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Abstract. We describe and explore a new perspective on the sample complexity
of active learning. In many situations where it was generally believed thatactive
learning does not help, we show that active learning does help in the limit, often
with exponential improvements in sample complexity. This contrasts with the
traditional analysis of active learning problems such as non-homogeneous linear
separators or depth-limited decision trees, in whichΩ(1/ǫ) lower bounds are
common. Such lower bounds should be interpreted carefully; indeed, we prove
that it is always possible to learn anǫ-good classifier with a number of samples
asymptotically smaller than this. These new insights arise from a subtle variation
on the traditional definition of sample complexity, not previously recognized in
the active learning literature.

1 Introduction

Machine learning research has often focused on the problem of learning a classifier
from a fixed set of labeled examples. However, for many contemporary practical prob-
lems such as classifying web pages or detecting spam, there is often an abundance of
unlabeledexamples available, from which only a relatively small subset may be labeled
and used for learning. In such scenarios, the natural question that arises is how to best
select a useful subset of examples to be labeled.

One possibility, which has recently generated substantialinterest, isactive learn-
ing. In active learning, the learning algorithm itself is allowed to select the subset of
available examples to be labeled. The algorithm may requestlabels one at a time, using
the requested label information from previously selected examples to inform its deci-
sion of which example to select next. The hope is that by only requesting the labels
of “informative” examples, the algorithm can learn a good classifier using significantly
fewer labels than would typically be required to learn a classifier from randomly chosen
examples.

A number of active learning analyses have recently been proposed in a PAC-style
setting, both for the realizable and for the agnostic cases,resulting in a sequence of im-
portant positive and negative results [2, 4, 8–12, 15, 17]. These include several general
⋆ A preliminary version of this work appeared in theProceedings of the 21st Conference on
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⋆⋆ Most of this research was done while the author was at the University of Pennsylvania.



sample complexity bounds in terms of complexity parameters[10, 15, 16, 12, 17], thus
giving general sufficient conditions for signficant improvements over passive learning.
For instance, perhaps the most widely-studied concrete positive result for when active
learning helps is that of learning homogeneous (i.e., through the origin) linear separa-
tors, when the data is linearly separable and distributed uniformly over the unit sphere
[2, 4, 10–12]. However, in addition to these known positive results, there are simple
(almost trivial) examples, such as learning intervals or non-homogeneous linear sepa-
rators, where these analyses of sample complexity have indicated that perhaps active
learning does not help at all [10, 16].

In this work, we approach the analysis of active learning algorithms from a differ-
ent angle. Specifically, we point out that traditional analyses have studied the number
of label requests required before an algorithm can both produce anǫ-good classifier
and prove that the classifier’s error is no more thanǫ. These studies have turned up
simple examples where this number is no smaller than the number of random labeled
examples required for passive learning. This is the case forlearning certain nonhomo-
geneous linear separators and intervals on the real line, and generally seems to be a
common problem for many learning scenarios. As such, it has led some to conclude
that active learningdoes not helpfor most learning problems. One of the goals of our
present analysis is to dispel this misconception. Specifically, we study the number of
labels an algorithm needs to request before it can produce anǫ-good classifier, even
if there is no accessible confidence bound available to verify the quality of the clas-
sifier. With this type of analysis, we prove that active learning can essentially always
achieve asymptotically superior sample complexity compared to passive learning when
the VC dimension is finite. Furthermore, we find that for most natural learning prob-
lems, including the negative examples given in the previousliterature, active learning
can achieve exponential4 improvements over passive learning with respect to depen-
dence onǫ. This situation is characterized in Figure 1.1.

To our knowledge, this is the first work to address this subtlepoint in the context
of active learning. Though several previous papers have studied bounds on this latter
type of sample complexity [12, 11, 7], their results wereno strongerthan the results one
could prove in the traditional analysis. As such, it seems this large gap between the two
types of sample complexities has gone unnoticed until now.

1.1 A Simple Example: Intervals

To get some intuition about when these types of sample complexity are different, con-
sider the following example. Suppose thatC is the class of all intervals over[0, 1] and
D is a uniform distribution over[0, 1]. If the target function is the empty interval, then
for any sufficiently smallǫ, in order toverify with high confidence that this (or any)
interval has error≤ ǫ, we need to request labels in at least a constant fraction of the
Ω(1/ǫ) intervals[0, 2ǫ], [2ǫ, 4ǫ], . . ., requiringΩ(1/ǫ) total label requests.

However, no matter what the target function is, we canfind an ǫ-good classifier
with only a logarithmic sample complexity via the followingextremely simple 2-phase

4 We slightly abuse the term “exponential” throughout the paper. In particular, we refer to any
polylog(1/ǫ) as being an exponential improvement over1/ǫ.
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Fig. 1.1.Active learning can often achieve exponential improvements, though in many cases the
amount of improvement cannot be detected from information available tothe learning algorithm.
Hereγ may be a target-dependent constant.

learning algorithm. The algorithm will be allowed to maket label requests, and then
we will find a value oft that is sufficiently large to guarantee learning. We start with a
large set of unlabeled examples. In the first phase, on each round we choose a pointx
uniformly at random from the unlabeled sample and query its label. We repeat this until
we either observe a+1 label, at which point we enter the second phase, or we use allt
label requests. In the second phase, we alternate between running one binary search on
the examples between0 and thatx and a second on the examples between thatx and
1 to approximate the end-points of the interval. Once we use all t label requests, we
output a smallest interval consistent with the observed labels.

If the target is an interval[a, b] ⊆ [0, 1], whereb − a = w > 0, then after roughly
O(1/w) queries (a constant number that depends only on the target),a positive example
will be found. Since onlyO(log(1/ǫ)) additional queries are required to run the binary
search to reach error rateǫ, it suffices to havet ≥ O(1/w + log(1/ǫ)) = O(log(1/ǫ)).
This essentially reflects the “two-phases” phenomenon noted by [10], where improve-
ments are often observable only after some initial period, in this case the1/w initial
samples. On the other hand, if the targeth∗ labels every point as−1 (the so-called
all-negativefunction), the algorithm described above would output a hypothesis with0
error even after0 label requests, so anyt ≥ 0 suffices in this case. So in general, the
sample complexity is at worstO(log(1/ǫ)). Thus, we see a sharp distinction between
the sample complexity required tofind a good classifier (logarithmic) and the sample
complexity needed to both find a good classifierand verifythat it is good.

This example is particularly simple, since there is effectively onlyone“hard” target
function (the all-negative target). However, most of the spaces we study are significantly
more complex than this, and there are generally many targetsfor which it is difficult to
achieve good verifiable complexity.

1.2 Our Results

We show that in many situations where it was previously believed that active learning
cannot help, active learning does help in the limit. Our mainspecific contributions are
as follows:
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– We distinguish between two different variations on the definition of sample com-
plexity. The traditional definition, which we refer to asverifiable sample complex-
ity, focuses on the number of label requests needed to obtain a confidence bound
indicating an algorithm has achieved at mostǫ error. The newer definition, which
we refer to simply assample complexity, focuses on the number of label requests
before an algorithm actually achieves at mostǫ error. We point out that the latter
is often significantly smaller than the former, in contrast to passive learning where
they are often equivalent up to constants for most nontrivial learning problems.

– We prove thatany distribution and finite VC dimension concept class has active
learning sample complexity asymptotically smaller than the sample complexity of
passive learning for nontrivial targets. A simple corollary of this is that finite VC
dimension implieso(1/ǫ) active learning sample complexity.

– We show it is possible to actively learn with anexponential ratea variety of con-
cept classes and distributions, many of which are known to require a linear rate
in the traditional analysis of active learning: for example, intervals on[0, 1] and
non-homogeneous linear separators under the uniform distribution.

– We show that even in this new perspective, there do exist lower bounds; it is pos-
sible to exhibit somewhat contrived distributions where exponential rates are not
achievable even for some simple concept spaces (see Theorem6). The learning
problems for which these lower bounds hold are much more intricate than the lower
bounds from the traditional analysis, and intuitively seemto represent the core of
what makes a hard active learning problem.

2 Background and Notation

LetX be an instance space andY = {−1, 1} be the set of possible labels. LetC be the
concept class, a set of measurable functions mapping fromX to Y, and assume thatC
has VC dimensiond. We consider here the realizable setting in which it is assumed that
the instances are labeled by a target functionh∗ in the classC. There is a distribution
D onX , and theerror rateof a hypothesish is defined aser(h) = PD(h(x) 6= h∗(x)).

We assume the existence of an infinite sequencex1, x2, . . . of examples sam-
pled i.i.d. according toD. The learning algorithm may access any finite prefix
x1, x2, . . . , xm of the sequence. Essentially, this means we allow the algorithm access
to an arbitrarily large, but finite, sequence of random unlabeled examples. In active
learning, the algorithm can select any examplexi, and request the labelh∗(xi) that the
target assigns to that example, observing the labels of all previous requests before se-
lecting the next example to query. The goal is to find a hypothesish with small error
with respect toD, while simultaneously minimizing the number of label requests that
the learning algorithm makes.

2.1 Two Definitions of Sample Complexity

The following definitions present a subtle but significant distinction we refer to through-
out the paper. Several of the results that follow highlight situations where these two
definitions of sample complexity can have dramatically different dependence onǫ.
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Definition 1. A functionS(ǫ, δ, h∗) is averifiable sample complexityfor a pair (C,D)
if there exists an active learning algorithmA(t, δ) that outputsboth a classifierht,δ and
a valueǫ̂t,δ ∈ R after making at mostt label requests, such that for any target function
h∗ ∈ C, ǫ ∈ (0, 1/2), δ ∈ (0, 1), for anyt ≥ 0, PD(er(ht,δ) ≤ ǫ̂t,δ) ≥ 1 − δ and for
anyt ≥ S(ǫ, δ, h∗),

PD(er(ht,δ) ≤ ǫ̂t,δ ≤ ǫ) ≥ 1 − δ.

Definition 2. A functionS(ǫ, δ, h∗) is a sample complexityfor a pair (C,D) if there
exists an active learning algorithmA(t, δ) that outputs a classifierht,δ after making at
mostt label requests, such that for any target functionh∗ ∈ C, ǫ ∈ (0, 1/2), δ ∈ (0, 1),
for anyt ≥ S(ǫ, δ, h∗),

PD(er(ht,δ) ≤ ǫ) ≥ 1 − δ.

Let us take a moment to reflect on the difference between thesetwo definitions,
which may appear quite subtle. Both definitions allow the sample complexity to de-
pend both on the target function and on the input distribution. The only distinction is
whether or not there is anaccessible guaranteeor confidence boundon the error of
the chosen hypothesis that is also at mostǫ. This confidence bound can only depend
on quantities accessible to the learning algorithm, such asthet requested labels. As an
illustration of this distinction, consider again the problem of learning intervals. As de-
scribed above, there exists an active learning algorithm such that, given a large enough
initial segment of the unlabeled data, if the targeth∗ is an interval of widthw, then
after seeingO(1/w + log(1/ǫ)) labels, with high probability the algorithm outputs a
classifier with error rate less thanǫ anda guarantee that the error rate is less thanǫ. In
this case, for sufficiently smallǫ, the verifiable sample complexityS(ǫ, δ, h∗) is propor-
tional tolog(1/ǫ). However, ifh∗ is the all-negative function, then the verifiable sample
complexity is at least proportional to1/ǫ for all values ofǫ becausea high-confidence
guarantee can never be madewithout observingΩ(1/ǫ) labels; for completeness, a for-
mal proof of this fact is included in Appendix A. In contrast,as we have seen, there is
an algorithm that, given a large enough initial segment of the unlabeled sequence, pro-
duces a classifier with error rate less thanǫ after a number of label requestsO(log(1/ǫ))
for everytarget in the class of intervals; thus, it is possible to acheive sample complexity
O(log(1/ǫ)) for everytarget in the class of intervals.

Any verifiable sample complexity function is also a sample complexity function, but
we study a variety of cases where the reverse is not true. In situations where there are
sample complexity functions significantly smaller than anyachievable verifiable sample
complexities, we sometimes refer to the smaller quantity asthetrue sample complexity
to distinguish it from the verifiable sample complexity.

A common alternative formulation of verifiable sample complexity is to letA take
ǫ as an argument and allow it to choose online how many label requests it needs in
order to guarantee error at mostǫ [10, 2, 15, 16, 4]. This alternative definition is almost
equivalent, as the algorithm must be able to produce a confidence bound of size at most
ǫ on the error of its hypothesis in order to decide when to stop requesting labels any-
way. In particular, any algorithm for either definition can be modified to fit the other
definition without significant loss in the verifiable sample complexity values. For in-
stance, given any algorithm for the alternative formulation, and given a value oft, we
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can simply run the algorithm with argument2−i for increasing values ofi (and confi-
dence parameterδ/(2i2)) until we uset queries, and then take the output of the last run
that was completed; for a reasonable algorithm, the sample complexity should increase
asǫ decreases, and we typically expect logarithmic dependenceon the confidence pa-
rameter, so the increase in sample complexity due to these extra runs is at most a factor
of Õ(log(1/ǫ)). Similarly, given any algorithm for Definition 1, and givenǫ as input,
we might simply doublet until ǫ̂t,δ/(2t2) ≤ ǫ, giving an algorithm for the alternative
formulation; again, for reasonable algorithms, the samplecomplexity of the converted
algorithm will be at most a factor ofO(log(1/ǫ)) larger than the original.

Generally, there is some question as to what the “right” formal model of active
learning is. For instance, we could instead letA generate an infinite sequence ofht

hypotheses (or(ht, ǫ̂t) in the verifiable case), whereht can depend only on the first
t label requests made by the algorithm along with some initialsegment of unlabeled
examples (as in [7]), representing the case where we are not sure a priori of when we
will stop the algorithm. However, for our present purposes,this alternative too is almost
equivalent in sample complexity.

2.2 The Verifiable Sample Complexity

To date, there has been a significant amount of work studying the verifiable sample
complexity (though typically under the aforementioned alternative formulation). It is
clear from standard results in passive learning that verifiable sample complexities of
O ((d/ǫ) log(1/ǫ) + (1/ǫ) log(1/δ)) are easy to obtain for any learning problem, by
requesting the labels of random examples. As such, there hasbeen much interest in de-
termining when it is possible to achieve verifiable sample complexitysmallerthan this,
and in particular, when the verifiable sample complexity is apolylogarithmic function
of 1/ǫ (representing exponential improvements over passive learning).

One of the earliest active learning algorithms in this modelis the selective sam-
pling algorithm of Cohn, Atlas, and Ladner [8], henceforth referred to as CAL. This
algorithm keeps track of two spaces—the currentversion spaceCi, defined as the set
of hypotheses inC consistent with all labels revealed so far, and the currentregion of
uncertaintyRi = {x ∈ X : ∃h1, h2 ∈ Ci s.t.h1(x) 6= h2(x)}. In each roundi, the
algorithm picks a random unlabeled example fromRi and requests its label, eliminating
all hypotheses inCi inconsistent with the received label to make the next version space
Ci+1. The algorithm then definesRi+1 as the region of uncertainty for the new version
spaceCi+1 and continues. Its final hypothesis can then be taken arbitrarily from Ct,
the final version space, and we use the diameter ofCt for the ǫ̂t error bound. While
there are a small number of cases in which this algorithm and others have been shown
to achieve exponential improvements in the verifiable sample complexity for all targets
(most notably, the case of homogeneous linear separators under the uniform distribu-
tion), there exist extremely simple concept classes for whichΩ(1/ǫ) labels are needed
for some targets.

Recently, there have been a few quantities proposed to measure the verifiable sample
complexity of active learning on any given concept class anddistribution. Dasgupta’s
splitting index[10], which is dependent on the concept class, data distribution, and
target function, quantifies how easy it is to make progress toward reducing the diameter
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of the version space by choosing an example to query. Anotherquantity to which we
will frequently refer is Hanneke’sdisagreement coefficient[15], defined as follows.

Definition 3. For any set of classifiersH, define theregion of disagreementof H as

DIS(H) = {x ∈ X : ∃h1, h2 ∈ H : h1(x) 6= h2(x)} .

For any classifierh andr > 0, let B̃(h, r) be a ball of radiusr aroundh in C. Formally,

B̃(h, r) = {h′ ∈ C̃ : PD(h(x) 6= h′(x)) ≤ r} ,

whereC̃ denotes any countable dense subset ofC.5 For our purposes, thedisagreement
coefficient of a hypothesish, denotedθh, is defined as

θh = sup
r>0

P(DIS(B̃(h, r)))

r
.

The disagreement coefficient for aconcept classC is defined asθ = suph∈C θh.

The disagreement coefficient is often a useful quantity for analyzing the verifiable
sample complexity of active learning algorithms. For example, it has been shown that
the algorithm of Cohn, Atlas, and Ladner described above achieves a verifiable sample
complexity at mostθh∗d · polylog(1/(ǫδ)) when run with hypothesis class̃C for target
functionh∗ ∈ C [15, 17]. We will use it in several of the results below.

To get a feel for how to calculate this quantity, it may be helpful to see some ex-
amples (taken from [15]). For instance, considerD uniform on[0, 1], and the concept
space of threshold classifiersC = {hz : z ∈ [0, 1], hz(x) = +1 iff x ≥ z}. In this
case, we havẽB(hz, r) ⊆ {hz′ : |z′ − z| ≤ r}, soDIS(B̃(hz, r)) ⊆ {x : |x− z| ≤ r},
and thusP(DIS(B̃(hz, r))) ≤ 2r. Therefore, the disagreement coefficient ofhz is≤ 2,
and in fact so is the disagreement coefficient for the entire concept class.

On the other hand, consider the sameD, but this time take the concept class of
intervals:C = {ha,b : a, b ∈ [0, 1], ha,b(x) = +1 iff a ≤ x ≤ b}. In this case, for
ha,b with |a − b| = w > 0, we have two cases. Ifr > w, {ha′,b′ ∈ C̃ : |a′ − b′| ≤
r − w} ⊆ B̃(ha,b, r), so thatP(DIS(B̃(ha,b, r))) = 1. In the second case, ifr < w

we haveB̃(ha,b, r) ⊆ {ha′,b′ : |a − a′| ≤ r, |b − b′| ≤ r}, so thatDIS(B̃(ha,b, r)) ⊆
{x : min{|x − a|, |x − b|} ≤ r}, and thusP(DIS(B̃(ha,b, r))) ≤ 4r. Combining the
two cases, we have1/w ≤ θha,b

≤ max{1/w, 4}. However, for the intervals with
|a − b| = 0, the first case holds for arbitrarily smallr values, implyingθha,b

= ∞.
We will see that both the disagreement coefficient and splitting index are also useful

quantities for analyzing true sample complexities, thoughtheir use in that case is less
direct.

5 That is,C̃ is countable and∀h ∈ C, ∀ǫ > 0, ∃h′ ∈ C̃ : P(h(X) 6= h′(X)) ≤ ǫ. Such a
subset exists, for example, in anyC with finite VC dimension. We introduce this countable
dense subset to avoid certain degenerate behaviors, such as whenDIS(B(h, 0)) = X . For
instance the hypothesis class of classifiers on the[0, 1] interval that label exactly one point
positive has this property under any density function.
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2.3 The True Sample Complexity

This paper focuses on situations where true sample complexities are significantly
smaller than verifiable sample complexities. In particular, we show that many common
pairs(C,D) have sample complexity that is polylogarithmic inboth1/ǫ and1/δ and
linear only in some finite target-dependent constantγh∗ . This contrasts sharply with the
infamous1/ǫ lower bounds mentioned above, which have been identified forverifiable
sample complexity [16, 10, 9, 14]. The implication is that, for any fixed targeth∗, such
lower bounds vanish asǫ approaches0. This also contrasts with passive learning, where
1/ǫ lower bounds are typically unavoidable [1].

Definition 4. We say that(C,D) is actively learnable at an exponential rateif there
exists an active learning algorithm achieving sample complexity

S(ǫ, δ, h∗)=γh∗ · polylog (1/(ǫδ))

for all h∗ ∈ C, whereγh∗ is a finite constant that may depend onh∗ and D but is
independent ofǫ andδ.

3 Strict Improvements of Active Over Passive

In this section, we describe conditions under which active learning can achieve a sam-
ple complexity asymptotically superior to passive learning. The results are surprisingly
general, indicating that whenever the VC dimension is finite, anypassive learning algo-
rithm is asymptoticallydominatedby an active learning algorithm onall targets.

Definition 5. A functionS(ǫ, δ, h∗) is a passive learningsample complexity for a pair
(C,D) if there exists an algorithmA(((x1, h

∗(x1)), (x2, h
∗(x2)), . . . , (xt, h

∗(xt))), δ)
that outputs a classifierht,δ, such that for any target functionh∗ ∈ C, ǫ ∈ (0, 1/2), δ ∈
(0, 1), for anyt ≥ S(ǫ, δ, h∗), PD(er(ht,δ) ≤ ǫ) ≥ 1 − δ.

Thus, a passive learning sample complexity corresponds to arestriction of an ac-
tive learning sample complexity to algorithms that specifically request the firstt labels
in the sequence and ignore the rest. In particular, it is known that for any finite VC
dimension class, there is always anO (1/ǫ) passive learning sample complexity [18].
Furthermore, this is often (though not always) tight, in thesense that for any passive
algorithm, there exist targets for which the correspondingpassive learning sample com-
plexity isΩ (1/ǫ) [1]. The following theorem states that for any passive learning sample
complexity, there exists an achievable active learning sample complexity with a strictly
slower asymptotic rate of growth. Its proof is included in Appendix E.

Theorem 1. SupposeC has finite VC dimension, and letD be any distribution on
X . For any passive learning sample complexitySp(ǫ, δ, h) for (C,D), there exists an
active learning algorithm achieving a sample complexitySa(ǫ, δ, h) such that, for all
δ ∈ (0, 1/4) and targetsh∗ ∈ C for whichSp(ǫ, δ, h

∗) = ω(1),6

Sa(ǫ, δ, h∗) = o (Sp(ǫ/4, δ, h∗)) .

6 Recall that we say a non-negative functionφ(ǫ) = o (1/ǫ) iff lim
ǫ→0

φ(ǫ)/(1/ǫ) = 0. Similarly,

φ(ǫ) = ω(1) iff lim
ǫ→0

1/φ(ǫ) = 0. Here and below, theo(·), ω(·), Ω(·) andO(·) notation
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In particular, this implies the following simple corollary.

Corollary 1. For anyC with finite VC dimension, and any distributionD overX , there
is an active learning algorithm that achieves a sample complexityS(ǫ, δ, h∗) such that
for δ ∈ (0, 1/4),

S(ǫ, δ, h∗) = o (1/ǫ)

for all targetsh∗ ∈ C.

Proof. Let d be the VC dimension ofC. The passive learning algorithm of Haussler,
Littlestone & Warmuth [18] is known to achieve a sample complexity no more than
(kd/ǫ) log(1/δ), for some universal constantk < 200. Applying Theorem 1 now im-
plies the result. ⊓⊔

Note the interesting contrast, not only to passive learning, but also to the known
results on theverifiablesample complexity of active learning. This theorem definitively
states that theΩ (1/ǫ) lower bounds common in the literature on verifiable samples
complexity canneverarise in the analysis of the true sample complexity of finite VC
dimension classes.

4 Decomposing Hypothesis Classes

Let us return once more to the simple example of learning the class of intervals
over [0, 1] under the uniform distribution. As discussed above, it is well known that
the verifiable sample complexity of the all-negative classifier in this class isΩ(1/ǫ).
However, consider the more limited classC ′ ⊂ C containing only the intervalsh
of width wh strictly greater than 0. Using the simple algorithm described in Sec-
tion 1.1, this restricted class can be learned with a (verifiable) sample complexity of
only O(1/wh + log(1/ǫ)). Furthermore, the remaining set of classifiersC ′′ = C \ C ′

consists of only a single function (the all-negative classifier) and thus can be learned
with verifiable sample complexity0. Here we have thatC can be decomposed into two
subclassesC ′ andC ′′, where both(C ′,D) and(C ′′,D) are learnable at an exponential
rate. It is natural to wonder if the existence of such a decomposition is enough to imply
thatC itself is learnable at an exponential rate.

More generally, suppose that we are given a distributionD and a hypothesis class
C such that we can construct a sequence of subclassesCi with sample complexity
Si(ǫ, δ, h), with C = ∪∞

i=1Ci. Thus, if we knewa priori that the targeth∗ was a mem-
ber of subclassCi, it would be straightforward to achieveSi(ǫ, δ, h

∗) sample complex-
ity. It turns out that it is possible to learnany targeth∗ in any classCi with sample
complexity onlyO(Si(ǫ/2, δ/2, h∗)), even without knowing which subclass the tar-
get belongs to in advance. This can be accomplished by using asimple aggregation

should be interpreted asǫ → 0 (from the+ direction), treating all other parameters (e.g.,δ and
h∗) as fixed constants. Note that any algorithm achieving a sample complexitySp(ǫ, δ, h) 6=
ω(1) is guaranteed, with probability≥ 1 − δ, to achieve error zero using a finite number
of samples, and therefore we cannot hope to achieve a slower asymptotic growth in sample
complexity.
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algorithm, such as the one given below. Here a set of active learning algorithms (for
example, multiple instances of Dasgupta’s splitting algorithm [10] or CAL) are run on
individual subclassesCi in parallel. The output of one of these algorithms is selected
according to a sequence of comparisons. Specifically, for each pair of hypotheses, say
hi andhj (wherehi is produced by running the algorithm forCi andhj is produced by
running the algorithm forCj), we find a number of pointsx on whichhi(x) 6= hj(x),
and request their labels. With only a few such labels, we get quite a bit of information
about whetherer(hi) < er(hj) or vice versa. We then select thehi making the smallest
number of mistakes in the worst of these comparisons, and canconclude that its error
rate cannot be much worse than any otherhj .

Algorithm 1 The Aggregation Procedure. Here it is assumed thatC = ∪∞
i=1Ci, and

that for eachi, Ai is an algorithm achieving sample complexity at mostSi(ǫ, δ, h) for
the pair(Ci,D). Both the main aggregation procedure and each algorithmAi take a
number of labelst and a confidence parameterδ as parameters.

Let k be the largest integer s.t.k2 ⌈72 ln(4k/δ)⌉ ≤ t/2
for i = 1, . . . , k do

Let hi be the output of runningAi(⌊t/(4i2)⌋, δ/2) on the sequence{x2n−1}
∞
n=1

end for
for i, j ∈ {1, 2, . . . , k} do

if PD(hi(x) 6= hj(x)) > 0 then
Let Rij be the first⌈72 ln(4k/δ)⌉ elementsx in {x2n}

∞
n=1 with hi(x) 6= hj(x)

Request the labels of all examples inRij

Let mij be the number of elements inRij on whichhi makes a mistake
else

Let mij = 0
end if

end for
Returnĥt = hi wherei = argmin

i∈{1,2,...,k}

max
j∈{1,2,...,k}

mij

Using this algorithm, we can show the following sample complexity bound. The
proof appears in Appendix B.

Theorem 2. For any distributionD, let C1, C2, . . . be a sequence of classes such that
for eachi, the pair(Ci,D) has sample complexity at mostSi(ǫ, δ, h) for all h ∈ Ci.
LetC = ∪∞

i=1Ci. Then(C,D) has a sample complexity at most

min
i:h∈Ci

max

{

4i2 ⌈Si(ǫ/2, δ/2, h)⌉ , 2i2
⌈

72 ln
4i

δ

⌉}

,

for anyh ∈ C. In particular, Algorithm 1 achieves this when given as input the algo-
rithmsAi that each achieve sample complexitySi(ǫ, δ, h) on class(Ci,D).

A particularly interesting implication of Theorem 2 is thatthe ability to decompose
C into a sequence of classesCi with each pair(Ci,D) learnable at an exponential rate is
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enough to imply that(C,D) is also learnable at an exponential rate. Since theverifiable
sample complexity of active learning has received more attention and is therefore better
understood, it is often useful to apply this result when there exist known bounds on the
verifiable sample complexity; the approach loses nothing ingenerality, as suggested by
the following theorem. The proof of this theorem. is included in Appendix C.

Theorem 3. For any (C,D) learnable at an exponential rate, there exists a se-
quenceC1, C2, . . . with C = ∪∞

i=1Ci, and a sequence of active learning algorithms
A1, A2, . . . such that the algorithmAi achievesverifiablesample complexity at most
γipolylogi (1/(ǫδ)) for the pair(Ci,D), whereγi is a constant independent ofǫ andδ.
In particular, the aggregation algorithm (Algorithm 1) achieves exponential rates when
used with these algorithms.

Note that decomposing a givenC into a sequence ofCi subsets that have good veri-
fiable sample complexities is not always a simple task. One might be tempted to think a
simple decomposition based on increasing values of verifiable sample complexity with
respect to(C,D) would be sufficient. However, this is not always the case, andgener-
ally we need to use information more detailed than verifiablecomplexity with respect
to (C,D) to construct a good decomposition. We have included in Appendix D a sim-
ple heuristic approach that can be quite effective, and in particular yields good sample
complexities for every(C,D) described in Section 5.

Since it is more abstract and allows us to use known active learning algorithms as a
black box, we frequently rely on the decompositional view introduced here throughout
the remainder of the paper.

5 Exponential Rates

The results in Section 3 tell us that the sample complexity ofactive learning can be made
strictly superior to any passive learning sample complexity when the VC dimension is
finite. We now ask how much better that sample complexity can be. In particular, we de-
scribe a number of concept classes and distributions that are learnable at anexponential
rate, many of which are known to requireΩ(1/ǫ) verifiablesample complexity.

5.1 Exponential rates for simple classes

We begin with a few simple observations, to point out situations in which exponential
rates are trivially achievable; in fact, in each of the casesmentioned in this subsection,
the sample complexity is actuallyO(1).

Clearly if |X | < ∞ or |C| < ∞, we can always achieve exponential rates. In the
former case, we may simply request the label of everyx in the support ofD, and thereby
perfectly identify the target. The correspondingγ = |X |. In the latter case, the CAL
algorithm can achieve exponential learning withγ = |C| since each queried label will
reduce the size of the version space by at least one.

Less obvious is the fact that a similar argument can be applied to anycountably
infinite hypothesis classC. In this case we can impose an orderingh1, h2, · · · over the
classifiers inC, and setCi = {hi} for all i. By Theorem 2, applying the aggregation

11



procedure to this sequence yields an algorithm with sample complexity S(ǫ, δ, hi) =
2i2 ⌈72 ln(4i/δ)⌉ = O(1).

5.2 Geometric Concepts, Uniform Distribution

Many interesting geometric concepts inR
n are learnable at an exponential rate if the

underlying distribution is uniform on some subset ofR
n. Here we provide some ex-

amples; interestingly, every example in this subsection has some targets for which the
verifiablesample complexity isΩ (1/ǫ). As we see in Section 5.3, all of the results in
this section can be extended to many other types of distributions as well.

Unions ofk intervals under arbitrary distributions: Let X be the interval[0, 1) and
let C(k) denote the class of unions of at mostk intervals. In other words,C(k) contains
functions described by a sequence〈a0, a1, · · · , aℓ〉, wherea0 = 0, aℓ = 1, ℓ ≤ 2k + 1,
anda0, · · · , aℓ is the (nondecreasing) sequence of transition points between negative
and positive segments (sox is labeled+1 iff x ∈ [ai, ai+1) for someodd i). For any
distribution, this class is learnable at an exponential rate by the following decomposition
argument. First, defineC1 to be the set containing the all-negative function along with
any functions that are equivalent given the distributionD. Formally,

C1 = {h ∈ C(k) : P(h(X) = +1) = 0} .

ClearlyC1 has verifiable sample complexity0. Fori = 2, 3, . . . , k +1, letCi be the set
containing all functions that can be represented as unions of i − 1 intervals but cannot
be represented as unions of fewer intervals. More formally,we can inductively define
eachCi as

Ci =
{

h ∈ C(k) : ∃h′ ∈ C(i−1) s.t.P(h(X) 6= h′(X)) = 0
}

\ ∪j<iCj .

For i > 1, within each subclassCi, for eachh ∈ Ci the disagreement coefficient
is bounded by something proportional tok + 1/w(h), wherew(h) is the weight of
the smallest positive or negative interval. Notew(h) > 0 by construction of theCi sets.
Thus running CAL withC̃i achieves polylogarithmic (verifiable) sample complexity for
anyh ∈ Ci. SinceC(k) = ∪k+1

i=1 Ci, by Theorem 2,C(k) is learnable at an exponential
rate.

Ordinary Binary Classification Trees: Let X be the cube[0, 1]n, D be the uniform
distribution onX , andC be the class of binary decision trees using a finite number
of axis-parallel splits (see e.g., Devroye et al. [13], Chapter 20). In this case, in the
same spirit as the previous example, we letCi be the set of decision trees inC distance
zero from a tree withi leaf nodes, not contained in anyCj for j < i. For anyi, the
disagreement coefficient for anyh ∈ Ci (with respect to(Ci,D)) is a finite constant,
and we can choosẽCi to have finite VC dimension, so each(Ci,D) is learnable at an
exponential rate (by running CAL with̃Ci). By Theorem 2,(C,D) is learnable at an
exponential rate.

12



Linear Separators

Theorem 4. Let C be the concept class of linear separators inn dimensions, and let
D be the uniform distribution over the surface of the unit sphere. The pair(C,D) is
learnable at an exponential rate.

Proof. There are multiple ways to achieve this. We describe here a simple proof that
uses a decomposition as follows. Letλ(h) be the probability mass of the minority class
under hypothesish. LetC1 be the set containing only the separatorsh with λ(h) = 0, let
C2 = {h ∈ C : λ(h) = 1/2}, and letC3 = C\(C1∪C2). As before, we can use a black
box active learning algorithm such as CAL to learn within theclassC3. To prove that we
indeed get the desired exponential rate of active learning,we show that the disagreement
coefficient of any separatorh ∈ C3 with respect to(C3,D) is finite. Hanneke’s results
concerning the CAL algorithm [15, 17] then immediately imply thatC3 is learnable at
an exponential rate. SinceC1 trivially has sample complexity1, and(C2,D) is known
to be learnable at an exponential rate [10, 4, 15, 12], combined with Theorem 2, this
would imply the result. Below, we will restrict the discussion to hypotheses inC3,
which will be implicit in notation such asB(h, r), etc.

First note that, to showθh < ∞, it suffices to show that

lim
r→0

P(DIS(B(h, r)))

r
< ∞, (5.1)

so we will focus on this.
For anyh, there existsrh > 0 s.t. ∀h′ ∈ B(h, r), P(h′(X) = +1) ≤ 1/2 ⇔

P(h(X) = +1) ≤ 1/2, or in other words the minority class is the same among all
h′ ∈ B(h, r). Now consider anyh′ ∈ B(h, r) for 0 < r < min{rh, λ(h)/2}. Clearly
P(h(X) 6= h′(X)) ≥ |λ(h) − λ(h′)|. Supposeh(x) = sign(w · x + b) andh′(x) =
sign(w′ · x + b′) (where, without loss, we assume‖w‖ = 1), andα(h, h′) ∈ [0, π] is
the angle betweenw andw′. If α(h, h′) = 0 or if the minority regions ofh andh′ do

not intersect, then clearlyP(h(X) 6= h′(X)) ≥ 2α(h,h′)
π min{λ(h), λ(h′)}. Otherwise,

consider the classifiers̄h(x) = sign(w·x+b̄) andh̄′(x) = sign(w′·x+b̄′), wherēb and
b̄′ are chosen s.t.P(h̄(X) = +1) = P(h̄′(X) = +1) andλ(h̄) = min{λ(h), λ(h′)}.
That is,h̄ and h̄′ are identical toh andh′ except that we adjust the bias term of the
one with larger minority class probability to reduce its minority class probability to be
equal to the other’s. Ifh 6= h̄, then most of the probability mass of{x : h(x) 6= h̄(x)} is
contained in the majority class region ofh′ (or vice versa ifh′ 6= h̄′), and in fact every
point in {x : h(x) 6= h̄(x)} is labeled bȳh according to the majority class label (and
similarly for h′ andh̄′). Therefore, we haveP(h(X) 6= h′(X)) ≥ P(h̄(X) 6= h̄′(X)).

We also have thatP(h̄(X) 6= h̄′(X)) ≥ 2α(h,h′)
π λ(h̄). To see this, consider the

projection onto the2-dimensional plane defined byw andw′, as in Figure 5.2. Because
the two decision boundaries must intersect inside the acuteangle, the probability mass
contained in each of the two wedges (both withα(h, h′) angle) making up the projected
region of disagreement betweenh̄ and h̄′ must be at least anα(h, h′)/π fraction of
the total minority class probability for the respective classifier, implying the union of
these two wedges has probability mass at least2α(h,h′)

π λ(h̄). Therefore, we must have
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Fig. 5.1.Projection of̄h andh̄′ into the plane defined byw andw′.

P(h(X) 6= h′(X)) ≥ max
{

|λ(h) − λ(h′)|, 2α(h,h′)
π min{λ(h), λ(h′)}

}

, and thus

B(h, r) ⊆
{

h′ : max

{

|λ(h) − λ(h′)|, 2α(h, h′)

π
min{λ(h), λ(h′)}

}

≤ r

}

.

The region of disagreement of this set is at most

DIS

({

h′ :
2α(h, h′)

π
(λ(h) − r) ≤ r ∧ |λ(h) − λ(h′)| ≤ r

})

⊆ DIS({h′ : w′ = w ∧ |λ(h′) − λ(h)| ≤ r})
∪ DIS({h′ : α(h, h′) ≤ πr/λ(h) ∧ |λ(h) − λ(h′)| = r}),

where this last relation follows from the following reasoning. Takeymaj to be the ma-
jority class ofh (arbitrary if λ(h) = 1/2). For anyh′ with |λ(h) − λ(h′)| < r, theh′′

with α(h, h′′) = α(h, h′) havingP(h(X) = ymaj)−P(h′′(X) = ymaj) = r disagrees
with h on a set of points containing{x : h′(x) 6= h(x) = ymaj}; likewise, the one
havingP(h(X) = ymaj) − P(h′′(X) = ymaj) = −r disagrees withh on a set of
points containing{x : h′(x) 6= h(x) = −ymaj}. So any point in disagreement between
h and someh′ with |λ(h)−λ(h′)| < r andα(h, h′) ≤ πr/λ(h) is also disagreed upon
by someh′′ with |λ(h) − λ(h′′)| = r andα(h, h′′) ≤ πr/λ(h).

Some simple trigonometry shows thatDIS({h′ : α(h, h′) ≤ πr/λ(h) ∧ |λ(h) −
λ(h′)| = r}) is contained in the set of points within distancesin(πr/λ(h)) ≤ πr/λ of
the two hyperplanes representingh1(x) = sign(w·x+b1) andh2(x) = sign(w·x+b2)
defined by the property thatλ(h1)− λ(h) = λ(h)− λ(h2) = r, so that the total region
of disagreement is contained within

{x : h1(x) 6= h2(x)} ∪ {x : min{|w · x + b1|, |w · x + b2|} ≤ πr/λ(h)}.

Clearly,P({x : h1(x) 6= h2(x)}) = 2r. Using previous results [2, 15], we know that
P({x : min{|w · x + b1|, |w · x + b2|} ≤ πr/λ(h)}) ≤ 2π

√
nr/λ(h) (since the

probability mass contained within this distance of a hyperplane is maximized when
the hyperplane passes through the origin). Thus, the probability of the entire region
of disagreement is at most(2 + 2π

√
n/λ(h))r, so that (5.1) holds, and therefore the

disagreement coefficient is finite. ⊓⊔
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Fig. 5.2. Illustration of the proof of Theorem 5. The dark gray regions represent BD1(h1, 2r)
andBD2(h2, 2r). The functionh that gets returned is in the intersection of these. The light gray
regions representBD1(h1, ǫ/3) andBD2(h2, ǫ/3). The target functionh∗ is in the intersection
of these. We therefore must haver ≤ ǫ/3, and by the triangle inequalityer(h) ≤ ǫ.

5.3 Composition results

We can also extend the results from the previous subsection to other types of distribu-
tions and concept classes in a variety of ways. Here we include a few results to this
end.

Close distributions: If (C,D) is learnable at an exponential rate, then for any distribu-
tion D′ such that for all measurableA ⊆ X , λPD(A) ≤ PD′(A) ≤ (1/λ)PD(A) for
someλ ∈ (0, 1], (C,D′) is also learnable at an exponential rate. In particular, we can
simply use the algorithm for(C,D), filter the examples fromD′ so that they appear
like examples fromD, and then anyt large enough to find anǫλ-good classifier with
respect toD is large enough to find anǫ-good classifier with respect toD′. This general
idea has previously been observed for the verifiable sample complexity [10, 15].

Mixtures of distributions: Suppose there exist algorithmsA1 andA2 for learning a
classC at an exponential rate under distributionsD1 andD2 respectively. It turns out we
can also learn under anymixtureof D1 andD2 at an exponential rate, by usingA1 and
A2 as black boxes. In particular, the following theorem relates the sample complexity
under a mixture to the sample complexities under the mixing components.

Theorem 5. Let C be an arbitrary hypothesis class. Assume that the pairs(C,D1)
and (C,D2) have sample complexitiesS1(ǫ, δ, h

∗) and S2(ǫ, δ, h
∗) respectively,

where D1 and D2 have density functionsPD1
and PD2

respectively. Then for
any α ∈ [0, 1], the pair (C,αD1 + (1 − α)D2) has sample complexity at most
2 ⌈max{S1(ǫ/3, δ/2, h∗), S2(ǫ/3, δ/2, h∗)}⌉.

Proof. If α = 0 or 1 then the theorem statement holds trivially. Assume insteadthat
α ∈ (0, 1). As we are only interested in proving the existence of an algorithm achieving
the desired sample complexity, we can describe a method in terms ofα, D1, andD2,
and in particular it can depend on these items in essentiallyarbitrary ways.

Suppose algorithmsA1 andA2 achieve the stated sample complexities underD1

andD2 respectively. At a high level, the algorithm we define works by “filtering” the
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distribution over input so that it appears to come from two streams, one distributed ac-
cording toD1, and one distributed according toD2, and feeding these filtered streams to
A1 andA2 respectively. To do so, we define a random sequenceu1, u2, · · · of indepen-
dent uniform random variables in[0, 1]. We then runA1 on the sequence of examples
xi from the unlabeled data sequence satisfying

ui <
αPD1

(xi)

αPD1
(xi) + (1 − α)PD2

(xi)
,

and runA2 on the remaining examples, allowing each to make an equal number of label
requests.

Let h1 and h2 be the classifiers output byA1 andA2. Because of the filtering,
the examples thatA1 sees are distributed according toD1, so aftert/2 queries, the
current error ofh1 with respect toD1 is, with probability1 − δ/2, at mostinf{ǫ′ :
S1(ǫ

′, δ/2, h∗) ≤ t/2}. A similar argument applies to the error ofh2 with respect to
D2.

Finally, let
r = inf{r : BD1

(h1, r) ∩ BD2
(h2, r) 6= ∅} ,

where
BDi

(hi, r) = {h ∈ C : PDi
(h(x) 6= hi(x)) ≤ r} .

Define the output of the algorithm to be anyh ∈ BD1
(h1, 2r) ∩ BD2

(h2, 2r). If a total
of t ≥ 2 ⌈max{S1(ǫ/3, δ/2, h∗), S2(ǫ/3, δ/2, h∗)}⌉ queries have been made (t/2 by
A1 andt/2 by A2), then by a union bound, with probability at least1 − δ, h∗ is in the
intersection of theǫ/3-balls, and soh is in the intersection of the2ǫ/3-balls. By the
triangle inequality,h is within ǫ of h∗ under both distributions, and thus also under the
mixture. (See Figure 5.2 for an illustration of these ideas.) ⊓⊔

5.4 Lower Bounds

Given the previous discussion, one might suspect thatanypair (C,D) is learnable at an
exponential rate, under some mild condition such as finite VCdimension. However, we
show in the following that this isnot the case, even for some simple geometric concept
classes when the distribution is especially nasty.

Theorem 6. For any positive functionφ(ǫ) = o(1/ǫ), there exists a pair(C,D),
with the VC dimension ofC equal1, such that for any achievable sample complex-
ity S(ǫ, δ, h) for (C,D), for anyδ ∈ (0, 1/4),

∃h ∈ C s.t.S(ǫ, δ, h) 6= o(φ(ǫ)).

In particular, takingφ(ǫ) = 1/
√

ǫ (for example), this implies that there exists a(C,D)
that is not learnable at an exponential rate (in the sense of Definition 4).

Proof. If we can prove this for any suchφ(ǫ) 6= O(1), then clearly this would imply the
result holds forφ(ǫ) = O(1) as well, so we will focus onφ(ǫ) 6= O(1) case. LetT be
a fixed infinite tree in which each node at depthi hasci children;ci is defined shortly
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Fig. 5.3.A learning problem where exponential rates are not achievable. The instance space is an
infinite-depth tree. The target labels nodes along a single infinite path as+1, and labels all other
nodes−1. For anyφ(ǫ) = o(1/ǫ), when the number of children and probability mass of each
node at each subsequent level are set in a certain way, sample complexities of o(φ(ǫ)) are not
achievable for all targets.

below. We consider learning the hypothesis classC where eachh ∈ C corresponds to a
path down the tree starting at the root; every node along thispath is labeled1 while the
remaining nodes are labeled−1. Clearly for eachh ∈ C there is precisely one node on
each level of the tree labeled1 by h (i.e. one node at each depth).C has VC dimension
1 since knowing the identity of the node labeled1 on level i is enough to determine
the labels of all nodes on levels0, . . . , i perfectly. This learning problem is depicted in
Figure 5.3.

Now we defineD, a “bad” distribution forC. Let {ℓi}∞i=1 be any sequence of pos-
itive numbers s.t.

∑∞
i=1 ℓi = 1. ℓi will bound the total probability of all nodes on level

i according toD. Assume all nodes on leveli have the same probability according to
D, and call thispi. We define the values ofpi andci recursively as follows. For each
i ≥ 1, we definepi as any positive number s.t.pi⌈φ(pi)⌉

∏i−2
j=0 cj ≤ ℓi andφ(pi) ≥ 4,

and defineci−1 = ⌈φ(pi)⌉. We are guaranteed that such a value ofpi exists by the
assumptions thatφ(ǫ) = o(1/ǫ), meaninglimǫ→0 ǫφ(ǫ) = 0, and thatφ(ǫ) 6= O(1).
Lettingp0 = 1 − ∑

i≥1 pi

∏i−1
j=0 cj completes the definition ofD.

With this definition of the parameters above, since
∑

i pi ≤ 1, we know that for any
ǫ0 > 0, there exists someǫ < ǫ0 such that for some levelj, pj = ǫ and thuscj−1 ≥
φ(pj) = φ(ǫ). We will use this fact to show that∝ φ(ǫ) labels are needed to learn
with error less thanǫ for these values ofǫ. To complete the proof, we must prove the
existence of a “difficult” target function, customized to challenge the particular learning
algorithm being used. To accomplish this, we will use the probabilistic method to prove
the existence of a point in each leveli such that any target function labeling that point
positive would have a sample complexity≥ φ(pi)/4. Furthermore, we will show that
we can find such a point at each level in a recursive manner, so that the point at leveli is
among the children of the point at leveli − 1. Then the difficult target function simply
strings these points together.

To begin, we definex0 = the root node. Then for eachi ≥ 1, recursively define
xi as follows. Suppose, for anyh, the setRh and the classifier̂hh are, respectively, the
random variable representing the set of examples the learning algorithm would request,
and the classifier the learning algorithm would output, whenh is the target and its label
request budget is set tot = ⌊φ(pi)/2⌋. For any nodex, we will let Children(x) denote
the set of children ofx, and Subtree(x) denote the set ofx along with all descendants
of x. Additionally, let hx denote any classifier inC s.t. hx(x) = +1. Also, for two
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classifiersh1, h2, defineer(h1;h2) = PD(h1(X) 6= h2(X)). Now note that

max
x∈Children(xi−1)

inf
h∈C:h(x)=+1

P{er(ĥh;h) > pi}

≥ 1

ci−1

∑

x∈Children(xi−1)

inf
h∈C:h(x)=+1

P{er(ĥh;h) > pi}

≥ 1

ci−1

∑

x∈Children(xi−1)

P{∀h ∈ C : h(x) = +1, Subtree(x) ∩ Rh = ∅ ∧ er(ĥh;h) > pi}

= E









1

ci−1

∑

x∈Children(xi−1):
Subtree(x)∩Rhx=∅

I

[

∀h ∈ C : h(x) = +1, er(ĥh;h) > pi

]









≥ E









min
x′∈Children(xi−1)

1

ci−1

∑

x∈Children(xi−1):
Subtree(x)∩Rhx=∅

I [x′ 6= x]









≥ 1

ci−1
(ci−1 − t − 1) =

1

⌊φ(pi)⌋
(⌊φ(pi)⌋ − ⌊φ(pi)/2⌋ − 1)

≥ 1

⌊φ(pi)⌋
(⌊φ(pi)⌋/2 − 1) ≥ 1/4.

The expectations above are over the unlabeled examples and any internal random
bits used by the algorithm. The above inequalities imply there exists somex ∈
Children(xi−1) such that everyh ∈ C that hash(x) = +1 has S(pi, δ, h) ≥
⌊φ(pi)/2⌋ ≥ φ(pi)/4; we will takexi to be this value ofx. We now simply take the tar-
get functionh∗ to be the classifier that labelsxi positive for alli, and labels every other
point negative. By construction, we have∀i, S(pi, δ, h

∗) ≥ φ(pi)/4, and therefore

∀ǫ0 > 0,∃ǫ < ǫ0 : S(ǫ, δ, h∗) ≥ φ(ǫ)/4,

so thatS(ǫ, δ, h∗) 6= o(φ(ǫ)). ⊓⊔

Note that this implies that theo (1/ǫ) guarantee of Corollary 1 is in some sense the
tightest guarantee we can make at that level of generality, without using a more detailed
description of the structure of the problem beyond the finiteVC dimension assumption.

This type of example can be realized by certain nasty distributions, even for a va-
riety of simple hypothesis classes: for example, linear separators inR2 or axis-aligned
rectangles inR2. We remark that this example can also be modified to show that we
cannot expect intersections of classifiers to preserve exponential rates. That is, the
proof can be extended to show that there exist classesC1 and C2, such that both
(C1,D) and (C2,D) are learnable at an exponential rate, but(C,D) is not, where
C = {h1 ∩ h2 : h1 ∈ C1, h2 ∈ C2}.
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6 Discussion and Open Questions

The implication of our analysis is that in many interesting cases where it was previously
believed that active learning could not help, it turns out that active learningdoes help
asymptotically. We have formalized this idea and illustrated it with a number of ex-
amples and general theorems throughout the paper. This realization dramatically shifts
our understanding of the usefulness of active learning: while previously it was thought
that active learning couldnot provably help in any but a few contrived and unrealistic
learning problems, in this alternative perspective we now see that active learning essen-
tially alwayshelps, and does so significantly in allbut a few contrived and unrealistic
problems.

The use of decompositions ofC in our analysis generates another interpretation of
these results. Specifically, Dasgupta [10] posed the question of whether it would be
useful to develop active learning techniques for looking atunlabeled data and “placing
bets” on certain hypotheses. One might interpret this work as an answer to this question;
that is, some of the decompositions used in this paper can be interpreted as reflecting
a preference partial-ordering of the hypotheses, similar to ideas explored in the passive
learning literature [21, 19, 3]. However, the constructionof a good decomposition in
active learning seems more subtle and quite different from previous work in the context
of supervised or semi-supervised learning.

It is interesting to examine the role of target- and distribution-dependent constants
in this analysis. As defined, both the verifiable and true sample complexities may de-
pend heavily on the particular target function and distribution. Thus, in both cases, we
have interpreted these quantities as fixed when studying theasymptotic growth of these
sample complexities asǫ approaches0. It has been known for some time that, with only
a few unusual exceptions, any target- and distribution-independent bound on the ver-
ifiable sample complexity could typically be no better than the sample complexity of
passive learning; in particular, this observation lead Dasgupta to formulate his splitting
index bounds as both target- and distribution-dependent [10]. This fact also applies to
bounds on the true sample complexity as well. Indeed, the entire distinction between
verifiable and true sample complexities collapses if we remove the dependence on these
unobservable quantities.

One might wonder what the practical implications of the truesample complexity
of active learning might be since the theoretical improvements we provide are for an
unverifiable complexity measure and therefore they do not actually inform the user
(or algorithm) of how many labels to allow the algorithm to request. However, there
might still be implications for the design of practical algorithms. In some sense, this is
the same issue faced in the analysis of universally consistent learning rules in passive
learning [13]. There is typically no way to verify how close to the Bayes error rate a
classifier is (verifiable complexity is infinite), yet we still want learning rules whose
error rates provably converge to the Bayes error in the limit(true complexity is a finite
function of epsilon and the distribution of(X,Y )), and we often find such methods
quite effective in practice (e.g.,k-nearest neighbor methods). So this is one instance
where an unverifiable sample complexity seems to be a useful guide in algorithm de-
sign. In active learning with finite-complexity hypothesisclasses we are more fortunate,
since the verifiable complexity is finite – and we certainly want algorithms with small
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verifiable sample complexity; however, an analysis of unverifiable complexities still
seems relevant, particularly when the verifiable complexity is large. In general, it seems
desirable to design algorithms for any given active learning problem that achieve both
a verifiable sample complexity that is near optimal and a truesample complexity that is
asymptotically better than passive learning.

Open Questions: There are many interesting open problems within this framework.
Perhaps the most interesting of these would be formulating general necessary and
sufficient conditions for learnability at an exponential rate, and determining whether
Theorem 1 can be extended to the agnostic case or to infinite capacity hypothesis
classes.

Subsequent Work: Since the initial publication of these results at the 2008 Conference
on Learning Theory [5], there has been some progress in this area worth reporting. In
particular, recall that Theorem 1 allows the algorithm to depend on the distributionD
in arbitrary ways; that is, for eachD, we can use a different active learning algorithm
to achieve the improvements over the passive learning method. Indeed the proof of this
result presented in Appendix E employs an active learning algorithm that leverages this
dependence to such an extent that it does not seem feasible toremove this dependence
on the distribution without altering the fundamental nature of the algorithm. However,
using an entirely different type of active learning algorithm, Hanneke [17] has recently
been able to strengthen Theorem 1, proving that for any passive learning algorithm,
there is an active learning algorithm achieving asymptotically strictly superior sample
complexities simultaneously for all nontrivial target functionsanddistributions.
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Appendix

A A Lower Bound on the Verifiable Sample Complexity of the
Empty Interval

Let h− denote the all-negative interval. In this section, we lowerbound the verifiable
sample complexity achievable for this classifier, with respect to the hypothesis classC
of interval classifiers under a uniform distribution on[0, 1]. Specifically, suppose there
exists an algorithmA that achieves a verifiable sample complexityS(ǫ, δ, h) such that
for someǫ ∈ (0, 1/4) and someδ ∈ (0, 1/4),

S(ǫ, δ, h−) <

⌊

1

24ǫ

⌋

.

We prove that this would imply the existence of some intervalh′ for which the value of
S(ǫ, δ, h′) is not validunder Definition 1. We proceed by the probabilistic method.
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Consider the subset of intervals

Hǫ =

{

[3iǫ, 3(i + 1)ǫ] : i ∈
{

0, 1, . . . ,

⌊

1 − 3ǫ

3ǫ

⌋}}

.

Let s = ⌈S(ǫ, δ, h−)⌉. For anyf ∈ C, let Rf , ĥf , andǫ̂f denote the random variables
representing, respectively, the set of examples(x, y) for which A(s, δ) requests labels
(including theiry = f(x) labels), the classifierA(s, δ) outputs, and the confidence
boundA(s, δ) outputs, whenf is the target function. LetI be an indicator function that
is 1 if its argument is true and 0 otherwise. Then

max
f∈Hǫ

P

(

PX

(

ĥf (X) 6= f(X)
)

> ǫ̂f

)

≥ 1

|Hǫ|
∑

f∈Hǫ

P

(

PX

(

ĥf (X) 6= f(X)
)

> ǫ̂f

)

≥ 1

|Hǫ|
∑

f∈Hǫ

P

(

(Rf = Rh−
) ∧

(

PX

(

ĥf (X) 6= f(X)
)

> ǫ̂f

))

= E





1

|Hǫ|
∑

f∈Hǫ:Rf=Rh
−

I

[

PX

(

ĥf (X) 6= f(X)
)

> ǫ̂f

]





≥ E





1

|Hǫ|
∑

f∈Hǫ:Rf=Rh
−

I

[(

PX

(

ĥf (X) = +1
)

≤ ǫ
)

∧ (ǫ̂f ≤ ǫ)
]



 (A.1)

= E





1

|Hǫ|
∑

f∈Hǫ:Rf=Rh
−

I

[(

PX

(

ĥh−
(X) 6= h−(X)

)

≤ ǫ
)

∧
(

ǫ̂h−
≤ ǫ

)

]



(A.2)

≥ E

[( |Hǫ| − s

|Hǫ|

)

I

[

PX

(

ĥh−
(X) 6= h−(X)

)

≤ ǫ̂h−
≤ ǫ

]

]

(A.3)

=

( |Hǫ| − s

|Hǫ|

)

P

(

PX

(

ĥh−
(X) 6= h−(X)

)

≤ ǫ̂h−
≤ ǫ

)

≥
( |Hǫ| − s

|Hǫ|

)

(1 − δ) > δ.

All expectations are over the draw of the unlabeled examplesand any additional random
bits used by the algorithm. Line A.1 follows from the fact that all intervalsf ∈ Hǫ are
of width3ǫ, so if ĥf labels less than a fractionǫ of the points as positive, it must make an
error of at least2ǫ with respect tof , which is more than̂ǫf if ǫ̂f ≤ ǫ. Note that, for any
fixed sequence of unlabeled examples and additional random bits used by the algorithm,
the setsRf are completely determined, and anyf andf ′ for which Rf = Rf ′ must
haveĥf = ĥf ′ and ǫ̂f = ǫ̂f ′ . In particular, anyf for which Rf = Rh−

will yield
identical outputs from the algorithm, which implies line A.2. Furthermore, the only
classifiersf ∈ Hǫ for which Rf 6= Rh−

are those for which some(x,−1) ∈ Rh−

hasf(x) = +1 (i.e.,x is in thef interval). But since there is zero probability that any
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unlabeled example is in more than one of the intervals inHǫ, with probability1 there
are at mosts intervalsf ∈ Hǫ with Rf 6= Rh−

, which explains line A.3.
This proves the existence of some target functionh∗ ∈ C such thatP(er(hs,δ) >

ǫ̂s,δ) > δ, which contradicts the conditions of Definition 1. ⊓⊔

B Proof of Theorem 2

First note that the total number of label requests used by theaggregation proce-
dure in Algorithm 1 is at mostt. Initially running the algorithmsA1, . . . , Ak re-
quires

∑k
i=1⌊t/(4i2)⌋ ≤ t/2 labels, and the second phase of the algorithm requires

k2⌈72 ln(4k/δ)⌉ labels, which by definition ofk is also less thant/2. Thus this proce-
dure is a valid learning algorithm.

Now suppose that the true targeth∗ is a member ofCi. We must show that for any
input t such that

t ≥ max
{

4i2 ⌈Si(ǫ/2, δ/2, h∗)⌉ , 2i2 ⌈72 ln(4i/δ)⌉
}

,

the aggregation procedure outputs a hypothesisĥt such thater(ĥt) ≤ ǫ with probability
at least1 − δ.

First notice that sincet ≥ 2i2 ⌈72 ln(4i/δ)⌉, k ≥ i. Furthermore, sincet/(4i2) ≥
⌈Si(ǫ/2, δ/2, h∗)⌉, with probability at least1−δ/2, runningAi(⌊t/(4i2)⌋, δ/2) returns
a functionhi with er(hi) ≤ ǫ/2.

Let j∗ = argminj er(hj). Sinceer(hj∗) ≤ er(hℓ) for any ℓ, we would expect
hj∗ to make no more errors thathℓ on points where the two functions disagree. It then
follows from Hoeffding’s inequality, with probability at least1 − δ/4, for all ℓ,

mj∗ℓ ≤
7

12
⌈72 ln (4k/δ)⌉ ,

and thus

min
j

max
ℓ

mjℓ ≤
7

12
⌈72 ln(4k/δ)⌉ .

Similarly, by Hoeffding’s inequality and a union bound, with probability at least1−δ/4,
for anyℓ such that

mℓj∗ ≤ 7

12
⌈72 ln(4k/δ)⌉ ,

the probability thathℓ mislabels a pointx given thathℓ(x) 6= hj∗(x) is less than2/3,
and thuser(hℓ) ≤ 2er(hj∗). By a union bound over these three events, we find that, as
desired, with probability at least1 − δ,

er(ĥt) ≤ 2er(hj∗) ≤ 2er(hi) ≤ ǫ .

⊓⊔
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C Proof of Theorem 3

Assume that(C,D) is learnable at an exponential rate. This means that there exists an
algorithmA such that for any targeth∗ in C, there exist constantsγh∗ andkh∗ such that
for anyǫ andδ, with probability at least1 − δ, for anyt ≥ γh∗(log (1/(ǫδ)))kh∗ , after
t label requests,A(t, δ) outputs anǫ-good classifier.

For eachi, let
Ci = {h ∈ C : γh ≤ i, kh ≤ i} .

Define an algorithmAi that achieves the required polylog verifiable sample complexity
on (Ci,D) as follows. First, run the algorithmA to obtain a functionhA. Then, output
the classifier inCi that isclosest tohA, i.e., the classifier that minimizes the probability
of disagreement withhA. If t ≥ i(log (2/(ǫδ)))i, then aftert label requests, with prob-
ability at least1−δ, A(t, δ) outputs anǫ/2-good classifier, so by the triangle inequality,
with probability at least1 − δ, Ai(t, δ) outputs anǫ-good classifier.

It can be guaranteed that with probability at least1 − δ, the function output byAi

has error no more than̂ǫt = (2/δ) exp
{

−(t/i)1/i
}

, which is no more thanǫ, implying
that the expression above is averifiablesample complexity.

Combining this with Theorem 2 yields the desired result. ⊓⊔

D Heuristic Approaches to Decomposition

As mentioned, decomposing purely based on verifiable complexity with respect to
(C,D) typically cannot yield a good decomposition even for very simple problems,
such as unions of intervals (see Section 5.2). The reason is that the set of classifiers
with high verifiable sample complexity may itself have high verifiable complexity.

Although we have not yet found a general method that can provably always find a
good decomposition when one exists (other than the trivial method in the proof of The-
orem 3), we find that a heuristic recursive technique is frequently effective. To begin,
defineC1 = C. Then fori > 1, recursively defineCi as the set of allh ∈ Ci−1 such
thatθh = ∞ with respect to(Ci−1,D). (Hereθh is the disagreement coefficient ofh;
see Definition 3.) Suppose that for someN , CN+1 = ∅. Then for the decomposition
C1, C2, . . . , CN , everyh ∈ C hasθh < ∞ with respect to at least one of the sets in
which it is contained, which implies that the verifiable sample complexity ofh with
respect to that set isO(polylog(1/ǫδ)), and the aggregation algorithm can be used to
achieve polylog sample complexity.

We could alternatively perform a similar decomposition using a suitable definition
of splitting index [10], or more generally using

lim sup
ǫ→0

SCi−1
(ǫ, δ, h)

(

log
(

1
ǫδ

))k

for some fixed constantk > 0.
This procedure does not always generate a good decomposition. However, ifN <

∞ exists, then it creates a decomposition for which the aggregation algorithm, com-
bined with an appropriate sequence of algorithms{Ai}, could achieve exponential
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rates. In particular, this is the case for all of the(C,D) described in Section 5. In fact,
even ifN = ∞, as long as everyh ∈ C does end up insomesetCi for finite i, this
decomposition would still provide exponential rates.

E Proof of Theorem 1

We now finally prove Theorem 1. This section is mostly self-contained, though we do
make use of Theorem 2 from Section 4 in the final step of the proof.

The proof proceeds according to the following outline. We begin in Lemma 1 by
describing special conditions under which a CAL-like algorithm has the property that
the more unlabeled examples it considers, the smaller the fraction of them it asks to be
labeled. Since CAL is able to identify the target’s true label on any example it consid-
ers (either the label of the example is requested or the example is not in the region of
disagreement and therefore the label is already known), we end up with a set of labeled
examples growing strictly faster than the number of label requests used to obtain it.
This set of labeled examples can be used as a training set in any passive learning al-
gorithm. However, the special conditions under which this happens are rather limiting.
In Lemma 2, we exploit a subtle relation between overlappingboundary regions and
shatterable sets to show that we can decompose any finite VC dimension class into a
countable number of subsets satisfying these special conditions. This, combined with
the aggregation algorithm, and a simple procedure that boosts the confidence level, ex-
tends Lemma 1 to the general conditions of Theorem 1.

Before jumping into Lemma 1, it is useful to define some additional notation. For
anyV ⊆ C andh ∈ C, define

B̃V (h, r) = {h′ ∈ Ṽ : PD(h(x) 6= h′(x)) ≤ r} ,

whereṼ is a countable dense subset ofV .7 Define theboundaryof h with respect toD
andV , denoted∂V h, as

∂V h = lim
r→0

DIS(B̃V (h, r)).

Lemma 1. Suppose(C,D) is such thatC has finite VC dimensiond, and ∀h ∈
C, P(∂Ch) = 0. Then for any passive learning sample complexitySp(ǫ, δ, h) for (C,D)
which is nondecreasing asǫ → 0, there exists an active learning algorithm achieving a
sample complexitySa(ǫ, δ, h) such that, for anyδ > 0 and any target functionh∗ ∈ C
with Sp(ǫ, δ, h

∗) = ω(1) and∀ǫ > 0,Sp(ǫ, δ, h
∗) < ∞,

Sa(ǫ, 2δ, h∗) = o(Sp(ǫ, δ, h
∗)) .

Proof. Recall thatt is the “budget” of the active learning algorithm, and our goal
in this proof is to define an active learning algorithmAa and a functionSa(ǫ, δ, h∗)
such that, if t ≥ Sa(ǫ, δ, h∗) and h∗ ∈ C is the target function, thenAa(t, δ)
will, with probability 1 − δ, output anǫ-good classifier; furthermore, we require that
Sa(ǫ, 2δ, h∗) = o(Sp(ǫ, δ, h

∗)) under the conditions onh∗ in the lemma statement.

7 See the note in Definition 3.
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To construct this algorithm, we perform the learning in two phases. The first is a
passive phase, where we focus on reducing a version space, toshrink the region of
disagreement; the second is a phase where we construct a labeled training set, which is
much larger than the number of label requests used to construct it since all classifiers in
the version space agree on many of the examples’ labels.

To begin the first phase, we simply request the labels ofx1, x2, . . . , x⌊t/2⌋, and let

V = {h ∈ C̃ : ∀i ≤ ⌊t/2⌋, h(xi) = h∗(xi)} .

In other words,V is the set of all hypotheses iñC that correctly label the first⌊t/2⌋
examples. By standard consistency results [20, 6, 13], there is a universal constantc > 0
such that, with probability at least1 − δ/2,

sup
h∈V

er(h) ≤ c

(

d ln t + ln 1
δ

t

)

.

This implies that

V ⊆ B̃

(

h∗, c

(

d ln t + ln 1
δ

t

))

,

and thusP(DIS(V )) ≤ ∆t where

∆t = P

(

DIS

(

B̃

(

h∗, c

(

d ln t + ln 1
δ

t

))))

.

Clearly,∆t goes to0 ast grows, by the assumption onP(∂Ch∗).
Next, in the second phase of the algorithm, we will actively construct a set of labeled

examples to use with the passive learning algorithm. If everwe haveP(DIS(V )) = 0
for some finitet, then clearly we can return anyh ∈ V , so this case is easy.

Otherwise, letnt = ⌊t/(24P(DIS(V )) ln(4/δ))⌋, and supposet ≥ 2. By a
Chernoff bound, with probability at least1 − δ/2, in the sequence of examples
x⌊t/2⌋+1, x⌊t/2⌋+2, . . . , x⌊t/2⌋+nt

, at mostt/2 of the examples are inDIS(V ). If this is
not the case, we fail and output an arbitraryh; otherwise, we request the labels of every
one of thesent examples that are inDIS(V ).

Now construct a sequenceL = {(x′
1, y

′
1), (x

′
2, y

′
2), . . . , (x

′
nt

, y′
nt

)} of labeled ex-
amples such thatx′

i = x⌊t/2⌋+i, andy′
i is either the label agreed upon by all the el-

ements ofV , or it is theh∗(x⌊t/2⌋+i) label value we explicitly requested. Note that
becauseinfh∈V er(h) = 0 with probability1, we also have that with probability1 ev-
ery y′

i = h∗(x′
i). We may therefore use thesent examples as iid training examples for

the passive learning algorithm.
SupposeA is the passive learning algorithm that guaranteesSp(ǫ, δ, h) passive sam-

ple complexities. Then letht be the classifier returned byA(L, δ). This is the classifier
the active learning algorithm outputs.

Note that ifnt ≥ Sp(ǫ, δ, h
∗), then with probability at least1 − δ over the draw of

L, er(ht) ≤ ǫ. Define

Sa(ǫ, 2δ, h∗) = 1 + inf {s : s ≥ 144 ln(4/δ)Sp(ǫ, δ, h
∗)∆s} .
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This is well-defined whenSp(ǫ, δ, h
∗) < ∞ because∆s is nonincreasing ins, so some

value ofs will satisfy the inequality. Note that ift ≥ Sa(ǫ, 2δ, h∗), then (with probabil-
ity at least1 − δ/2)

Sp(ǫ, δ, h
∗) ≤ t

144 ln(4/δ)∆t
≤ nt .

So, by a union bound over the possible failure events listed above (δ/2 for
P(DIS(V )) > ∆t, δ/2 for more thant/2 examples ofL in DIS(V ), and δ for
er(ht) > ǫ when the previous failures do not occur), ift ≥ Sa(ǫ, 2δ, h∗), then with
probability at least1 − 2δ, er(ht) ≤ ǫ. SoSa(ǫ, δ, h∗) is a valid sample complexity
function, achieved by the described algorithm. Furthermore,

Sa(ǫ, 2δ, h∗) ≤ 1 + 144 ln(4/δ)Sp(ǫ, δ, h
∗)∆Sa(ǫ,2δ,h∗)−2.

If Sa(ǫ, 2δ, h∗) = O(1), then sinceSp(ǫ, δ, h
∗) = ω(1), the result is established. Oth-

erwise, sinceSa(ǫ, δ, h∗) is nondecreasing asǫ → 0, Sa(ǫ, 2δ, h∗) = ω(1), so we know
that∆Sa(ǫ,2δ,h∗)−2 = o(1). Thus,Sa(ǫ, 2δ, h∗) = o (Sp(ǫ, δ, h

∗)). ⊓⊔

As an interesting aside, it is also true (by essentially the same argument) that un-
der the conditions of Lemma 1, theverifiablesample complexity of active learning is
strictly smaller than theverifiablesample complexity of passive learning in this same
sense. In particular, this implies a verifiable sample complexity that iso (1/ǫ) under
these conditions. For instance, with some effort one can show that these conditions
are satisfied when the VC dimension ofC is 1, or when the support ofD is at most
countably infinite. However, for more complex learning problems, this condition will
typically not be satisfied, and as such we require some additional work in order to use
this lemma toward a proof of the general result in Theorem 1. Toward this end, we
again turn to the idea of a decomposition ofC, this time decomposing it into subsets
satisfying the condition in Lemma 1.

In order to prove the existence of such a decomposition, we will rely on the as-
sumption of finite VC dimension. The essential insight here is that anytime boundary
regions are overlapping, we can shatter points in the overlap regions. To build the intu-
ition for this, it may be helpful to first go through a related proof of a simpler (signif-
icantly weaker) result: namely, that not all classifiers in aC with VC dimension1 can
haveP(∂Ch) = 1.8 This situation corresponds to all boundaries overlapping almost
completely. To see that this is true, suppose the opposite, and consider any two clas-
sifiersh1, h

′
1 ∈ C̃ with P(h1(x) 6= h′

1(x)) > 0. Let A1 = {x : h1(x) 6= h′
1(x)}

and ∆1 = P(A1)/3. Then, sinceP(∂Ch1 ∩ ∂Ch′
1) = 1, there must be some re-

gion A′
1 ⊆ ∂Ch1 ∩ ∂Ch′

1 with P(A′
1) > 0 and someh2 ∈ B̃C(h1,∆1) for which

P(x ∈ A′
1 ∧ h2(x) 6= h1(x)) > 0 (becauseA′

1 ⊆ ∂Ch1 and C̃ is countable).
Furthermore, lettingA′′

1 = {x ∈ A′
1 : h2(x) 6= h1(x)}, since A′′

1 ⊆ ∂Ch′
1

there exists someh′
2 ∈ B̃C(h′

1,∆1) with P(x ∈ A′′
1 ∧ h′

1(x) 6= h′
2(x)) > 0. Let

A2 = {x ∈ A′′
1 : h′

1(x) 6= h′
2(x)}. Since, by construction,P(h1(x) 6= h2(x)) ≤ ∆1

8 In fact, as mentioned, with a bit more effort, one can show that when the VC dimension is1,
everyh ∈ C hasP(∂Ch) = 0. However, the weaker result studied here will be illustrative of
a general technique applied in Lemma 2.

27



andP(h′
1(x) 6= h′

2(x)) ≤ ∆1, we have that{x : h2(x) = h1(x) 6= h′
1(x) = h′

2(x)}
is nonempty, so choose any pointx1 from this region. Furthermore, as mentioned, the
setA2 is nonempty, so take any pointx2 ∈ A2. Then we have that{h1, h

′
1, h2, h

′
2}

shatters{x1, x2}, which is a contradiction to the assumption that the VC dimension of
C is 1. It is not difficult to see that the argument can be applied repeatedly to add more
points to the shatterable set, each time doubling the numberof classifiers by finding
another classifier sufficiently close to a respective classifier from the previous round so
that it agrees with that one on most of all of the setsA1, A2, etc., but disagrees with
that classifier on some subset of the overlap region of the boundaries of classifiers from
the previous rounds.

This general relationship between overlapping boundariesand shatterable sets is
the primary tool in proving the existence of a good decomposition. To extend the idea
beyond the simple case of boundaries with probability one, we need some way to show
that certain smaller boundaries will overlap under some conditions. To this end, we will
prove that any set of classifiers that are sufficiently close together must have significant
overlap in their boundaries, and thus if the boundaries havesimilar probabilities, the
regions will be almost the same, and we can apply the above argument. The formal
details are given below.

Lemma 2. For any(C,D) whereC has finite VC dimensiond, there exists a countably
infinite sequenceC1, C2, . . . such thatC = ∪∞

i=1Ci and∀i,∀h ∈ Ci, P(∂Ci
h) = 0.

Proof. The case ofd = 0 is clear, so assumed > 0. A decomposition procedure is given
in Algorithm 2. We will show that, if we letH = Decompose(C), then the maximum
recursion depth is at mostd (counting the initial call as depth0). Note that if this is true,
then the lemma is proved, since it implies thatH can be uniquely indexed by ad-tuple
of integers, of which there are at most countably many.

Algorithm 2 Decompose(H)

LetH∞ = {h ∈ H : P(∂Hh) = 0}
if H∞ = H then

Return{H}
else

For i ∈ {1, 2, . . .}, letHi =
˘

h∈H : P(∂Hh)∈((1 + 2−(d+3))−i, (1 + 2−(d+3))1−i]
¯

Return
S

i∈{1,2,...}

Decompose(Hi) ∪ {H∞}

end if

For the sake of contradiction, suppose that the maximum recursion depth of
Decompose(C) is more thand (or is infinite). Thus, based on the firstd + 1 recur-
sive calls in one of those deepest paths in the recursion tree, there is a sequence of
sets

C = H(0) ⊇ H(1) ⊇ H(2) ⊇ · · ·H(d+1) 6= ∅
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and a corresponding sequence of finite positive integersi1, i2, . . . , id+1 such that for
eachj ∈ {1, 2, . . . , d + 1}, everyh ∈ H(j) has

P(∂H(j−1)h) ∈
(

(1 + 2−(d+3))−ij , (1 + 2−(d+3))1−ij

]

.

Take anyhd+1 ∈ H(d+1). There must exist somer > 0 such that∀j ∈
{1, 2, . . . , d + 1},

P(DIS(B̃H(j−1)(hd+1, r))) ∈
(

(1 + 2−(d+3))−ij, (1 + 2−(d+2))(1 + 2−(d+3))−ij
]

.(E.1)

In particular, by (E.1), eachh ∈ B̃H(j)(hd+1, r/2) has

P(∂H(j−1)h) > (1 + 2−(d+3))−ij ≥ (1 + 2−(d+2))−1
P(DIS(B̃H(j−1)(hd+1, r))),

though by definition of∂H(j−1)h and the triangle inequality,

P(∂H(j−1)h \ DIS(B̃H(j−1)(hd+1, r))) = 0.

Recall that in general, for setsQ andR1, R2, . . . , Rk, if P(Ri \ Q) = 0 for all i, then
P(

⋂

i Ri) ≥ P(Q)−∑k
i=1(P(Q)−P(Ri)). Thus, for anyj, any set of≤ 2d+1 classifiers

T ⊂ B̃H(j)(hd+1, r/2) must have

P(∩h∈T ∂H(j−1)h) ≥ (1−2d+1(1−(1+2−(d+2))−1))P(DIS(B̃H(j−1)(hd+1, r))) > 0.

That is, any set of2d+1 classifiers inH̃(j) within distancer/2 of hd+1 will have bound-
aries with respect toH(j−1) which have a nonzero probability overlap. The remainder
of the proof will hinge on this fact that these boundaries overlap.

We now construct a shattered set of points of sized + 1. Consider constructing a
binary tree with2d+1 leaves as follows. The root node containshd+1 (call this level
d+1). Lethd ∈ B̃H(d)(hd+1, r/4) be some classifier withP(hd(X) 6= hd+1(X)) > 0.
Let the left child of the root behd+1 and the right child behd (call this leveld). Define
Ad = {x : hd(x) 6= hd+1(x)}, and let∆d = 2−(d+2)

P(Ad). Now for eachℓ ∈
{d − 1, d − 2, . . . , 0} in decreasing order, we define theℓ level of the tree as follows.
Let Tℓ+1 denote the nodes at theℓ + 1 level in the tree, and letA′

ℓ =
⋂

h∈Tℓ+1
∂H(ℓ)h.

We iterate over the elements ofTℓ+1 in left-to-right order, and for each oneh, we find
h′ ∈ B̃H(ℓ)(h,∆ℓ+1) with

PD(h(x) 6= h′(x) ∧ x ∈ A′
ℓ) > 0 .

We then define the left child ofh to beh and the right child to beh′, and we update

A′
ℓ ← A′

ℓ ∩ {x : h(x) 6= h′(x)} .

After iterating through all the elements ofTℓ+1 in this manner, defineAℓ to be the
final value ofA′

ℓ and∆ℓ = 2−(d+2)
P(Aℓ). The key is that, because everyh in the

tree is withinr/2 of hd+1, the setA′
ℓ always has nonzero measure, and is contained

in ∂H(ℓ)h for any h ∈ Tℓ+1, so there always exists anh′ arbitrarily close toh with
PD(h(x) 6= h′(x) ∧ x ∈ A′

ℓ) > 0.
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Note that forℓ ∈ {0, 1, 2, . . . , d}, every node in the left subtree of anyh at level
ℓ + 1 is strictly within distance2∆ℓ of h, and every node in the right subtree of anyh
at levelℓ + 1 is strictly within distance2∆ℓ of the right child ofh. Thus,

P(∃h′ ∈ Tℓ, h
′′ ∈ Subtree(h′) : h′(x) 6= h′′(x)) < 2d+12∆ℓ.

Since

2d+12∆ℓ = P(Aℓ)

= P



x ∈
⋂

h′∈Tℓ+1

∂H(ℓ)h′ and∀ siblingsh1, h2 ∈ Tℓ, h1(x) 6= h2(x)



 ,

there must be some set

A∗
ℓ =

{

x ∈
⋂

h′∈Tℓ+1

∂H(ℓ)h′ s.t.∀siblingsh1, h2 ∈ Tℓ, h1(x) 6=h2(x)

and∀h ∈ Tℓ, h
′ ∈ Subtree(h), h(x)=h′(x)

}

⊆ Aℓ

with P(A∗
ℓ ) > 0. That is, for everyh at levelℓ + 1, every node in its left subtree agrees

with h on everyx ∈ A∗
ℓ and every node in its right subtree disagrees withh on every

x ∈ A∗
ℓ . Therefore, taking any{x0, x1, x2, . . . , xd} such that eachxℓ ∈ A∗

ℓ creates
a shatterable set (shattered by the set of leaf nodes in the tree). This contradicts VC
dimensiond, so we must have the desired claim that the maximum recursiondepth is at
mostd. ⊓⊔

Before completing the proof of Theorem 1, we have two additional minor concerns
to address. The first is that the confidence level in Lemma 1 is slightly smaller than
needed for the theorem. The second is that Lemma 1 only applies whenSp(ǫ, δ, h

∗) <
∞ for all ǫ > 0. We can address both of these concerns with the following lemma.

Lemma 3. Suppose(C,D) is such thatC has finite VC dimensiond, and suppose
S′

a(ǫ, δ, h∗) is a sample complexity for(C,D). Then there is a sample complexity
Sa(ǫ, δ, h∗) for (C,D) s.t. for anyδ ∈ (0, 1/4) andǫ ∈ (0, 1/2),

Sa(ǫ, δ, h∗) ≤ (k + 2)max

{

min
{

S′
a(ǫ/2, 4δ, h∗), 16d log(26/ǫ)+8 log(4/δ)

ǫ

}

(k + 1)272 log(4(k + 1)2/δ)
,

wherek = ⌈log(δ/2)/ log(4δ)⌉.

Proof. SupposeA′
a is the algorithm achievingS′

a(ǫ, δ, h∗). Then we can define a new
algorithmAa as follows. Supposet is the budget of label requests allowed ofAa andδ is
its confidence argument. We partition the indices of the unlabeled sequence intok + 2
infinite subsequences. Fori ∈ {1, 2, . . . , k}, let hi = A′

a(t/(k + 2), 4δ), each time
runningA′

a on a different one of these subsequence, rather than on the full sequence.
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From one of the remaining two subsequences, we request the labels of the firstt/(k+2)
unlabeled examples and lethk+1 denote any classifier inC consistent with these labels.
From the remaining subsequence, for eachi, j ∈ {1, 2, . . . , k + 1} s.t. P(hi(X) 6=
hj(X)) > 0, we find the first⌊t/((k + 2)(k + 1)k)⌋ examplesx s.t.hi(x) 6= hj(x),
request their labels and letmij denote the number of mistakes made byhi on these
labels (ifP(hi(X) 6= hj(X)) = 0, we letmij = 0). Now take as the return value of
Aa the classifierhî wherêi = arg mini maxj mij .

Supposet ≥ Sa(ǫ, δ, h∗). First note that, by a Hoeffding bound argument (similar to
the proof of Theorem 2),t is large enough to guarantee with probability≥ 1− δ/2 that
er(hî) ≤ 2mini er(hi). So all that remains is to show that, with probability≥ 1− δ/2,
at least one of thesehi haser(hi) ≤ ǫ/2.

If S′
a(ǫ/2, 4δ, h∗) > 16d log(26/ǫ)+8 log(4/δ)

ǫ , then the classic results for consistent
classifiers (e.g., [20, 6, 13]) guarantee that, with probability ≥ 1−δ/2, er(hk+1) ≤ ǫ/2.
Otherwise, we havet ≥ (k + 2)S′

a(ǫ/2, 4δ, h∗). In this case, each ofh1, . . . , hk has an
independent≥ 1 − 4δ probability of havinger(hi) ≤ ǫ/2. The probability at least one
of them achieves this is therefore at least1 − (4δ)k ≥ 1 − δ/2. ⊓⊔

We are now ready to combine these lemmas to prove Theorem 1.

Proof (Theorem 1).Theorem 1 now follows by a simple combination of Lemmas 1
and 2, along with Theorem 2 and Lemma 3. That is, the passive learning algorithm
achieving passive learning sample complexitySp(ǫ, δ, h) on (C,D) also achieves pas-
sive sample complexitȳSp(ǫ, δ, h) = minǫ′≤ǫ⌈Sp(ǫ

′, δ, h)⌉ on any (Ci,D), where
C1, C2, . . . is the decomposition from Lemma 2. So Lemma 1 guarantees the existence
of active learning algorithmsA1, A2, . . . such thatAi achieves a sample complexity
Si(ǫ, 2δ, h) = o(S̄p(ǫ, δ, h)) on(Ci,D) for all δ > 0 andh ∈ Ci s.t.S̄p(ǫ, δ, h) is finite
andω(1). Then Theorem 2 tells us that this implies the existence of anactive learning
algorithm based on theseAi combined with Algorithm 1, achieving sample complex-
ity S′

a(ǫ, 4δ, h) = o(S̄p(ǫ/2, δ, h)) on (C,D), for any δ > 0 andh s.t. S̄p(ǫ/2, δ, h)
is always finite and isω(1). Lemma 3 then implies the existence of an algorithm
achieving sample complexitySa(ǫ, δ, h) ∈ O(min{Sa(ǫ/2, 4δ, h), log(1/ǫ)/ǫ}) ⊆
o(S̄p(ǫ/4, δ, h)) ⊆ o(Sp(ǫ/4, δ, h)) for all δ ∈ (0, 1/4) and allh ∈ C. ⊓⊔

Note there is nothing special about4 in Theorem 1. Using a similar argument, it can be
made arbitrarily close to1.
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