Instructor: Maria Florina Balcan (KACB 2144 , 404-385-8640).
Course Description: Machine learning studies automatic
methods for learning to make accurate predictions or useful decisions
based on past observations and experience, and it has become a highly
successful discipline with applications in many areas such as natural
language processing, speech recognition, computer vision, or gene
discovery.
This course on the design and theoretical analysis of machine learning
methods will cover a broad range of important problems studied in
theoretical machine learning. It will provide a basic arsenal of
powerful mathematical tools for their analysis, focusing on both
statistical and computational aspects. We will examine questions such
as "What guarantees can we prove on the performance of learning
algorithms? " and "What can we say about the inherent ease or
difficulty of learning problems?". In addressing these and related
questions we will make connections to statistics, algorithms,
complexity theory, information theory, game theory, and empirical
machine learning research.
Prerequisites: Either a good Machine Learning or a good Theory/Algorithms/Math background.
Evaluation and Responsibilities: Grading will be based on 4 or 5 homework assignments, a take-home final, and a class presentation or project.
General structure of the course: We will use roughly 3/4 of the lectures to cover "core" topics in this area, and then will diverge in the remaining 1/4 based on student interest. Here is a short outline of the "core" portion (some bullets correspond to multiple lectures):
Textbooks: The recommended (not required) textbooks are An Introduction to Computational Learning Theory by M. Kearns and U. Vazirani, and A Probabilistic Theory of Pattern Recognition by L. Devroye, L. Györfi, G. Lugosi. Additionally, we will use a number of survery articles and tutorials.
Additional Info: See also the Spring 2010 version of this course.