
Multi-Robot Assignment Algorithm for Tasks with Set Precedence
Constraints

Lingzhi Luo, Student Member, IEEE, Nilanjan Chakraborty,Member, IEEE, and Katia Sycara,Fellow, IEEE

Abstract— In this paper, we present task allocation (assign-
ment) algorithms for a multi-robot system where the tasks
are divided into disjoint groups and there are precedence
constraints between the task groups. Existing auction-based
algorithms assume the task independence and hence can not be
used directly to solve the class of multi-robot task assignment
problems that we consider. In our model, each robot can do a
fixed number of tasks and obtains a benefit (or incurs a cost)
for each task. The tasks are divided into groups and each robot
can do only one task from each group. These constraints arise
when the robots have to do a set of tasks that have precedence
constraints and each task takes the same time to be completed.
We extend the auction algorithm to provide an almost optimal
solution to the task assignment problem with set precedence
constraints (the theoretical guarantees are the same as that
of the original auction algorithm for unconstrained tasks). In
other words, we guarantee that we will get a solution within a
factor of O(ntε) of the optimal solution, where nt is the total
number of tasks andε is a parameter that we choose. We first
present our algorithm using a shared memory model and then
indicate how consensus algorithms can be used to make the
algorithm totally distributed.

Index Terms— Multi-robot assignment, Task allocation, Auc-
tion algorithm.

I. I NTRODUCTION

For autonomous operations of multiple robot systems,
task allocation is a basic problem that needs to be solved
efficiently [1], [2]. The basic version of the task alloca-
tion problem (also known as linear assignment problem in
combinatorial optimization) is the following:Given a set of
agents and a set of tasks, with each agent obtaining some
benefit (or incurring some cost) for each task, find a one-
to-one assignment of agents to tasks so that the overall
benefit of all the agents is maximized (or cost incurred
is minimized). The basic task assignment problem can be
solved optimally in polynomial time by finding a maximum
weight perfect matching on a bipartite graph using the Hun-
garian algorithm [3], [4]. However, the matching algorithm
is centralized. Bertsekas [5] gave a distributed algorithm
(assuming a shared memory model of computation, i.e.,
each processor can access a common memory) that can
solve the linear assignment problemalmost optimally. In
subsequent papers, the basic auction algorithm was extended
to more general task assignment problems with different
number of tasks and robots and each robot capable of doing
multiple tasks [6], [7]. Recently, [8], [9] have combined
the auction algorithm with consensus algorithms in order to

The authors are with the Robotics Institute, School of Computer Science,
Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213,
{lingzhil, nilanjan, katia}@cs.cmu.edu

remove the shared memory assumption; thus they present a
totally distributed version of the task allocation algorithm.
However, in all of these works, it is assumed that the tasks
are independent of each other. Motivated by scenarios where
the tasks may have certain constraints in the order in which
they should be done, in this paper we introduce the multiple
robot assignment problem with set precedence constraints
and provide a modified auction algorithm that can solve
this class of problems. In robotics, auction algorithm have
been applied to many multi-robot scenarios like multi-robot
routing [10], multi-robot decision making [11], and other
multi-robot coordination tasks [12]. A detailed survey can
be found in [13]. Our work here focuses on the theoretical
analysis of the auction algorithm for multi-robot assignment
with set precedence constraints.

In our model, we consider a system of robots that have
to perform a set of tasks. Each robot can perform a fixed
number of tasks. The tasks are assumed to be divided
into disjoint sets such that there is a precedence constraint
between the sets and each robot can perform at most one task
from each set. The number of tasks in each set is assumed to
be less than the number of robots. We call these constrained
tasks astasks with set precedence constraints (SPC). As
elaborated in Section II, if we have a set of tasks with
precedence constraints, where each task takes equal time to
complete, the minimum time solution of the tasks leads to
tasks with SPC. Thus, the problem defined here is a special
case of a scheduling problem with the added feature that
each robot also gets some benefit (or incurs some costs) for
doing the tasks. This feature is a departure from the standard
scheduling problems studied in the literature [14].

The main contribution of this paper is to present and
analyze distributed algorithms for task assignment with set
precedence constraints. We generalize the auction algorithm
by Bertsekas [5] to take into account the task constraints.
We first present the algorithm for a shared memory model
and then indicate how it can be combined with consensus
algorithms to give a totally distributed algorithm. We prove
that our algorithm gives a solution that is withinO(ntε) of
the optimal solution wherent is the number of tasks andε
is a parameter to be chosen.

This paper is organized as follows: In Section II we give
a formal definition of the multi-robot assignment problem
for groups of tasks with precedence constraints between the
groups. In Section III we present the assignment algorithm
with shared-memory model and in Section IV we briefly
discuss how to extend the algorithm to a totally distributed
algorithm with consensus techniques. In Section V we

demonstrate the performance of our algorithm with some
example simulations. Finally, in Section VI we present our
conclusions and outline future avenues of research.

II. PROBLEM STATEMENT

In this section, we give the formal definition of our
multi-robot task assignment problem with set precedence
constraints. We first discuss the basic multi-robot assignment
problem and then introduce the new constraints for tasks that
modifies the basic problem.

Basic Multi-robot Assignment Problem (MAP):Suppose
that there arenr robots, R = {r1, . . . , rnr}, and nt tasks,
T = {t1, . . . , tnt}, for the robots. InMAP, any robot can
be assigned to any task, and each robot needs to perform
exactlyNi tasks. Performing each task needs a single robot,
so ∑nr

i=1Ni = nt . Let fi j be the variable that takes a value
1 if task, t j , is assigned to robot,r i , and 0 otherwise. Let
ai j ∈ R be the benefit for the assignment pair(r i , t j), i.e.,
for assigning robotr i to taskt j . The objective ofMAP is to
assign all tasks to robots while maximizing the total benefits
from the assignment. The problem can be formulated as an
integer linear program (ILP) whose linear programming (LP)
relaxation is given below.

max
{ fi j }

nr

∑
i=1

nt

∑
j=1

ai j fi j

s.t.
nr

∑
i=1

fi j = 1, ∀ j = 1, . . . ,nt

nt

∑
j=1

fi j = Ni , ∀i = 1, . . . ,nr

fi j ≥ 0, ∀i, j

Although the LP relaxation allows fractional values forfi j ,
since the constraint matrix is totally unimodular, there is
always an optimal integer solution [4]. WhenNi = 1 ∀ i =
1, . . . ,nr , the problem becomes the original linear assignment
problem.

In this paper, we consider an extension toMAP by adding
the Set Precedence Constraints (SPC) for tasks. We now give
an example scenario where the SPC may arise. Let us assume
that the tasks in the setT have to satisfy some precedence
constraints as shown in Figure 1. We assume that the time
taken by each task is identical and the number of tasks at
each level is less than the number of robots (i.e., the number
of tasks that can be done in parallel is less than the number of
robots available). Thus, this problem is a special case of the
general scheduling problem. However, our problem has the
additional feature that each robot gets some benefit from a
task. Thus, if we want to maximize the benefit of the overall
multi-robot system while also minimizing the total cost of
the assignment, the problem can be decoupled into two
steps where in the first step we can find the minimum time
scheduling of the tasks and in the second step the maximum
benefit assignment. According to [14], the solution for the
minimum time scheduling in case of tasks with identical

times is to do all the tasks at each level in parallel (critical
path principle in [14]). Thus for the second step of maximum
benefit assignment, we have the assignment problem with
SPC as shown in Figure 2.

Fig. 1. A set of tasks with precedence constraints and identical completion
times.

The task setT is divided into ns disjoint subsets
{T1, . . . ,Tns} so that∪ns

i=1Ti = T, and there exist the prece-
dence constraints for the subsets:T1 ≻ T2 . . . ,≻ Tns, which
means the subset of tasksTi should be performed beforeTj

if i < j as shown in Figure 2 below. Each robot can perform
at most one task from each subset, so that the overall task
completion time is also minimized. For the rest of the paper,
we will talk about this SPC and not refer to the scheduling
aspect of the problem.

Fig. 2. Illustrative of set precedence constraints. The example in Figure 1
can be formulated as a problem with set precedence constraints if we want
to minimize the total task completion time.

The set precedence constraint can be expressed as:

∑
t j∈Tk

fi j ≤ 1, ∀i,k : i = 1, . . . ,nr ,k = 1, . . . ,ns

Combining theSPCconstraint withMAP, the “SPC-MAP”
problem we study here is:

Problem 1: Given nr robots, nt tasks with the tasks di-
vided into ns disjoint subsets, maximize the total benefits of
robot-task assignment with the set precedence constraintsfor
tasks, such that, each task is performed by one robot, and
each robot ri performs exactly Ni tasks and at most one task
from each subset.

Problem 1 can be written as an ILP whose LP relaxation
is

max
{ fi j }

nr

∑
i=1

nt

∑
j=1

ai j fi j

s.t.
nr

∑
i=1

fi j = 1, ∀ j = 1, . . . ,nt (1)

nt

∑
j=1

fi j = Ni , ∀i = 1, . . . ,nr (2)

∑
t j∈Tk

fi j ≤ 1, ∀i,k : i = 1, . . . ,nr ,k = 1, . . . ,ns (3)

fi j ≥ 0, ∀i, j (4)
Please note, the constraints above implicitly imply that:

• maxns
k=1 |Tk| ≤ nr : the number of tasks in any subset must

be no more than the number of robots (otherwise at least
one task in the subset cannot be performed);

• ns ≥ maxnr
i=1Ni : the number of subsets must be no less

than anyNi (otherwiser i cannot be assigned toNi tasks).

III. A LGORITHM DESIGN AND PERFORMANCEANALYSIS

In this section, we design an algorithm to get the optimal
(or near-optimal) solution for multi-robot task assignment
with set precedence constraints. First, we show how to reduce
Problem 1 to a network flow problem, which can be solved in
polynomial time usingcentralizednetwork flow algorithm.
(Section III-A). Second, we look at adistributedway to find
the optimal solution, where a centralized controller is not
required, and instead each robot can make decisions on its
own in a distributed way. In Section III-B, we briefly discuss
two unsuccessful attempts: the original auction algorithm,
which can solve the network flow problem in a parallelized
way, and a greedy algorithm, which applies the basic auc-
tion algorithm sequentially. In Section III-C, we design an
algorithm, which extends the basic auction algorithm, and
prove that each robot can decide on its own to get the
near-optimal solution for the whole assignment problem.
However, a shared memory is required for robots to access
information. In Section IV, we briefly discuss how to remove
the shared memory requirement using consensus techniques
among networked multi-robot system, which makes the al-
gorithm totally distributed.

A. Reduction to network flow problem

For any SPC−MAP problem mentioned above, we can
construct a min-cost network flow problem [15] as follows
(shown in Figure 3). Consider a directed graphG = (V,E),
with a set of nodesV = R

⋃
T

⋃
S, and edgesE = E1

⋃
E2,

where
• Nodes: R= {r i |i = 1, . . . ,nr} represent robots,T =
{t j | j = 1, . . . ,nt} represent tasks,S = {Ti,k|i =
1, . . . ,nr ,k = 1, . . . ,ns} is introduced to represent each
task subsetTk for each robotr i .

• Edges: E1 = {(r i ,Ti,k)|i = 1, . . . ,nr ,k = 1, . . . ,ns}, and
E2 = {(Ti,k, t j)|∀i, j,k, s.t., t j ∈ Tk}.

• Source and sink nodes:All nodes inR are source nodes
with supplyNi , and all nodes inT are sink nodes with
demand 1.

• Capacity and cost of edges:The capacity of all edges
in E is 1. The cost for edges inE1 is 0, while for edges
(Ti,k, t j) in E2 is −ai j .

• Flow: fi j , associated with each edge, represents the flow
from nodei to node j.

Fig. 3. Reduction to the min-cost multi-commodity flow problem. For
display purpose, just robotr1, its corresponding nodesT1,k and edges are
shown. For each other robotr i , there are another set of nodes{Ti,k|k =
1, . . . ,ns}, edges{(r i ,Ti,k)|k = 1, . . . ,ns} and{(Ti,k, t j)|∀t j ∈ Tk}, which are
omitted.+N1 and−1 represent nodes’ supply and demand;[0,1] shows that
the capacity of flow along the edges is 1.

Solving the constructed min-cost network flow problem
above (called min-cost multi-commodity flow problem), will
lead to the optimal solution for Problem 1 in Section II due
to the following facts:

• the demand and supply constraints are equal to the
constraint (1) and (2);

• the capacity constraints of flowfi j are equal to con-
straints in (3) and (4);

• the objective function min∑i ∑ j ci j fi j here is equal to
the objective function max∑i ∑ j ai j fi j , sinceci j = −ai j

for edges inE2 and the cost of edges inE1 is 0.

So after solving the min-cost network flow problem, the
non-zero (value 1) flow inE2 corresponds to the optimal
assignment of Problem 1 in Section II. The detailed proof is
omitted here.

The min-cost network flow problem is a classical problem
that has been studied extensively. Centralized polynomial-
time algorithms exist that can be used to compute the optimal
solution [15].

B. Discussion of two unsuccessful auction-based approaches

1) Parallelized Auction Algorithm:The basic auction al-
gorithm [5] solved the original 1-to-1 assignment problem
in a parallelized way based on its dual problem: each
robot iteratively makes bids for its favorite tasks (based on
corresponding benefits and present price of tasks), and the
highest bidder for a task will be assigned to the task at that
iteration. In that algorithm, each robot can make decisions
on its own, however, there must be a centralized auctioneer
to communicate with robots about the task price during each
iteration, or there must be a shared memory for all robots to
access the task price.

The auction algorithm for assignment problem has been
extended for asymmetric case [7] (where the number of
robots and tasks are different) and transportation problem[6]

with similar robots and tasks (e.g., one robot can per-
form multiple tasks). [16] showed that the general min-
cost network flow problem can be reduced to an assignment
problem. So the first approach one may try is: first reduce
Problem 1 to a min-cost network flow problem as shown
in Section III-A; then use the method in [16] to reduce
the constructed min-cost network flow problem to a basic
assignment problem; finally use original auction algorithm
for the basic assignment problem. Unfortunately, in the basic
assignment problem after the reduction, each bidding node
does not represent one robot. The auction algorithm can
be parallelized and executed, but cannot be combined with
consensus techniques, to form a distributed algorithm for
each robot to implement.

So the next question would be: whether it is possible to
directly attack Problem 1, by modifying the basic auction
mechanism.

2) Sequential Greedy Auction Algorithm:To modify the
basic auction algorithm for Problem 1, one natural approach
would be a greedy algorithm of sequentially applying the
basic auction algorithm. The greedy algorithm sequentially
applies the auction algorithm, and assigns available robots
to each subset of tasks in the precedence order. However,
this greedy algorithm cannot guarantee to find an optimal
solution. The reason is that: one robot may be assigned to a
task in an early subset, but lose the chance of being assigned
to a better task in later subsets. The optimal solution may
need to sacrifice the benefits for the current subset to pursue
long-term benefits for all tasks. So when modifying the basic
auction algorithm, we have to consider all subsets of tasks
simultaneously instead of sequentially.

C. Auction-based Algorithm Design

In this section, we extend the basic auction algorithm to
get near-optimal solution for Problem 1. The outline of this
section is as follows:

• First, we discuss the basic idea of the algorithm and
several important concepts (introduced in [7]), e.g.,
robot is (almost) happy, and the assignment is (almost)
at equilibrium.

• Second, we design an auction-based algorithm for Prob-
lem 1, where each robot can bid on its own for tasks.

• Third, we prove the performance guarantee of our
algorithm: the algorithm is sound, complete and near-
optimal.

1) Basic Idea and Concepts of Auction Algorithm:We are
trying to matchnr robots andnt tasks with constraints (1)-
(4) through a market auction mechanism, where each robot is
an economic agent acting in its own best interest. Although
each robotr i wants to be assigned to its favoriteNi tasks, the
different interest of robots will probably cause conflicts.This
can be resolved through the auction mechanism of bidding
for tasks. Suppose the price for taskt j at timet is p j(t), and
the robot assigned to the task must payp j(t). So the net value
of task t j to robot r i at time t becomesai j − p j(t) instead
of just ai j . The iterative bidding from robots leads to the

evolution of p j(t), which can gradually resolve the interest
conflicts among robots (as shown later in this section).

Every robot r i wants to be assigned to a task settJi =
{t j | j ∈ Ji} with maximum net values while satisfying its
constraints|Ji | = Ni and tJi

⋂
Tk ≤ 1,∀k = 1, . . . ,ns:

∑
j∈Ji

(ai j − p j(t)) = ∑(
(Ni)
max)k=1,...,ns

max
j∈Tk

(ai j − p j(t)) (5)

where∑(max(Ni)) is used to get the sum of theNi biggest
values. When (5) is satisfied, we say robotr i is happy. If
all robots are happy, we say the whole assignment and the
prices at timet areat equilibrium.

Suppose we fix a positive scalarε. When each assigned
task for robot r i is within ε of being in the set ofr i ’s
maximum values, that is,

{ai j − p j(t)| j ∈ Ji} ≥ (
(Ni)
max)k=1,...,ns

(max
j∈Tk

(ai j − p j(t))− ε)

(6)
(after sorting both the left and right sets of (6) above, any
value in the left set is no less than its corresponding value in
the right set), we say robotr i is almost happy. If all robots are
almost happy, we say the whole assignment and the prices
at time t arealmost at equilibrium.

2) Auction-based Algorithm Design:A single iteration
of the auction algorithm for each robotr i at time t is
described in Algorithm 1. We can define the auction-based
algorithm for our assignment problem by setting all robots
to run copies of Algorithm 1 sequentially. The algorithm
terminates when all robots have been assigned to their tasks
(i.e., N′

i = Ni for all tasks). The sequential auction is known
as one-at-a-time or Gauss-Seidel implementation. One
alternative is to let all robots bid simultaneously and assign
tasks to its highest bidder, which is known as all-at-once
or Jacobi implementation. The Jacobi implementation
is convenient for parallel implementation, but tends to
terminate slower as discussed in [7].

Algorithm 1 can be summarized as follows. During the
first part of Algorithm 1 (from Line 2 to 7), robotr i needs to
update its assignment information from its previous iteration,
since other robots may bid higher price for its assigned tasks
after its previous iteration. If that is the case, some previous
assignments of tasks forr i will be broken andr i needs to
give new bids. During the bidding part of Algorithm 1 (from
Line 10 to 21), robotr i keeps theN′

i assigned tasks since
its previous iteration, and bids forNi −N′

i tasks with the
best values from different subsets (which do not contain
any of N′

i assigned tasks). This part guarantees that after the
iteration, all constraints for robotr i are satisfied: (a) robot
r i is assigned to exactlyNi tasks (N′

i previously assigned
tasks plusNi −N′

i newly assigned tasks); (b)r i is assigned
to at most one task in each subset. Meanwhile each task is
assigned to at most one robot, because each task either does
not change assignment status (assigned to previous robot or
remains unassigned) or switch from the previous assigned
robot to robotr i . The bidding price for each task is at least

Algorithm 1 Auction Iteration For Robotr i

1: Input: ai j , pj(t), Tk for all j ,k,
< I t , IT ,P > // I t : indices of tasks assigned to ri during
// r i ’s previous iteration; IT : their corresponding subset
// indices; P: their corresponding bidding prices from ri

2: // Update the assignment information:
3: ∀ m∈ {1, . . . , |I t |} // m-th previously assigned task
4: if P(m) < pI t (m)(t) then
5: // another robot has bid higher than ri ’s previous bid
6: removeI t(m), correspondingIT(m), P(m) from I t , IT ,

andP, respectively
7: end if
8: DenoteN′

i = |I t | // number of tasks still assigned to ri

9: // Collect information for new bids
10: Denotev j(t) = ai j − p j(t) // value of tj to ri

11: Select the best candidate task from each subsetTk, where
k 6∈ IT : j∗k = argmaxj∈Tk v j(t)

12: Store the index of second best candidate from eachTk:
j ′k = argmaxj∈Tk, j 6= j∗k

v j(t)
13: Select theNi −N′

i best candidate tasks from{ j∗k|k 6∈ IT}:
14: K∗ = arg(max(Ni−N′

i))k6∈IT v j∗k
(t) // arg(max(Ni−N′

i)) is the
//operator to get indices of the Ni −N′

i biggest values
15: Store the index of(Ni −N′

i + 1)-th best candidate task
from { j∗k|k 6∈ IT}:
k′ = argmaxk6∈(IT ⋃

K∗) v j∗k
(t)

16: // Start new bids
17: Bid for tK = {t j∗k

|k∈ K∗} with price:
18: b j∗k

= p j∗k
(t)+v j∗k

(t)−max{v j∗
k′
(t),v j ′k

(t)}+ ε
19: // Update assignment information and price information:
20: Add { j∗k|k∈ K∗} to I t , K∗ to IT , and{b j∗k

|k∈ K∗} to P
21: Set p j∗k

(t +1) = b j∗k
for k∈ K∗ and setp j(t +1) = p j(t)

for j 6∈ { j∗k|k∈ K∗}

ε bigger than its previous price: sincej∗k is the best candidate
task in Tk and is among theNi −N′

i best from{ j∗k|k 6∈ IT},
j ′k is the second best inTk, j∗k′ is the (Ni −N′

i + 1)-th best
from { j∗k|k 6∈ IT},

v j∗k
(t) ≥ max{v j∗

k′
(t),v j ′k

(t)}

b j∗k
− p j∗k

(t) = v j∗k
(t)−max{v j∗

k′
(t),v j ′k

(t)}+ ε ≥ ε

So the tasks receivingr i ’s bids must be assigned tor i at the
end of the iteration. The bidding value ofb j∗k

is related to
the proof of the optimality of the algorithm, which will be
discussed in Section III-C.3.

3) Algorithm Performance Analysis:In this section, we
will answer the following questions about Algorithm 1:

• Will Algorithm 1 terminate with a feasible assignment
solution in a finite number of iterations?

• How good is the solution when Algorithm 1 terminates?

Lemma 1:When Algorithm 1 terminates for all robots,
the achieved assignment must be a feasible solution for
Problem 1, i.e., (1)-(4) are satisfied.
Proof: When Algorithm 1 for robotr i terminates, it means
that r i has already been assigned toNi tasks and no other

robot would bid higher forr i ’s assigned tasks. Since the
algorithm terminates for all robots, according to summary
(II) of Algorithm 1, all the constraints have been satisfied for
all robots. So the achieved assignment is a feasible solution
satisfying (1)-(4).�
Lemma 1 means Algorithm 1 is sound, i.e., when it outputs a
solution, the solution is feasible. The next result assertsthat
Algorithm 1 always terminates in finite number of iterations
assuming the existence of at least one feasible assignment
for the problem. The proof relies on the observations below:

(a) When a task is assigned, it will remain assigned during
the whole process of the algorithm. The reason is:
during the bidding and assignment process, one task
can either transfer from unassigned to assigned, or be
reassigned from one robot to another, but cannot become
unassigned from assigned.

(b) Each time when a task receives a bid, its new price will
increase by at leastε according to the algorithm:

p j∗k
(t+1)= b j∗k

= p j∗k
(t)+v j∗k

(t)−max{v j∗
k′
(t),v j ′k

(t)}+ε

≥ p j∗k
(t)+ ε

So if one task receives infinite number of bids, its price
will become+∞.

(c) If a robot r i bids for infinite number of times, all tasks
in the subsets, wherer i does not have fixed assigned
tasks, will receive infinite number of tasks. The reason
is that: there are finite number of tasks, and thus there
must be at least one receiving infinite number of bids.
If there exists one task (from such subsets), which does
not receive infinite number of bids, its price would be
finite, and its value forr i must be bigger than those tasks
receiving infinite number of bids. So it has to receive
more bids, which leads to the contradiction. So all tasks
in those subsets receive infinite number of bids and thus
have the price of+∞ (according to (b)).

Theorem 1:If there is at lest one feasible solution for
Problem 1, Algorithm 1 for all robots will terminate in a
finite number of iterations.
Proof: If the algorithm continues infinitely, there must be
some subsets{Tk|k ∈ K∞} where all tasks have+∞ price
according to (c) above. DenoteT∞ =

⋃
k∈K∞ Tk. Suppose

some robots{r i |i ∈ I∞} already getN∗
i tasks fromT \T∞,

and are still bidding for its remainingN∞
i tasks fromT∞.

(Please note, hereN∞
i = Ni −N∗

i does not necessarily equal
to N′

i in Algorithm 1 since all those tasks inT∞ are not
stably assigned to any robot.) DenoteR∞ = {r i |i ∈ I∞}.

Each taskti ∈ T∞ remains assigned (according to (a)
above). Each robotr i ∈R∞ needs to be stably assigned toN∞

i
more tasks, but all tasks inT∞ cannot fill up all ∑i∈I∞ N∞

i
positions. So

|T∞| < ∑
i∈I∞

N∞
i

Please note that the above inequality is strict, since there
must be at least one robotr i ∈ R∞ that has remaining tasks
unassigned (otherwise the algorithm terminates).

On the other hand, each robot must already be assigned
to exactly one task in each subsetTk,k 6∈ K∞ (according to
(c) above). We have

∑
i∈I∞

Ni = ∑
i∈I∞

N∗
i + ∑

i∈I∞
N∞

i

Suppose in any feasible assignment,N̂∗
i andN̂∞

i are the num-
ber of assigned tasks forr i in T \T∞ and T∞, respectively.
Ni = N̂∗

i + N̂∞
i . It is easy to see that eachN∗

i (i ∈ I∞) has
reached the biggest possible value,∑i∈I∞ N∗

i ≥ ∑i∈I∞ N̂∗
i . So

∑
i∈I∞

N̂∞
i ≥ ∑

i∈I∞
N∞

i > |T∞|

It means in any feasible assignment, the number of assigned
tasks inT∞ for R∞ is bigger than the number of tasks inT∞.
By contradiction, we know that Algorithm 1 must terminate
in a finite number of iterations if there exists a feasible
solution for Problem 1.�

Lemma 1 and Theorem 1 together prove that Algorithm 1
is both sound and complete, and also give a positive answer
to the first question (at the beginning of Section III-C.3),
when there exists at least one feasible solution for the
problem.

Next we want to prove the performance of Algorithm 1.
The result relies on the following theorem.

Theorem 2:After each iterationt of robot r i , r i ’s newly
assigned tasks together with the task pricesp j(t +1) keepr i

almost happy, i.e., (6) is satisfied.
Proof. First, let us prove it holds true for the first iteration.
At the beginning of the first iteration,r i does not have any
assigned tasks. According to the bidding part of Algorithm 1,
the bidden taskstK = {t j∗k

|k∈ K∗} with the price before the
iteration can maker i happy:

{ai j ∗k
− p j∗k

(t)|k∈ K∗} = (
(Ni)
max)k=1,...,ns

(max
j∈Tk

(ai j − p j(t)))

p j∗k
(t + 1) = b j∗k

= p j∗k
(t) + v j∗k

(t)−max{v j∗
k′
(t),v j ′k

(t)}+ ε,
andv j(t +1) = v j(t),∀ j 6∈ { j∗k|k∈ K∗}, so

ai j ∗k
− p j∗k

(t +1) = max{v j∗
k′
(t),v j ′k

(t)}− ε
= max{v j∗

k′
(t +1),v j ′k

(t +1)}− ε

So the value of any task intK to robot r i is within ε of
the maximum value of any task in its own subset and other
subsets{Tk|k 6∈ K∗}, so

{ai j ∗k
−p j∗k

(t+1)|k∈K∗}≥ (
(Ni)
max)k=1,...,ns

(max
j∈Tk

(ai j −p j(t))−ε)

which means (6) is satisfied.
Second, we prove that the unchanged tasks assigned to

r i since r i ’s previous iteration, must still be in the new
assignment ofr i . That is, those tasks are still among tasks,
which maker i almost happy after the iteration. Denote the
index set of those tasks ast ′K . Since these tasks did not
receive any bid from other robots sincer i ’s previous iteration,
their prices (and hence their values) tor i do not change.
Meanwhile any other tasks’ price either remain the same or
increase after receiving bids, so their values tor i reduce. So

tasks in t ′K must still be in the new assignment to make
r i almost happy. Since the bidding process to get newly
assigned tasks is the same, the newly assigned tasks must
also be in the new assignment to maker i almost happy (due
to similar proof for the first iteration).

So the conclusion is true for each iterationt of r i , i.e.,
after each iterationt of r i , r i ’s newly assigned tasks together
with the task pricesp j(t +1) keepr i almost happy.�

Since Theorem 2 holds true for all robots, we get the
corollary below.

Corollary 1: When Algorithm 1 for all robots terminates,
the achieved assignment and price are almost at equilibrium.
Theorem 3 below answers the second question (at the begin-
ning of Section III-C.3), and gives performance guarantee
for Algorithm 1.

Theorem 3:When Algorithm 1 for all robots terminates,
the achieved assignment{(i,(l i1, . . . , l iNi))|i = 1, . . . ,nr} must
be within ∑nr

i=1Niε of an optimal solution.
Proof: Denote ({(i,(l i1, . . . , l iNi))|i = 1, . . . ,nr}) as any feasi-
ble assignment, i.e.,

(
Ni⋃

k=1

tl ik)
⋂

Tm ≤ 1,∀i,m : i = 1, . . . ,nr ;m= 1, . . . ,ns

(
Ni⋃

k=1

tl ik)
⋂

(

Nj⋃

k=1

tl jk) = /0 if i 6= j (7)

Denote {p j | j = 1, . . . ,nt} as the set of task prices when
Algorithm 1 terminates for all robots and{p j | j = 1, . . . ,nt}
as any set of task prices.

First, we want to give an upper bound for the optimal
solution.

Ni

∑
k=1

(ail ik − pl ik) ≤ (
(Ni)
max)k=1,...,ns

(max
j∈Tk

(ai j − p j))

⇒
nr

∑
i=1

Ni

∑
k=1

(ail ik − pl ik) ≤
nr

∑
i=1

(
(Ni)
max)k=1,...,ns

(max
j∈Tk

(ai j − p j))

⇒
nr

∑
i=1

Ni

∑
k=1

(ail ik) ≤
nt

∑
j=1

p j +
nr

∑
i=1

(
(Ni)
max)k=1,...,ns

(max
j∈Tk

(ai j − p j))

Since it holds true for any set of price and any feasible
assignment, we haveA∗ ≤ D∗, whereA∗ is the optimal total
benefits of any feasible assignment.

A∗ = max
l ik satisfy(7)

nr

∑
i=1

Ni

∑
k=1

(ail ik)

D∗ = min
p j : j=1,...,nt

(
nt

∑
j=1

p j +
nr

∑
i=1

(
(Ni)
max)k=1,...,ns

(max
j∈Tk

(ai j − p j)))

On the other hand, according to Corollary 1, we have
nr

∑
i=1

Ni

∑
k=1

(ail ik
− pl ik

) ≥
nr

∑
i=1

(
(Ni)
max

k=1,...,ns
)(max

j∈Tk
(ai j − p j))−

nr

∑
i=1

Niε

nr

∑
i=1

Ni

∑
k=1

ail ik
≥

nt

∑
j=1

p j +
nr

∑
i=1

(
(Ni)
max

k=1,...,ns
)(max

j∈Tk
(ai j − p j))−

nr

∑
i=1

Niε

≥ D∗−
nr

∑
i=1

Niε ≥ A∗−
nr

∑
i=1

Niε

∑nr
i=1 ∑Ni

k=1ail ik
is the total benefits of the achieved assignment

by Algorithm 1, and

A∗ ≥
nr

∑
i=1

Ni

∑
k=1

ail ik
≥ A∗−

nr

∑
i=1

Niε

So it is within ∑nr
i=1Niε of an optimal solution.�

Please note, if all the benefits are integers, and we setε <
1

∑nr
i=1 Ni

, the achieved assignment will be optimal.

IV. D ISTRIBUTED AUCTION ALGORITHM

The auction algorithm forSPC− MAP can be totally
distributed by combining it with a distributed consensus algo-
rithm. In Algorithm 1, each robot,r i , needs to access global
information about the task price,p j(t), which is available,
either from a shared memory, or from communicating with a
centralized auctioneer. Recently, consensus algorithms have
been combined with the auction algorithm, so that the shared
memory/centralized auctioneer can be removed for solving
the linear assignment problem [8], [9]. The same framework
can be used for our problem, which we outline below.

We will use the maximum-consensus algorithm [17] for
the robots to obtain the pricep j(t). We assume the robots
form a connected networkG. In maximum-consensus, each
robot r i ∈ R has an initial value of taskj, pi

j , and wants
to get the maximum initial value among all robots,p j =
maxr i∈R pi

j (denoter∗ the robot which gets the initial value
p j). The maximum initial valuep j can propagate to the
whole connected network, if every robot keeps updating its
value using the local maximum value among its neighbors
as follows.

Suppose that at iterationt, each robotr i has the value of
task j as pi

j(t). Starting from initial valuepi
j(0), the robot

needs to update its value:

pi
j(t +1) = max

k∈N
+

i

pk
j(t) (8)

whereN
+

i = {i}∪Ni , andNi is the set ofr i ’s neighbors in
networkG. Eventually, each robot can get the true maximum
value of taskt j , and the number of iterations that each robot
r i gets the true valuep j would be the length of the shortest
path fromr i to r∗, which is at most the number of robotsnr .

Similar idea applies to the auction algorithm. Sup-
pose at iterationt, the price of taskt j that r i maintains
is pi

j(t), then the vector of prices thatr i maintains is
[pi

1(t), pi
2(t), . . . , pi

nt
(t)], wherent is the number of tasks. At

the beginning of Algorithm 1, we can add a part wherer i

updates its price information of each taskt j , pi
j(t), using

maximum-consensus approach as shown in Equation 8. A
robot, r i , may use underestimated price for bidding during
some iterations due to two factors: (a)r i maintains the price
of all tasks using local maximum instead of global maximum;
(b) the price of each task at each iteration may increase (due
to new bids). However, the current true price information will
eventually propagate tor i in at mostnr iterations (given the
network is connected). So after combining with consensus
techniques, the performance of Algorithm 1 does not change
except that the convergence time may be delayed by at most

a factor of nr . The basic steps of proving that consensus
combined with Algorithm 1 will give the same results as
that of Algorithm 1 with shared memory is given below
without details. (a) A proof similar to the one given for
Theorem 1 can be used to prove that the new algorithm with
consensus technique would also terminate in finite number
of iterations. (b) Theorem 2 also holds true if we change
the price in the theorem from true values to robots’ estimate
from local maximum; when the algorithm terminates, the
price information stored by all robots does not change and
must reach the true values due to propagation, so Theorem 2
holds true for the true price values. Thus Theorem 3 also
holds true.

Thus, each robot in a connected network can make de-
cisions based on updated local price information from its
own neighbors. And the auction algorithm becomes totally
distributed for both decision process and the information
collecting process.

V. SIMULATION RESULTS

In Section III, we designed Algorithm 1 for the SPC-
MAP problem, and proved the performance guarantee of the
designed algorithm. According to Theorem 3, we know that
ε is a control parameter which directly influences the perfor-
mance of our algorithm. In this section, we run simulations
in a synthetic example to check how the control parameter
ε influences the auction algorithm’s solution quality and
convergence time.

Considernr = 20 robots, each robotNi needs to perform
Ni = 3 tasks from a set ofnt = 60 tasks. The task setT
can be divided intons = 20 disjoint subsets, with 3 tasks
in each subset. We randomly generate benefitsai j from a
uniform distribution in(0,20). ε in Algorithm 1 is a control
parameter, related to the convergence time and performance
guarantee of the algorithm. For different values ofε, we
compared the final assignment benefits by our algorithm
with the optimal solution, and the convergence time of the
algorithm.

Figure 4 shows how the solution of assignment benefits
changes with the control parameterε. When ε is as small
as 0.1, the assignment benefits achieved by our algorithm
almost equal the optimal solution. Whenε increases, the
difference between our solution and the optimal solution is
increased, but bounded by∑nr

i=1Niε, as proven in Theorem 3.
Figure 5 shows how the convergence time of our algorithm
changes withε. Both the number of rounds and number of
bids by all robots, decrease withε, which means with higher
ε, Algorithm 1 converges faster.

From Figure 4 and 5, we can see that there is a tradeoff
between the solution quality and the convergence time, which
can be adjusted byε. With biggerε, the algorithm converges
faster at sacrifice of solution quality; while with smaller
ε, the algorithm solution is better at the cost of slower
convergence time. In this example,ε = 1 can achieve a good
balance between the above two performance indicators.

The implementation results given here is for the consen-
sus algorithm with shared memory model. Our algorithm

0 1 2 3 4 5 6 7 8 9 10
500

600

700

800

900

1000

1100

1200

\Epsilon

A
ss

ig
nm

en
t B

en
ef

its

Our Solution
Optimal Solution
Lower bound
of our solution

Fig. 4. Total benefits of assignment by our algorithm as a function
of parameterε, which is the minimum possible price increase during
the bidding process. The optimal solution can be achieved when we set
ε <

min di f f
∑nr

i=1 Ni
where min di f f is the minimum difference between any

two individual benefitsai j . The lower bound of our solution is given by
Theorem 3.

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

\Epsilon

Number of rounds
Number of bids

Fig. 5. Convergence time of our algorithm as a function of parameter
ε, which is the minimum possible price increase during bidding process.
The solid line shows the number of rounds for our algorithm to terminate,
where one round means all robots sequentially implement Algorihtm 1 for
one iteration.

together with consensus techniques mentioned in Section IV,
can be implemented on an individual robot in a totally
distributed way, which we leave as a future work.

VI. SUMMARY

In this paper we introduced a class of multi-robot task
assignment problems called task assignment with set prece-
dence constraints, where the tasks are divided into disjoint
sets or groups and there are precedence constraints between
the task groups. We presented a distributed task allocation
algorithm by extending the auction algorithm proposed by
Bertsekas for solving linear assignment problems for uncon-
strained tasks [5]. In our problem model, each robot can do a
fixed number of tasks and obtains a benefit (or incurs a cost)
for each task. The tasks are divided into groups and each
robot can do only one task from each group. We proved
that our algorithm always terminates in a finite number of
iterations and we obtain a solution within a factor ofO(ntε)
of the optimal solution, wherent is the total number of tasks
and ε is a parameter to be chosen. We first presented our
algorithm using a shared memory model and then indicated
how consensus algorithms can be used to make it a totally

distributed algorithm. We also presented simulation results
illustrating our algorithm.

Future Work: One of our future work is to implement
our auction algorithm with consensus techniques so that the
algorithm can be run on each individual robot in a totally
distributed way. The problem, where tasks have set prece-
dence constraints, that we considered in this paper is a special
class of more general constraints. In the future we hope
to extend our algorithm to tasks with general precedence
constraints such that the time required to complete the tasks
is minimized as well as the overall benefit to the multi-robot
system is maximized.

ACKNOWLEDGMENTS

This work was partially supported by AFOSR MURI grant
FA95500810356 and by ONR grant N000140910680.

REFERENCES

[1] B. P. Gerkey and M. J. Mataric, “A formal analysis and taxonomy
of task allocation in multi-robot systems,”International Journal of
Robotics Research, vol. 23, no. 9, pp. 939–954, 2004.

[2] N. Michael, M. M. Zavlanos, V. Kumar, and G. J. Pappas, “Distributed
multi-robot task assignment and formation control,” inProc. IEEE Intl.
Conf on Robotics and Automation, 2008, pp. 128–133.

[3] H. W. Kuhn, “The hungarian method for the assignment problem,”
Naval Research Logistics, vol. 2, no. 1-2, pp. 83–97, March 1955.

[4] R. Burkard, M. Dell’Amico, and S. Martello,Assignment Problems.
Society for Industrial and Applied Mathematics, 2009.

[5] D. P. Bertsekas, “The auction algorithm: A distributed relaxation
method for the assignment problem,”Annals of Operations Research,
vol. 14, pp. 105–123, 1988.

[6] D. P. Bertsekas and D. A. Castanon, “The auction algorithm for
transportation problems,”Annals of Operations Research, vol. 20, pp.
67–96, 1989.

[7] D. P. Bertsekas, “The auction algorithm for assignment and other
network flow problems: A tutorial,”Interfaces, vol. 20, no. 4, pp.
133–149, 1990.

[8] M. M. Zavlanos, L. Spesivtsev, and G. J. Pappas, “A distributed auction
algorithm for the assignment problem,” inProc. 47th IEEE Conf.
Decision and Control, 2008, pp. 1212–1217.

[9] H.-L. Choi, L. Brunet, and J. How, “Consensus-based decentralized
auctions for robust task allocation,”IEEE Transactions on Robotics,
vol. 25, no. 4, pp. 912–926, 2009.

[10] M. Lagoudakis, E. Markakis, D. Kempe, P. Keskinocak, A. Kleywegt,
S. Koenig, C. Tovey, A. Meyerson, and S. Jain, “Auction-based multi-
robot routing,” inRobotics Science and Systems, 2005.

[11] C. Bererton, G. Gordon, S. Thrun, and P. Khosla, “Bauction mecha-
nism design for multi-robot coordination,” inProc. Advances in Neural
Information Processing Systems Conf., 2003, p. 879C886.

[12] B. P. Gerkey and M. J. Mataric, “Sold!: Auction methods for multi-
robot coordination,”IEEE Transactions on Robotics, vol. 18, no. 5,
pp. 758–768, October 2002.

[13] M. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-basedmultirobot
coordination: A survey and analysis,”Proceedings of the IEEE, vol. 94,
no. 7, pp. 1257 –1270, jul. 2006.

[14] M. Pinedo,Scheduling: Theory, Algorithms, and Systems. Englewood
Cliffs, NJ: Prentice-Hall, 1995.

[15] A. V. Goldberg, E. Tardos, and R. E. Tarjan,Paths, Flows and VLSI-
Design (eds. B. Korte, L. Lovasz, H.J. Proemel, and A. Schrijver).
Springer Verlag, 2009, ch. Network Flow Algorithms, pp. 101–164.

[16] D. P. Bertsekas and R. E. Tarjan,Parallel and Distributed Computa-
tion: Numerical Methods. Athena Scientific, 1997, ch. Network Flow
Problems.

[17] R. Olfati-Saber and R. M. Murray, “Consensus problems innetworks
of agents with switching topology and time-delays,”IEEE Transac-
tions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.

