positions of landmarks and obstacles in a single global 
frame of reference, we associate a local map with each 
landmark in the environment and then maintain esti- 
mates for the relationships between these maps. 

Figure 4 shows the local map associated with a par- 
ticular landmark. Following Elfes, this map takes the 
form of an inference or uncertainty grid 151. The po- 
lar grid was chosen becalm it reflcct.s the structiirc 
of the visibility region of the landmark. The map is 
divided into a number of cells as shown i n  the figrirc, 
and the robot uses the information from its sensors to 
estimate the properties of each cell. More specifically, 
there are two attributes associated with each cell: a 
real number which represents the probability that the 
cell is occupied (or conversely that it is in free space) 
and a second number that represents the probability 
that the landmark is visible from that cell. These two 
attributes allow the robot to record the freespace in 

Figure 4: Local map of a landmark: The cells in this 
polar grid hold two values indicating whether they are 
in the visibility region of the landmark and whether 
they are occupied. This figure also shows how the vis- 
ibility region of a particular landmark can be divided 
into three connected regions: A, B and C. 

the local map and the visibilit,y region associated with 
t,he landmark. 

The information i n  the local maps can be used to di- 
vide the area around the landmark into distinct places 
as shown i n  figure 4. In this paper, a place is defined as 
a set of connected cells that are both in freespace and 
in the visibility region of a particular landmark. The 
most important property of a place is that the robot 
should be able to construct a path from any point in 
the place to any other point in the place without los- 
ing sight of the landmark (i.e. without leaving the 
visibility region). 

4.2 R e l a t i o n a l  Maps 

To determine the relationship between places i n  
various local maps, we first need to understand the 
relationships between the landmarks. Whenever the 
robot h a s  two or more landmarks in view, it can up- 
date its estimates for the relationships between them. 
In the planar world this relationship is uniquely spec- 
ified by a translation vector, (to, l,,), and an angle, 0 .  
In the current implementation, bounding intervals are 
used to express the uncertainty in these estimates [8] 
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though other distributions might be appropriate. 
From an estimate for the spatial relationship be- 

tween two landmarks, i t  can be determined whether 
any of the places in the local map of one landmark 
coincide with any places in the other map. This can 
be done by calculating where each cell in the local 
map of landmark 1 would appear in the local map 
of landmark 2. The robot can then decide whether 
or not the cell is likely to be contained in any of the 
places associated with landmark 2. The robot takes 
into account the uncertainty in the estimate for the 
relationship between the landmarks when it  performs 
this computation. 

If the robot determines that a place in the local map 
of landmark 1 overlaps a place in the local map of land- 
mark 2, i t  records the cells in the local map of land- 
mark 1 that  lie in the intersection of the two places and 
creates a connection between the two places. In this 
manner, the robot builds a directed graph of places 
that represents the structure of the environment. 

4.3 Path Planning 
Path planning occurs a t  two levels: a t  the global 

level, Dijkstra’s algorithm is used to compute a path 
between the place that the robot is currently in and 
the place i t  wants to get to.  This path takes the form 
of a series of connected places. Since each place is 
defined with reference to a particular landmark, the 
global plan can also be viewed as a sensor plan that 
specifies which landmark the robot should be observ- 
ing at each stage. 

The local planner is responsible for getting the 
robot between consecutive places in the global plan. 
I t  does this by planning a path through the occupancy 
grid of the current landmark to the intersection region 
of the two places. 

Note that the robot can encounter previously undis  
covered obstacles during its journey which may force 
it to replan at a local or global level. 

5 Experimental Results 
In order to test the algorithm described i n  this pa- 

per, a series of simulation experiments was  carried out. 
These simulations were designed to ca.pture the major 
features of the world model. The simulator provides 
the exploration algorithm with noisy sensor data from 
the vision and sonar sensors, and the exploration algo- 
rithm returns velocity vectors which are used to con- 
trol the position and orientation of the robot. 

The simulated recognition system returns estimates 
for the position of the robot with respect to all the 
landmarks that are visible from the robot’s current 

Figure 5: Path followed during a simulated explo- 
ration: The darker lines represent the portions of the 
trajectory where the robot was moving between two 
obstacles. 

position. These estimates are supplied in polar coor- 
dinates ( r ,  0 )  where r represents the distance from the 
landmark to the robot, and U represents the orienta, 
tion of the robot in the landmark’s frame of reference. 
If r’ is the true distance between the robot and the 
landmark, then the error in the estimate for T increases 
quadratically with r’ while the error in the estimate 
6 increases linearly. For example, when the robot is 
5 meters away from the landmark, the error in its es- 
timate for r would be in the range f25 cm while the 
error in its estimate for fl would be in the range f10 
degrees. The simulator also adds noise to the control 
vectors supplied by the exploration algorithm in order 
to reflect the kinds of problems one can expect with 
an actual mobile platform. 

Figure 5 shows the trajectory of the robot in one 
of these simulation experiments. In this particular ex- 
periment the robot was told to explore every obsta- 
cle that  contained a visible landmark represented by 
small crosses in this figure. Notice that the robot is 
able to successfully plan and execute paths that take it 
from one obstacle in the environment to another. For 
each landmark, an occupancy grid has been created, 
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and the visibility regions have been determined. The 
place graph has been constructed and has been used 
in path planning. Note that the generated local path 
is always between the centers of the cells, and no path 
smoothing has been performed, so the path appears 
jagged . 

6 Conclusion and Future Directions 
We have presented in this paper an algorithm for 

systematically exploring a mobile robot's environ- 
ment. Unfortunately, space limitations have precluded 
inclusion of important details such as explicit uncer- 
tainty models, the map updating scheme, and formal 
proofs. However, a number of issues still need fur- 
ther consideration. In this paper, the vision sensor is 
modelled as having full 360° coverage though most re- 
alistic sensors only cover a limited angular range. As 
suming that constantly panning a camera over 360° 
is undesirable, sensor and motion planning will be- 
come more tightly coupled. It should be possible to 
plan paths that leave the visibility regions of all pre- 
viously observed landmarks, yet are guaranteed to be 
able to return to a visibility region under some model 
of bounded uncertainty in odometry as i n  1131. 

We are presently working towards implementing 
this approach on our mobile robot built on top of a 
TRC Labmate which hosts a network of onboard IN- 
MOS transputers for performing all vision and plan- 
ning operations. A recently developed structure-from- 
motion algorithm will used to reliably determine the 
location of the straight line segments in a scene and 
the relative displacement of the robot [22]. Obstacle 
circumnavigation will be accomplished using a combi- 
nation of tactile and sonar sensing. 
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