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Abstract—In this paper, we present task allocation (assign- remove the shared memory assumption; thus they present a
ment) algorithms for a multi-robot system where the tasks totally distributed version of the task allocation alglonit.
are divided into disjoint groups and there are precedence pyqyever, in all of these works, it is assumed that the tasks
constraints between the task groups. Existing auction-based . . .
algorithms assume the task independence and hence can not bedre independent of each cher. Motl_vate_d by scenarlt_)s Wh.ere
used directly to solve the class of multi-robot task assignment the tasks may have certain constraints in the order in which
problems that we consider. In our model, each robot can do a they should be done, in this paper we introduce the multiple
fixed number of tasks and obtains a benefit (or incurs a cost) robot assignment problem with set precedence constraints
for each task. The tasks are divided into groups and each robot and provide a modified auction algorithm that can solve

can do only one task from each group. These constraints arise this cl f bl | boti fi lgorithm h
when the robots have to do a set of tasks that have precedence IS Class of problems. In robotics, auction algorthm have

constraints and each task takes the same time to be completed. been applied to many multi-robot scenarios like multi-robo
We extend the auction algorithm to provide an almost optimal  routing [10], multi-robot decision making [11], and other

solution to the task assignment problem with set precedence multi-robot coordination tasks [12]. A detailed survey can
constraints (the theoretical guarantees are the same as that be found in [13]. Our work here focuses on the theoretical

of the original auction algorithm for unconstrained tasks). In Ivsis of th Hi lgorithm f lti-robot i
other words, we guarantee that we will get a solution within a analysis of the auction algorithm for muiti-robot assigmme

factor of O(ne) of the optimal solution, where y is the total ~ With set precedence constraints.
number of tasks ande is a parameter that we choose. We first In our model, we consider a system of robots that have

present our algorithm using a shared memory model and then to perform a set of tasks. Each robot can perform a fixed
indicate how consensus algorithms can be used to make the number of tasks. The tasks are assumed to be divided
algorithm totally distributed. . S ) - -
. . . into disjoint sets such that there is a precedence constrain
Index Terms— Multi-robot assignment, Task allocation, Auc-
tion alaorithm between the sets and each robot can perform at most one task
9 ' from each set. The number of tasks in each set is assumed to
I. INTRODUCTION be less than the number of robots. We call these constrained

tasks astasks with set precedence constraints (SP&3
For autonomous operations of multiple robot systemgjaporated in Section I, if we have a set of tasks with
task allocation is a basic problem that needs to be solvgglecedence constraints, where each task takes equal time to
efficiently [1], [2]. The basic version of the task alloca-complete, the minimum time solution of the tasks leads to
tion problem (also known as linear assignment problem ifysks with SPC. Thus, the problem defined here is a special
combinatorial optimization) is the followingsiven a set of 35e of a scheduling problem with the added feature that
agents and a set of tasks, with each agent obtaining sonagch robot also gets some benefit (or incurs some costs) for
benefit (or incurring some cost) for each task, find a oneyping the tasks. This feature is a departure from the standar
to-one assignment of agents to tasks so that the Over%'éheduling problems studied in the literature [14].
benefit of all the agents is maximized (or cost incurred The main contribution of this paper is to present and
is minimized) The basic task assignment problem can bgnalyze distributed algorithms for task assignment with se
solved optimally in polynomial time by finding a maximum yrecedence constraints. We generalize the auction digorit
weight perfect matching on a bipartite graph using the Hurgy Bertsekas [5] to take into account the task constraints.
garian algorithm [3], [4]. However, the matching algorithmye first present the algorithm for a shared memory model
is centralized. Bertsekas [5] gave a distributed algorithrgng then indicate how it can be combined with consensus
(assuming a shared memory model of computation, i.€ygorithms to give a totally distributed algorithm. We peov
each processor can access a common memory) that GaBt our algorithm gives a solution that is with®(re) of
solve the linear assignment probleaimost optimally In  {ne optimal solution wherey is the number of tasks angl
subsequent papers, the basic auction algorithm was extendg g parameter to be chosen.
to more general task assignment problems with different 1pig paper is organized as follows: In Section Il we give
number of tasks and robots and each robot capable of doiggformal definition of the multi-robot assignment problem
multiple tasks [6], [7]. Recently, [8], [9] have combinedfor groups of tasks with precedence constraints between the
the auction algorithm with consensus algorithms in order t8roups. In Section Ill we present the assignment algorithm
) ) ) ) with shared-memory model and in Section IV we briefly
The authors are with the Robotics Institute, School of Comp8tience, discuss how to extend the algorithm to a totally distributed
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{l'ingzhil, nilanjan, katial@s.cmu. edu algorithm with consensus techniques. In Section V we



demonstrate the performance of our algorithm with somg&mes is to do all the tasks at each level in parallel (critica
example simulations. Finally, in Section VI we present oupath principle in [14]). Thus for the second step of maximum
conclusions and outline future avenues of research. benefit assignment, we have the assignment problem with
SPC as shown in Figure 2.
Il. PROBLEM STATEMENT
In this section, we give the formal definition of oul
multi-robot task assignment problem with set preceden

constraints. We first discuss the basic multi-robot assegrtm T
problem and then introduce the new constraints for tasks t T;
modifies the basic problem. T

Basic Multi-robot Assignment Problem (MAP$uppose T

that there aren, robots, R = {r1,...,ry }, and n; tasks,

T = {t1,...,tn, }, for the robots. INMAP, any robot can

be assigned to any task, and each robot needs to perfu..i

exacﬁly N tasks. Performing each _taSk needs a single rObq;'rg. 1. A set of tasks with precedence constraints and idaintompletion
S0 5,"1 Ny = n. Let fj; be the variable that takes a valuetimes.

1 if task, tj, is assigned to robot,, and O otherwise. Let

aj € R be the benefit for the assignment pair,t;), i.e., The task setT is divided into ns disjoint subsets
for assigning robot; to taskt;. The objective oMAP is to {Ti,...,Ta.} sO thatUinilTi =T, and there exist the prece-
assign all tasks to robots while maximizing the total besefitjence constraints for the subse®s:> T»...,> Ty, which
from the assignment. The problem can be formulated as @feans the subset of tasksshould be performed befog
integer linear program (ILP) whose linear programming (LPj i < j as shown in Figure 2 below. Each robot can perform

relaxation is given below. at most one task from each subset, so that the overall task
non completion time is also minimized. For the rest of the paper,
r’q_ax Z aij fij we will talk about this SPC and not refer to the scheduling
tilis= aspect of the problem.
s.t.
nr
fij = 1 ijl,...,m
I;[ . * ..' ...... — o.: L4
Zfij = N, Vvi=1....n 2 $
)= T Lk T,
fij > 0, Vi,j ?

Although the LP relaxation allows fractional values fby,

since the constraint matrix is totally unimodular, there is ) ) o
always an optimal integer Solution [4], Whe =1 i= [ 2 Jueathe of s pecedence constinie. Tharple i Fgure 1
1,...,n, the problem becomes the original linear assignmerg minimize the total task completion time.

problem.

In this paper, we consider an extensiorM&P by adding
the Set Precedence Constrairg®(Q for tasks. We now give
an example scenario where the SPC may arise. Let us assume zr fj <1 Vikii=1..n.k=1..n
that the tasks in the s@t have to satisfy some precedence s
constraints as shown in Figure 1. We assume that the time
taken by each task is identical and the number of tasks atcombpining theSPCconstraint withMAP, the “SPC-MAP
each level is less than the number of robots (i.e., the numbgysplem we study here is:
of tasks that can be done in parallel is less than the number ofp 1o 1 Given n robots, n tasks with the tasks di-

robots available). Thus, this problem is a special case f tr\'/ided into R disjoint subsets, maximize the total benefits of

geng_ral scheduling problem. However, our problem_ has tr?Sbot-task assignment with the set precedence constrfints
additional feature that each robot gets some benefit from Asks such that. each task is performed by one robot, and

task. Thus, if we want to maximize the benefit of the overal ach robot  performs exactly Ntasks and at most one task
multi-robot system while also minimizing the total cost Offrom each subset

the a55|gnme_:nt, the_ problem can b_e decoup_le_d Into .tWO Problem 1 can be written as an ILP whose LP relaxation
steps where in the first step we can find the minimum t'm|es

scheduling of the tasks and in the second step the maximum -

benefit assignment. According to [14], the solution for the max a fij

minimum time scheduling in case of tasks with identical {fi}imf=

The set precedence constraint can be expressed as:



s.t. - Flow: fij, associated with each edge, represents the flow

n . " from nodei to nodej.
i = LVj=1....n 1
1] ) ) 9

2

N

Z fij = N,Vvi=1...n (2)

=1

i
erij < 1, Vik:i=1...,n,k=1,....ns (3)
tjelk

fi > 0 Vi, | 4)
Please note, the constraints above implicitly imply that:

« max® , |Ty| < n;: the number of tasks in any subset must
be no more than the number of robots (otherwise at least .
one task in the subset cannot be performed); :

e Ng > ma>{‘;1 N;: the number of subsets must be no less
than anyl\; (otherwiser; cannot be assigned b4 tasks).

IIl. ALGORITHM DESIGN AND PERFORMANCEANALYSIS  Fig. 3. Reduction to the min-cost multi-commodity flow problemr Fo
. . . . . isplay purpose, just robat, its corresponding nodeF x and edges are
In this section, we de3|gn an algorlthm to get the C'p“maghown. For each other robet, there are another set of nodé¢s x|k =

(or near-optimal) solution for multi-robot task assignmens,...,ns}, edges{(ri,Tix)|[k=1,...,ns} and {(Tix,tj)|¥t; € T}, which are

with set precedence constraints. First, we show how to l@du%mi“ed-ml and -1 represent nodes’ supply and demajoil] shows that
. .the capacity of flow along the edges is 1.

Problem 1 to a network flow problem, which can be solved in

polynpm|al time usmgcentrahzednetyvork flow algonthm. Solving the constructed min-cost network flow problem
(Section 111-A). Second, we look at distributedway to find : . : i
. : . . ?bove (called min-cost multi-commodity flow problem), will

the optimal solution, where a centralized controller is no : : . .

; : - I?ad to the optimal solution for Problem 1 in Section Il due
required, and instead each robot can make decisions on IS . .
. L . . : to the following facts:
own in a distributed way. In Section I1I-B, we briefly discuss .
two unsuccessful attempts: the original auction algorithm ¢ the demand and supply constraints are equal to the
which can solve the network flow problem in a parallelized ~ constraint (1) and (2);
way, and a greedy algorithm, which applies the basic auc-* the capacity constralr]ts of flovij are equal to con-
tion algorithm sequentially. In Section 1lIl-C, we design an  Straints in (3) and (4); _
algorithm, which extends the basic auction algorithm, and ¢ the objective function mify; 3 ;cij fij here is equal to
prove that each robot can decide on its own to get the (he objective function may; 3 ;a fij, sincec = —a;
near-optimal solution for the whole assignment problem. for €dges inE; and the cost of edges i is 0.
However, a shared memory is required for robots to acce§&® after solving the min-cost network flow problem, the
information. In Section IV, we briefly discuss how to removenon-zero (value 1) flow irE, corresponds to the optimal
the shared memory requirement using consensus technig@esignment of Problem 1 in Section II. The detailed proof is
among networked multi-robot system, which makes the apmitted here.

gorithm totally distributed. The min-cost network flow problem is a classical problem
A Reducti K bl that has been studied extensively. Centralized polynemial
- Reduction to network flow problem time algorithms exist that can be used to compute the optimal

For any SPC— MAP problem mentioned above, we cansolution [15].

construct a min-cost network flow problem [15] as follows
(shown in Figure 3). Consider a directed graph= (V,E), B. Discussion of two unsuccessful auction-based appreache

with a set of node%/ = RUTUS and edge€ = E1UE, 1) Parallelized Auction Algorithm:The basic auction al-
where gorithm [5] solved the original 1-to-1 assignment problem
« Nodes: R= {rjli = 1,...,n;} represent robotsT = in a parallelized way based on its dual problem: each
{tjli = 1,...,n} represent tasks,S = {Tix]i = robot iteratively makes bids for its favorite tasks (based o
1,....,n,k=1,...,ns} is introduced to represent eachcorresponding benefits and present price of tasks), and the
task subsefy for each robotr;. highest bidder for a task will be assigned to the task at that
o Edges: B = {(r,Tix)li=1,...,n,k=1,...,ns}, and iteration. In that algorithm, each robot can make decisions
Ex = {(Tixtj) Vi, .k, s.t.,tj € T} on its own, however, there must be a centralized auctioneer

« Source and sink nodegill nodes inR are source nodes to communicate with robots about the task price during each
with supply N;, and all nodes ifT are sink nodes with iteration, or there must be a shared memory for all robots to
demand 1. access the task price.

« Capacity and cost of edge3he capacity of all edges The auction algorithm for assignment problem has been
in E is 1. The cost for edges iB; is 0, while for edges extended for asymmetric case [7] (where the number of
(Tik,tj) in Ez is —a;. robots and tasks are different) and transportation prottg¢m



with similar robots and tasks (e.g., one robot can peevolution of p;(t), which can gradually resolve the interest
form multiple tasks). [16] showed that the general mineonflicts among robots (as shown later in this section).
cost network flow problem can be reduced to an assignmentEvery robotr; wants to be assigned to a task $gt=
problem. So the first approach one may try is: first reducft;|j € J} with maximum net values while satisfying its
Problem 1 to a min-cost network flow problem as showwronstraintgJi| = N; andt; NTk <1,vk=1,...,ns

in Section IlI-A; then use the method in [16] to reduce )
the constructed min-cost network flow problem to a basic Z(aij —pjt)) = Z(méx)k:l
assignment problem; finally use original auction algorithm &3

for the basic assignment problem. Unfortunately, in thédas Ny .
assignment problem after the reduction, each bidding no&herez(max( ') is used to get the sum of thy biggest

does not represent one robot. The auction algorithm Cé/ﬁ\lues. When (5) is satisfied, we say m“’p‘!s happy If

be parallelized and executed, but cannot be combined Wifw, robots are happy, we say the whole assignment and the

consensus techniques, to form a distributed algorithm fdyrices at timet ar_eat equ!l!brlum .

each robot to implement. Suppose we f|>§ a pogltlve scala'r When each aSS|g’ned
So the next question would be: whether it is possible tBaSk_ for robotr; is W't.h'n £ of being in the set offi's

directly attack Problem 1, by modifying the basic auctior&ximum values, that is,

makX(ai —pjt) (5

mechanism. . (N)
2) Sequential Greedy Auction Algorithnfo modify the {aj—piOlied} = (max)k=1~,~~~="s(r12%)<a” —Pi)—¢)
basic auction algorithm for Problem 1, one natural approach (6)

would be a greedy algorithm of sequentially applying thdafter sorting both the left and right sets of (6) above, any
basic auction algorithm. The greedy algorithm sequegtiallvalue in the left set is no less than its corresponding vaiue i
applies the auction algorithm, and assigns available sobdihe right set), we say robotis almost happylf all robots are

to each subset of tasks in the precedence order. Howevalmost happy, we say the whole assignment and the prices
this greedy algorithm cannot guarantee to find an optimalt timet arealmost at equilibrium

solution. The reason is that: one robot may be assigned to a2) Auction-based Algorithm DesignA single iteration
task in an early subset, but lose the chance of being assigrfdthe auction algorithm for each robaet at time t is

to a better task in later subsets. The optimal solution magescribed in Algorithm 1. We can define the auction-based
need to sacrifice the benefits for the current subset to pursalgorithm for our assignment problem by setting all robots
long-term benefits for all tasks. So when modifying the basit® run copies of Algorithm 1 sequentially. The algorithm
auction algorithm, we have to consider all subsets of tasikgrminates when all robots have been assigned to their tasks

simultaneously instead of sequentially. (i.,e., N/ =N for all tasks). The sequential auction is known
as one-at-a-time or Gauss-Seidel implementation. One
C. Auction-based Algorithm Design alternative is to let all robots bid simultaneously and gssi

. . . . . tasks to its highest bidder, which is known as all-at-once
In this section, we extend the basic auction algorithm tg . : . .
or Jacobi implementation. The Jacobi implementation

get near-optimal solution for Problem 1. The outline of th|sIS convenient for parallel implementation, but tends to

section is as follows: . . .
terminate slower as discussed in [7].
« First, we discuss the basic idea of the algorithm and
several important concepts (introduced in [7]), €.g.. Algorithm 1 can be summarized as follows. During the
robot is (almost) happy, and the assignment is (almosf}st part of Algorithm 1 (from Line 2 to 7), robat needs to
at equilibrium. _ _ update its assignment information from its previous iierat
« Second, we design an auction-based algorithm for Progyce other robots may bid higher price for its assignedstask
lem 1, where each robot can bid on its own for tasks.after jts previous iteration. If that is the case, some presi
. Thlrd_, we prove th_e pgrformance guarantee of OUpssignments of tasks far will be broken andr; needs to
algorithm: the algorithm is sound, complete and nealyive new bids. During the bidding part of Algorithm 1 (from
optimal. Line 10 to 21), robotr; keeps theN/ assigned tasks since
1) Basic Idea and Concepts of Auction Algorithkive are its previous iteration, and bids fd; — N/ tasks with the
trying to matchn, robots andn; tasks with constraints (1)- best values from different subsets (which do not contain
(4) through a market auction mechanism, where each robotasy of N/ assigned tasks). This part guarantees that after the
an economic agent acting in its own best interest. Althougiteration, all constraints for robat are satisfied: (a) robot
each robot; wants to be assigned to its favorkgtasks, the r; is assigned to exactli\; tasks {/ previously assigned
different interest of robots will probably cause conflickkis  tasks plusN; — N/ newly assigned tasks); (I) is assigned
can be resolved through the auction mechanism of biddirtg at most one task in each subset. Meanwhile each task is
for tasks. Suppose the price for taskat timet is pj(t), and assigned to at most one robot, because each task either does
the robot assigned to the task must pggt). So the net value not change assignment status (assigned to previous robot or
of taskt; to robotr; at timet becomess;; — pj(t) instead remains unassigned) or switch from the previous assigned
of just &;j. The iterative bidding from robots leads to therobot to robotr;. The bidding price for each task is at least



Algorithm 1 Auction Iteration For Robot; robot would bid higher forri’s assigned tasks. Since the
1: Input: &j, pj(t), Tk for all j,k, algorithm terminates for all robots, according to summary
<IYIT, P>/ 1': indices of tasks assigned tpduring  (Il) of Algorithm 1, all the constraints have been satisfied f
I ri’s previous iteration; T: their corresponding subset all robots. So the achieved assignment is a feasible solutio

I indices; P: their corresponding bidding prices from r satisfying (1)-(4)ll

2: /] Update the assignment information: Lemma 1 means Algorithm 1 is sound, i.e., when it outputs a
3: V. me {1,...,[IY} // m-th previously assigned task solution, the solution is feasible. The next result assbds
4. if P(m) < piym (t) then Algorithm 1 always terminates in finite number of iterations
5. // another robot has bid higher than’s previous bid assuming the existence of at least one feasible assignment
6:  removel'(m), corresponding™ (m), P(m) fromI%, 1T,  for the problem. The proof relies on the observations below:
andP, respectively (a) When a task is assigned, it will remain assigned during

7: end if the whole process of the algorithm. The reason is:
8: DenoteN/ = [I'| // number of tasks still assigned tp r during the bidding and assignment process, one task
9: /I Collect information for new bids can either transfer from unassigned to assigned, or be
10: Denotevj(t) = ajj — pj(t) // value of § to ri reassigned from one robot to another, but cannot become
11: Select the best candidate task from each sulysethere unassigned from assigned.

kg IT: ji = argmaxer,vj(t) (b) Each time when a task receives a bid, its new price will
12: Store the index of second best candidate from €gch increase by at least according to the algorithm:

Ji = argmaxer, jj; Vi(t)
13: Select theN; — N/ best candidate tasks frofiji|k ¢ 17 }: pj; (t+1) = bj; = pji () + Vi () —max{ve, (1), vj; ()} +€
14: K* = arg(max™=N),  rvi. (t) // arg(maxN—N)) is the

lloperator to get indices of the;N N/ biggest values = piii(t) T
15: Store the index of N — N/ +1)-th best candidate task g if one task receives infinite number of bids, its price

from {jglk#17}: will become-+oo.

K' = argmaxyt jk-) Vj; (1) (c) If a robotr; bids for infinite number of times, all tasks
16: // Start new bids o in the subsets, wherg does not have fixed assigned
17: Bid for tk = {tj; |k € K*} with price: tasks, will receive infinite number of tasks. The reason
18: by = P (1) + Vi (t) —max{vie, (1), vj ()} +€ is that: there are finite number of tasks, and thus there
19: // Update assignment information and price information: must be at least one receiving infinite number of bids.
20: Add {jilke K*} tol', K* toIT, and {bj; k€ K*} to P If there exists one task (from such subsets), which does
21: Setpj (t+1) = by for ke K* and setp;(t+1) = p;(t) not receive infinite number of bids, its price would be

for j ¢ {jxlke K* finite, and its value for; must be bigger than those tasks

receiving infinite number of bids. So it has to receive
more bids, which leads to the contradiction. So all tasks

€ bigger than its previous price: singgis the best candidate in those sub_sets receive infinite number of bids and thus
task in T and is among théy — N/ best from{ j[k ¢ 1T}, have the price ofte (according to (b)).

jk is the second best if, jy; is the (Ni —N/+1)-th best ~ Theorem 1:If there is at lest one feasible solution for
from {jilkg 17}, Problem 1, Algorithm 1 for all robots will terminate in a

> . ¢ finite number of iterations.
Vi (t) = maxvyy, (1), vy (0} Proof: If the algorithm continues infinitely, there must be

by; — pj; () = vj; (t) fmax{vj;/ (t),vj{((t)}Jrs >¢ some ;ubset$Tk|k € K*} where 2II tasks haver« price
according to (c) above. Denot€” = (Jyck= Tk. Suppose
So the tasks receiving’s bids must be assigned tpat the some robots{ri|i € I} already getN* tasks fromT \ T*,
end of the iteration. The bidding value bf: is related to and are still bidding for its remainingl® tasks fromT<.
the proof of the optimality of the algorithm, which will be (Please note, hes® = N; — N does not necessarily equal

discussed in Section IlI-C.3. to N/ in Algorithm 1 since all those tasks ii® are not
3) Algorithm Performance Analysisin this section, we stably assigned to any robot.) Dend®®8 = {ri|i € 1°}.
will answer the following questions about Algorithm 1: Each taskti € T® remains assigned (according to (a)
« Will Algorithm 1 terminate with a feasible assignmentabove). Each robat € R” needs to be stably assignedNg
solution in a finite number of iterations? more tasks, but all tasks i cannot fill up all 3¢~ N
« How good is the solution when Algorithm 1 terminates?ositions. So
Lemma 1:When Algorithm 1 terminates for all robots, T < > N°
the achieved assignment must be a feasible solution for '€
Problem 1, i.e., (1)-(4) are satisfied. Please note that the above inequality is strict, since there

Proof: When Algorithm 1 for robotr; terminates, it means must be at least one robote R* that has remaining tasks
that ri has already been assignedNp tasks and no other unassigned (otherwise the algorithm terminates).



On the other hand, each robot must already be assigntks inty, must still be in the new assignment to make
to exactly one task in each subsgtk ¢ K* (according to r; almost happy. Since the bidding process to get newly
(c) above). We have assigned tasks is the same, the newly assigned tasks must
also be in the new assignment to makealmost happy (due
to similar proof for the first iteration).
~ R So the conclusion is true for each iteratibrof rj, i.e.,
Suppose in any feasible assignmeMjt,andN are the num- after each iteration of r;, ri’s newly assigned tasks together
ber oanssigned tasks for in T\ T® and T®, respectively. with the task pricep;j(t+1) keepr; almost happyll
Ni = N +N?. It is easy to see that eadl* (i € 1 ) has Since Theorem 2 holds true for all robots, we get the
reached the biggest possible valgge» N > Ticj» N*. So  corollary below.

~ . . Corollary 1: When Algorithm 1 for all robots terminates,
N> > N7>[T7] the achieved assi i ilibri
_ _ gnment and price are almost at equilibrium

Theorem 3 below answers the second question (at the begin-

It means in any feasible assignment, the number of assignﬁﬁi]g of Section 11I-C.3), and gives performance guarantee
tasks inT* for R” is bigger than the number of tasksTf. ¢, Algorithm 1.

By contradiction, we know that Algorithm 1 must terminate  Theorem 3:When Algorithm 1 for all robots terminates

Ni = Ni* + Nio0

i€ i€ i€

in a finite number of iterations if there exists a feasiblgne 5chieved assignmefti, (Tiz.....Tn )i =1,...,n } must
solution for Problem 1M _be within 3, Nie of an optimal solution.
Lemma 1 and Theorem 1 together prove that Algorithm b5 Denote (i, (liz,....ln)i =1,....n,}) as any feasi-

is both sound and complete, and also give a positive answgg assignment, i.e.
to the first question (at the beginning of Section I1I-C.3),

. . . N;
when there exists at least one feasible solution for the (Utlik) N Tm<iVimi=1..n:m=1.. ne
k=1

problem. ~
Next we want to prove the performance of Algorithm 1. N N;
The result relies on the following theorem. ' t t ) =0 ifii 7
Theorem 2:After each iteratiort of robotr;, ri’'s newly (kL_Jl w) M (,gl I’k) 71 @
assigned tasks together with the task pripgd + 1) keepr; Denote {p;|j = 1,....n} as the set of task prices when

almost happy, i.e., (6) is satisfied.

D e o A1 L 1000 2 any set otk rces.
. . o . First, we want to give an upper bound for the optimal

assigned tasks. According to the bidding part of Algorithm 1 9 PP P

the bidden tasks = {tj; |k € K*} with the price before the Solut|on,;l‘

Algorithm 1 terminates for all robots anfhj|j =1,...,n}

. : _ ) (N)
iteration can make; happy: Z (@il — Py) < (max)kzl_’._._’ns(rjr;%((a” -pj))
B (N) k=1
{ai; — P (DK€ KT} = (MaX)y o (MaX@j — pj (1)) N "oy
= 2 2 @i Pu) < 3 (M3, (MaXE —P))
Pj; (t+1) = by = pj(t) + v (t) — max{vy,, (), vy, (1)} + &, S i= a
andvj(t+1) =v;j(t),vj € {jilke K*}, so or Nt WN(Y))
L) =4, VT I = Z > (@) < > pi+ Z(max)kzl,.“,ns(rggx(au —Pi))
aim — pj;(t—i—l) = max{vj;/ (t),Vj(((t)}—E i=1k=1 =1 i= €k

= max{vi: (t+1),v, (t+1)}—¢ Since it holds true for any set of price and any feasible
W Tk assi 3 * i i
gnment, we haw&* < D*, whereA* is the optimal total
So the value of any task itk to robotr; is within € of  penefits of any feasible assignment.
the maximum value of any task in its own subset and other

n N
subsets{ Tk & K*}, so AF = il
) lik sg:igf);ﬁ)i: k;(a"'k)
{aij; —pj (t+1) ke K"} = (max)k:l,...,ns(rjr;%((aij —pj(t))—¢) 5 _ (% nr ((Ni)) (max )
= min pj + max),_; n(maxaij — pj
which means (6) is satisfied. PiI=healt (S i; e

Second, we prove that the unchanged tasks assigned ta@n the other hand, according to Corollary 1, we have
ri since ry’s previous iteration, must still be in the new 0N

assignment of;. That is, those tasks are still among tasksz (&, — Pr)> < ( r(ﬁ\lgx )(max(aj —P;)) — anNig
which maker; almost happy after the iteration. Denote thes1i&r KT & keLeans’ e =
index set of those tasks dg. Since these tasks did not n N nt Ny Ny
receive any bid from other robots singé previous iteration, kzlaifik Z Zlb] + Zi( maxns)(?’é%z‘(aij -Pj)— _ZNig
I=1k= = i i=

their prices (and hence their values) todo not change.
Meanwhile any other tasks’ price either remain the same or
increase after receiving bids, so their values;toeduce. So
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=
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o
v
b
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s Zk 1851, is the total benefits of the achieved assignmera factor of n;. The basic steps of proving that consensus

by Algorlthm 1, and combined with Algorithm 1 will give the same results as
n N that of Algorithm 1 with shared memory is given below
Af > 21 Z ar, > A — ZN, without details. (a) A proof similar to the one given for
Theorem 1 can be used to prove that the new algorithm with
So it is within Ziil Nie of an optimal solutiorl consensus technique would also terminate in_finite number
Please note, if all the benefits are integers, and weeset Of iterations. (b) Theorem 2 also holds true if we change
—t—, the achieved assignment will be optimal. the price in the theorem from true values to robots’ estimate
i1 from local maximum; when the algorithm terminates, the
V. DISTRIBUTED AUCTION ALGORITHM price information stored by all robots does not change and

The auction algorithm forSPC— MAP can be totally Must reach the true values due to propagation, so Theorem 2
distributed by combining it with a distributed consensigoal holds true for the true price values. Thus Theorem 3 also
rithm. In Algorithm 1, each robot;, needs to access global holds true. _
information about the task priceg;(t), which is available, ~ Thus, each robot in a connected network can make de-
either from a shared memory, or from communicating with &isions based on updated local price information from its
centralized auctioneer. Recently, consensus algoritreme h Own neighbors. And the auction algorithm becomes totally
been combined with the auction algorithm, so that the sharélistributed for both decision process and the information
memory/centralized auctioneer can be removed for solvirgpllecting process.
the linear assignment problem [8], [9]. The same framework
can be used for our problem, which we outline below.

We will use the maximum-consensus algorithm [17] for In Section lll, we designed Algorithm 1 for the SPC-
the robots to obtain the pricp;(t). We assume the robots MAP problem, and proved the performance guarantee of the
form a connected networ. In maximum-consensus, eachdesigned algorithm. According to Theorem 3, we know that
robot r; € R has an initial value of task, p and wants € is a control parameter which directly influences the perfor-
to get the maximum initial value among aII robots, = mance of our algorithm. In this section, we run simulations
max, eRp (denoter* the robot which gets the initial value in a synthetic example to check how the control parameter
pj). The maximum initial valuep; can propagate to the € influences the auction algorithm’s solution quality and
whole connected network, if every robot keeps updating itgonvergence time.
value using the local maximum value among its neighbors Considern; =20 robots, each robd¥; needs to perform
as follows. N; = 3 tasks from a set ofy = 60 tasks. The task séft

Suppose that at iteratidn each robot; has the value of can be divided intons = 20 disjoint subsets, with 3 tasks
task j as pj(t). Starting from initial valuepl (0), the robot In €ach subset. We randomly generate benefjtsirom a

V. SIMULATION RESULTS

needs to update its value: uniform distribution in(0,20). € in Algorithm 1 is a control
i parameter, related to the convergence time and performance
pjt+1) = kmf})i pi(®) (8)  guarantee of the algorithm. For different values sfwe

compared the final assignment benefits by our algorithm

where " = {i}U.#, and.4{ is the set ofr’s neighbors in with the optimal solution, and the convergence time of the
networkG Eventually, each robot can get the true maximunalgorithm.
value of taskj, and the number of iterations that each robot Figure 4 shows how the solution of assignment benefits
ri gets the true valu@; would be the length of the shortestchanges with the control parameter When ¢ is as small
path fromr; to r*, which is at most the number of robats.  as 0.1, the assignment benefits achieved by our algorithm

Similar idea applies to the auction algorithm. Supalmost equal the optimal solution. Whenincreases, the
pose at iteratiort, the price of tasktj that r; maintains difference between our solution and the optimal solution is
is pj(t), then the vector of prices that maintains is increased, but bounded By" , Nig, as proven in Theorem 3.
[P (t ) Py (t),. -, P, (1)], wheren is the number of tasks. At Figure 5 shows how the convergence time of our algorithm
the beginning of Algorithm 1, we can add a part where changes withe. Both the number of rounds and number of
updates its price information of each tagk p‘]- (t), using bids by all robots, decrease with which means with higher
maximum-consensus approach as shown in Equation 8. & Algorithm 1 converges faster.
robot, rj, may use underestimated price for bidding during From Figure 4 and 5, we can see that there is a tradeoff
some iterations due to two factors: @maintains the price between the solution quality and the convergence time, lwhic
of all tasks using local maximum instead of global maximumecan be adjusted byg. With biggere, the algorithm converges
(b) the price of each task at each iteration may increase (dfaster at sacrifice of solution quality; while with smaller
to new bids). However, the current true price informatiotl wi €, the algorithm solution is better at the cost of slower
eventually propagate tq in at mostn; iterations (given the convergence time. In this exampke= 1 can achieve a good
network is connected). So after combining with consensuzalance between the above two performance indicators.
techniques, the performance of Algorithm 1 does not change The implementation results given here is for the consen-
except that the convergence time may be delayed by at masts algorithm with shared memory model. Our algorithm
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Fig. 4. Total benefits of assignment by our algorithm as a fanct
of parametere, which is the minimum possible price increase during
the bidding? process. The optimal solution can be achievedhwhe set

mindif

€ < < Where mindiff is the minimum difference between any
i= |
two individual benefitsa;j. The lower bound of our solution is given by

Theorem 3.
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Fig. 5. Convergence time of our algorithm as a function of peater
&, which is the minimum possible price increase during biddingcess.
The solid line shows the number of rounds for our algorithmetaninate,
where one round means all robots sequentially implement Alguoril for

one iteration.

distributed algorithm. We also presented simulation tesul
illustrating our algorithm.

Future Work: One of our future work is to implement
our auction algorithm with consensus techniques so that the
algorithm can be run on each individual robot in a totally
distributed way. The problem, where tasks have set prece-
dence constraints, that we considered in this paper is d&$pec
class of more general constraints. In the future we hope
to extend our algorithm to tasks with general precedence
constraints such that the time required to complete thestask
is minimized as well as the overall benefit to the multi-robot
system is maximized.
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