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Abstract. We describe and explore a new perspective on the sample complexity
of active learning. In many situations where it was generally believedtiiae
learning does not help, we show that active learning does help in the lingh of
with exponential improvements in sample complexity. This contrasts with the
traditional analysis of active learning problems such as non-homogsnmear
separators or depth-limited decision trees, in whigfl /¢) lower bounds are
common. Such lower bounds should be interpreted carefully; indeehrove
that it is always possible to learn argood classifier with a number of samples
asymptotically smaller than this. These new insights arise from a subtle variatio
on the traditional definition of sample complexity, not previously recoghine

the active learning literature.

1 Introduction

Machine learning research has often focused on the probfdeaming a classifier
from a fixed set of labeled examples. However, for many copteary practical prob-
lems such as classifying web pages or detecting spam, thefeen an abundance of
unlabeledexamples available, from which only a relatively small stlmay be labeled
and used for learning. In such scenarios, the natural questat arises is how to best
select a useful subset of examples to be labeled.

One possibility, which has recently generated substaintiatest, isactive learn-
ing. In active learning, the learning algorithm itself is alledvto select the subset of
available examples to be labeled. The algorithm may redalests one at a time, using
the requested label information from previously selecteah®les to inform its deci-
sion of which example to select next. The hope is that by catjuesting the labels
of “informative” examples, the algorithm can learn a goaaksifier using significantly
fewer labels than would typically be required to learn asiféer from randomly chosen
examples.

A number of active learning analyses have recently beengsexpin a PAC-style
setting, both for the realizable and for the agnostic casssijting in a sequence of im-
portant positive and negative results [2,4,8-12, 15, 1AgsSE include several general
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sample complexity bounds in terms of complexity paramdtddsl5, 16,12, 17], thus
giving general sufficient conditions for signficant improvents over passive learning.
For instance, perhaps the most widely-studied concretiéiymsesult for when active
learning helps is that of learning homogeneous (i.e., tjindhe origin) linear separa-
tors, when the data is linearly separable and distributéf@umly over the unit sphere
[2,4,10-12]. However, in addition to these known positiesuits, there are simple
(almost trivial) examples, such as learning intervals ar-homogeneous linear sepa-
rators, where these analyses of sample complexity haveatwtl that perhaps active
learning does not help at all [10, 16].

In this work, we approach the analysis of active learningaigms from a differ-
ent angle. Specifically, we point out that traditional asaky have studied the number
of label requests required before an algorithm can bothym®dne-good classifier
and prove that the classifier’s error is no more tharThese studies have turned up
simple examples where this number is no smaller than the aunftrandom labeled
examples required for passive learning. This is the caske&oning certain nonhomo-
geneous linear separators and intervals on the real lieganerally seems to be a
common problem for many learning scenarios. As such, it bdsbme to conclude
that active learningloes not helgor most learning problems. One of the goals of our
present analysis is to dispel this misconception. Spetifiaae study the number of
labels an algorithm needs to request before it can produeegaod classifier, even
if there is no accessible confidence bound available toywéhné quality of the clas-
sifier. With this type of analysis, we prove that active Iéagncan essentially always
achieve asymptotically superior sample complexity coragao passive learning when
the VC dimension is finite. Furthermore, we find that for maatunal learning prob-
lems, including the negative examples given in the previtesture, active learning
can achieve exponentfaimprovements over passive learning with respect to depen-
dence orx. This situation is characterized in Figure 1.1.

To our knowledge, this is the first work to address this supdiat in the context
of active learning. Though several previous papers hawtiestitbounds on this latter
type of sample complexity [12, 11, 7], their results weoestrongeithan the results one
could prove in the traditional analysis. As such, it seersl#tige gap between the two
types of sample complexities has gone unnoticed until now.

1.1 A Simple Example: Intervals

To get some intuition about when these types of sample codityplere different, con-
sider the following example. Suppose tldais the class of all intervals ovéd, 1] and
D is a uniform distribution ovef0, 1]. If the target function is the empty interval, then
for any sufficiently smalk, in order toverify with high confidence that this (or any)
interval has erroK ¢, we need to request labels in at least a constant fractioheof t
£2(1/€) intervals|0, 2¢], [2¢, 4¢], . . ., requiringd2(1/¢) total label requests.

However, no matter what the target function is, we @iad an e-good classifier
with only a logarithmic sample complexity via the followiregtremely simple 2-phase

4 We slightly abuse the term “exponential” throughout the paper. In partjoukarefer to any
polylog(1/¢) as being an exponential improvement ovgée.
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Fig. 1.1.Active learning can often achieve exponential improvements, thouglaiymases the
amount of improvement cannot be detected from information availatketiearning algorithm.
Here~y may be a target-dependent constant.

learning algorithm. The algorithm will be allowed to makéabel requests, and then
we will find a value oft that is sufficiently large to guarantee learning. We statt i
large set of unlabeled examples. In the first phase, on eartdnwe choose a point
uniformly at random from the unlabeled sample and querghsl. We repeat this until
we either observe &1 label, at which point we enter the second phase, or we uge all
label requests. In the second phase, we alternate betwerimgone binary search on
the examples betweédhand thatz and a second on the examples between thatd

1 to approximate the end-points of the interval. Once we use label requests, we
output a smallest interval consistent with the observedifab

If the target is an intervek, b] C [0, 1], whereb — a = w > 0, then after roughly
O(1/w) queries (a constant number that depends only on the taagatitive example
will be found. Since onlyO(log(1/¢)) additional queries are required to run the binary
search to reach error rateit suffices to have > O(1/w + log(1/¢)) = O(log(1/e)).
This essentially reflects the “two-phases” phenomenondnogg10], where improve-
ments are often observable only after some initial perindhis case tha /w initial
samples. On the other hand, if the targétlabels every point as-1 (the so-called
all-negativefunction), the algorithm described above would output adtlypsis with0
error even aftef label requests, so arty> 0 suffices in this case. So in general, the
sample complexity is at worgd(log(1/¢)). Thus, we see a sharp distinction between
the sample complexity required fmd a good classifier (logarithmic) and the sample
complexity needed to both find a good classiéiad verifythat it is good.

This example is particularly simple, since there is effesdi only one“hard” target
function (the all-negative target). However, most of thecgs we study are significantly
more complex than this, and there are generally many tafgetehich it is difficult to
achieve good verifiable complexity.

1.2 Our Results

We show that in many situations where it was previously beliethat active learning
cannot help, active learning does help in the limit. Our nsgacific contributions are
as follows:



— We distinguish between two different variations on the dédin of sample com-
plexity. The traditional definition, which we refer to aerifiable sample complex-
ity, focuses on the number of label requests needed to obtainfaleace bound
indicating an algorithm has achieved at mestrror. The newer definition, which
we refer to simply asample complexityfocuses on the number of label requests
before an algorithm actually achieves at mestrror. We point out that the latter
is often significantly smaller than the former, in contraspassive learning where
they are often equivalent up to constants for most nontdieaning problems.

— We prove thatany distribution and finite VC dimension concept class has activ
learning sample complexity asymptotically smaller thagn sample complexity of
passive learning for nontrivial targets. A simple corgllaf this is that finite VC
dimension implie®(1/¢) active learning sample complexity.

— We show it is possible to actively learn with arponential ratea variety of con-
cept classes and distributions, many of which are known daire a linear rate
in the traditional analysis of active learning: for examptgervals on[0, 1] and
non-homogeneous linear separators under the uniformitdigon.

— We show that even in this new perspective, there do existribeands; it is pos-
sible to exhibit somewhat contrived distributions wherpanential rates are not
achievable even for some simple concept spaces (see Thé&)rerhe learning
problems for which these lower bounds hold are much moreaté than the lower
bounds from the traditional analysis, and intuitively setlemepresent the core of
what makes a hard active learning problem.

2 Background and Notation

Let X’ be an instance space alid= {—1, 1} be the set of possible labels. L&the the
concept class, a set of measurable functions mapping fam)’, and assume that
has VC dimensiod. We consider here the realizable setting in which it is aszlithat
the instances are labeled by a target funcfiénn the classC. There is a distribution
D on X, and theerror rate of a hypothesis is defined asr(h) = Pp(h(x) # h*(x)).

We assume the existence of an infinite sequengers,... of examples sam-
pled i.i.d. according toD. The learning algorithm may access any finite prefix
x1,T9,. .., 2y Of the sequence. Essentially, this means we allow the afgoraccess
to an arbitrarily large, but finite, sequence of random ueled examples. In active
learning, the algorithm can select any exampleand request the labgl (z;) that the
target assigns to that example, observing the labels ofelliqus requests before se-
lecting the next example to query. The goal is to find a hypthe with small error
with respect taD, while simultaneously minimizing the number of label resfisethat
the learning algorithm makes.

2.1 Two Definitions of Sample Complexity

The following definitions present a subtle but significastidiction we refer to through-
out the paper. Several of the results that follow highlightagions where these two
definitions of sample complexity can have dramaticallyati#ht dependence @n



Definition 1. A functionS(e, ¢, h*) is averifiable sample complexitipr a pair (C, D)
if there exists an active learning algorithA1z, ¢) that outputsoth a classifiet; s and
avalue¢, s € R after making at most label requests, such that for any target function
h* e Ce € (0,1/2),0 € (0,1), foranyt > 0, Pp(er(hes) < é5) > 1 — ¢ and for
anyt > S(e, 4, h*),

Ppler(hys) < érs <€) >1—0.

Definition 2. A functionS(e, 6, h*) is a sample complexityor a pair (C, D) if there
exists an active learning algorith(, ) that outputs a classifiek, s after making at
mostt label requests, such that for any target functiohe C,e € (0,1/2),6 € (0, 1),
foranyt > S(e, 6, h*),

Pp(er(hys) <€) >1—4.

Let us take a moment to reflect on the difference between theselefinitions,
which may appear quite subtle. Both definitions allow the gancomplexity to de-
pend both on the target function and on the input distriloutithe only distinction is
whether or not there is aaccessible guaranteer confidence bounan the error of
the chosen hypothesis that is also at mosthis confidence bound can only depend
on quantities accessible to the learning algorithm, suc¢heisrequested labels. As an
illustration of this distinction, consider again the predol of learning intervals. As de-
scribed above, there exists an active learning algoritheh ghat, given a large enough
initial segment of the unlabeled data, if the targétis an interval of widthw, then
after seeing)(1/w + log(1/¢)) labels, with high probability the algorithm outputs a
classifier with error rate less tharand a guarantee that the error rate is less thdn
this case, for sufficiently smadl the verifiable sample complexif§/(e, d, h*) is propor-
tional tolog(1/¢). However, ifh* is the all-negative function, then the verifiable sample
complexity is at least proportional t ¢ for all values ofe because high-confidence
guarantee can never be madéhout observing?(1/¢) labels; for completeness, a for-
mal proof of this fact is included in Appendix A. In contraas we have seen, there is
an algorithm that, given a large enough initial segment eftthlabeled sequence, pro-
duces a classifier with error rate less thafter a number of label requesiglog(1/¢))
for everytarget in the class of intervals; thus, itis possible to achgample complexity
O(log(1/¢)) for everytarget in the class of intervals.

Any verifiable sample complexity function is also a sampleptexity function, but
we study a variety of cases where the reverse is not truetdat&ins where there are
sample complexity functions significantly smaller than ankiievable verifiable sample
complexities, we sometimes refer to the smaller quantityhatrue sample complexity
to distinguish it from the verifiable sample complexity.

A common alternative formulation of verifiable sample coextly is to let A take
e as an argument and allow it to choose online how many labelestq it needs in
order to guarantee error at maedtl0, 2, 15, 16, 4]. This alternative definition is almost
equivalent, as the algorithm must be able to produce a caortfedeound of size at most
e on the error of its hypothesis in order to decide when to séguesting labels any-
way. In particular, any algorithm for either definition cae modified to fit the other
definition without significant loss in the verifiable samptanplexity values. For in-
stance, given any algorithm for the alternative formulatiand given a value aof, we



can simply run the algorithm with argumert? for increasing values af (and confi-
dence parametér/(2i?)) until we uset queries, and then take the output of the last run
that was completed; for a reasonable algorithm, the sangpiglexity should increase
ase decreases, and we typically expect logarithmic dependendbe confidence pa-
rameter, so the increase in sample complexity due to theéserexs is at most a factor
of O(log(1/€)). Similarly, given any algorithm for Definition 1, and giveras input,
we might simply double until ¢, 5,22y < ¢, giving an algorithm for the alternative
formulation; again, for reasonable algorithms, the sarnphaplexity of the converted
algorithm will be at most a factor @ (log(1/¢)) larger than the original.

Generally, there is some question as to what the “right” fdrmodel of active
learning is. For instance, we could instead eggenerate an infinite sequence /of
hypotheses (ofh;, ¢;) in the verifiable case), wherle; can depend only on the first
t label requests made by the algorithm along with some irsggiment of unlabeled
examples (as in [7]), representing the case where we areur®spriori of when we
will stop the algorithm. However, for our present purpogsleis, alternative too is almost
equivalent in sample complexity.

2.2 The Verifiable Sample Complexity

To date, there has been a significant amount of work studyiagverifiable sample
complexity (though typically under the aforementioneckmdative formulation). It is
clear from standard results in passive learning that vetdigample complexities of
O ((d/e)log(1/e) + (1/e)log(1/8)) are easy to obtain for any learning problem, by
requesting the labels of random examples. As such, theredssmuch interest in de-
termining when it is possible to achieve verifiable samplaglexity smallerthan this,
and in particular, when the verifiable sample complexity pbylogarithmic function
of 1 /e (representing exponential improvements over passiveilegy.

One of the earliest active learning algorithms in this madehe selective sam-
pling algorithm of Cohn, Atlas, and Ladner [8], henceforéifierred to as CAL. This
algorithm keeps track of two spaces—the curnegsion space&’;, defined as the set
of hypotheses i’ consistent with all labels revealed so far, and the cumagion of
uncertaintyR;, = {z € X : 3hq1,he € C; S.t.hi(x) # ho(x)}. In each round, the
algorithm picks a random unlabeled example fr@rand requests its label, eliminating
all hypotheses ii’; inconsistent with the received label to make the next varsjmce
Ci+1. The algorithm then defineg,, ; as the region of uncertainty for the new version
spaceC; 41 and continues. Its final hypothesis can then be taken arbjitfeom C4,
the final version space, and we use the diameter;ofor the é¢; error bound. While
there are a small number of cases in which this algorithm &ners have been shown
to achieve exponential improvements in the verifiable sarapiplexity for all targets
(most notably, the case of homogeneous linear separatdes time uniform distribu-
tion), there exist extremely simple concept classes foclvhi(1/¢) labels are needed
for some targets.

Recently, there have been a few quantities proposed to mesidEverifiable sample
complexity of active learning on any given concept class disttibution. Dasgupta’s
splitting index[10], which is dependent on the concept class, data disivibuand
target function, quantifies how easy it is to make progressatd reducing the diameter



of the version space by choosing an example to query. Anajis@ntity to which we
will frequently refer is Hanneke'disagreement coefficiefit5], defined as follows.

Definition 3. For any set of classifierél, define theegion of disagreemeif H as
DIS(H) = {x € X : 3hy, hy € H : hy(z) # ho(x)} .
For any classifier, andr > 0, let B(h, r) be a ball of radius- around? in C. Formally,
B(h,r) ={h € C:Pp(h(z) # N (z)) <r},

whereC denotes any countable dense subsét.8fFor our purposes, thdisagreement
coefficient of a hypothesis, denoted},, is defined as

0, = sup

P(DIS(B(h,r)))
>0 T .

The disagreement coefficient focancept clasg’ is defined a9 = supj, < 05.

The disagreement coefficient is often a useful quantity fadyzing the verifiable
sample complexity of active learning algorithms. For exlmip has been shown that
the algorithm of Cohn, Atlas, and Ladner described abovésaeh a verifiable sample
complexity at mos#,,- d - polylog(1/(ed)) when run with hypothesis clagsfor target
functionh* € C [15, 17]. We will use it in several of the results below.

To get a feel for how to calculate this quantity, it may be hdlpo see some ex-
amples (taken from [15]). For instance, consideuniform on|0, 1], and the concept
space of threshold classifiets = {h, : z € [0,1],h,(z) = +1iff > z}. In this
case, we hav@(h.,r) C {h., : |2/ — z| < r}, soDIS(B(h.,r)) C {z : |z — 2| <r},
and thusP(DIS(B(h.,r))) < 2r. Therefore, the disagreement coefficientofis < 2,
and in fact so is the disagreement coefficient for the entireept class.

On the other hand, consider the same but this time take the concept class of
intervals:C' = {hqp : a,b € [0,1], hep(x) = +1iff a < z < b}. In this case, for
hap With [a — b] = w > 0, we have two cases. f > w, {hqypy € C : |’ — V| <
7 —w} C B(hap,7), SO thatP(DIS(B(hay,7))) = 1. In the second case, if < w
we haveB(hap,7) C {ha @ la —a'| <7, |b—b| < 7}, so thatDIS(B(hap, 7)) C
{z : min{|z — al, |z — b} < r}, and thusP(DIS(B(hq,7))) < 4. Combining the
two cases, we have/w < 0p,,, < max{1/w,4}. However, for the intervals with
la — b| = 0, the first case holds for arbitrarily smallalues, implyingy,, , = oc.

We will see that both the disagreement coefficient and spithdex are also useful
quantities for analyzing true sample complexities, thotigdir use in that case is less
direct.

® That is,C is countable and/h € C,Ve > 0,30 € C : P(h(X) # k(X)) < e. Such a
subset exists, for example, in agywith finite VC dimension. We introduce this countable
dense subset to avoid certain degenerate behaviors, such aDiEB(h,0)) = X. For
instance the hypothesis class of classifiers on[@h&] interval that label exactly one point
positive has this property under any density function.



2.3 The True Sample Complexity

This paper focuses on situations where true sample contiglexare significantly
smaller than verifiable sample complexities. In particuls show that many common
pairs (C, D) have sample complexity that is polylogarithmichinth1/¢ and1/6 and
linear only in some finite target-dependent constgnt This contrasts sharply with the
infamousl /e lower bounds mentioned above, which have been identifiedeidfiable
sample complexity [16, 10, 9, 14]. The implication is that, &ny fixed targeh*, such
lower bounds vanish asapproaches8. This also contrasts with passive learning, where
1/e lower bounds are typically unavoidable [1].

Definition 4. We say tha{C, D) is actively learnable at an exponential rat¢here
exists an active learning algorithm achieving sample caxipy

S(e,d8, h*)=~p~ - polylog (1/(ed))

for all h* € C, where~;- is a finite constant that may depend bt and D but is
independent of and .

3 Strict Improvements of Active Over Passive

In this section, we describe conditions under which actaing can achieve a sam-
ple complexity asymptotically superior to passive leagnifihe results are surprisingly
general, indicating that whenever the VC dimension is fjrite/passive learning algo-

rithm is asymptoticallydominatedby an active learning algorithm il targets.

Definition 5. A functionS(e, 6, h*) is a passive learningample complexity for a pair
(C, D) if there exists an algorithm (((z1, h* (21)), (22, h*(22)), . . -, (xt, h*(24))), 9)
that outputs a classifief; 5, such that for any target functio® € C,e € (0,1/2),d €
(0,1), foranyt > S(e, 6, h*), Pp(er(hes) <€) >1—34.

Thus, a passive learning sample complexity correspondséstection of an ac-
tive learning sample complexity to algorithms that spealficrequest the first labels
in the sequence and ignore the rest. In particular, it is kntvat for any finite VC
dimension class, there is always @r(1/¢) passive learning sample complexity [18].
Furthermore, this is often (though not always) tight, in demse that for any passive
algorithm, there exist targets for which the correspongiasgsive learning sample com-
plexity is {2 (1/¢) [1]. The following theorem states that for any passive lggysample
complexity, there exists an achievable active learningmaiwomplexity with a strictly
slower asymptotic rate of growth. Its proof is included inp&ndix E.

Theorem 1. SupposeC' has finite VC dimension, and Ié? be any distribution on
X. For any passive learning sample complexdty(e, 3, k) for (C, D), there exists an
active learning algorithm achieving a sample complexXfye, 6, h) such that, for all
§ € (0,1/4) and targetsh* € C for which S, (e, d, h*) = w(1),°
Sale8,h7) = 0(Sy(e/4.0,h")) .
® Recall that we say a non-negative functipfe) = o (1/e) iff lin% o(e)/(1/e) = 0. Similarly,
o(e) = w(1) iff lin% 1/¢(e) = 0. Here and below, the(-), w(-), £2(-) andO(-) notation

8



In particular, this implies the following simple corollary

Corollary 1. For anyC with finite VC dimension, and any distributiéhover X', there
is an active learning algorithm that achieves a sample cexip} S(e, §, h*) such that
ford € (0,1/4),

S(e,6,h") =0(1/e)

for all targetsh* € C.

Proof. Let d be the VC dimension of’. The passive learning algorithm of Haussler,
Littlestone & Warmuth [18] is known to achieve a sample coswjiy no more than
(kd/e)log(1/0), for some universal constaht< 200. Applying Theorem 1 now im-
plies the result. O

Note the interesting contrast, not only to passive learning also to the known
results on theverifiablesample complexity of active learning. This theorem definli
states that theé? (1/¢) lower bounds common in the literature on verifiable samples
complexity cameverarise in the analysis of the true sample complexity of finite V
dimension classes.

4 Decomposing Hypothesis Classes

Let us return once more to the simple example of learning thsscof intervals
over [0, 1] under the uniform distribution. As discussed above, it il keown that
the verifiable sample complexity of the all-negative clissiin this class is2(1/e).
However, consider the more limited cla§$ C C containing only the intervalé
of width w), strictly greater than 0. Using the simple algorithm dessdibn Sec-
tion 1.1, this restricted class can be learned with a (véetdlasample complexity of
only O(1/wy, + log(1/¢)). Furthermore, the remaining set of classifiefs = C \ ¢’
consists of only a single function (the all-negative clésgi and thus can be learned
with verifiable sample complexity. Here we have that' can be decomposed into two
subclasse€” andC”, where both(C’, D) and(C”, D) are learnable at an exponential
rate. It is natural to wonder if the existence of such a deasition is enough to imply
thatC itself is learnable at an exponential rate.

More generally, suppose that we are given a distribufioand a hypothesis class
C such that we can construct a sequence of subclassesth sample complexity
Si(e,d,h), with C = U2, C;. Thus, if we knewa priori that the targeb* was a mem-
ber of subclasg’;, it would be straightforward to achievg (¢, 6, h*) sample complex-
ity. It turns out that it is possible to leamamy targeth* in any classC; with sample
complexity onlyO(S;(e/2,46/2,h*)), even without knowing which subclass the tar-
get belongs to in advance. This can be accomplished by ussigale aggregation

should be interpreted as— 0 (from the+ direction), treating all other parameters (edgand
h*) as fixed constants. Note that any algorithm achieving a sample comptxXityd, h) #
w(1) is guaranteed, with probabilit, 1 — ¢, to achieve error zero using a finite number
of samples, and therefore we cannot hope to achieve a slower asingrtavth in sample
complexity.



algorithm, such as the one given below. Here a set of actamileg algorithms (for
example, multiple instances of Dasgupta’s splitting atgan [10] or CAL) are run on
individual subclasse€’; in parallel. The output of one of these algorithms is sekkcte
according to a sequence of comparisons. Specifically, fon pair of hypotheses, say
hi andh; (whereh; is produced by running the algorithm f6f andh; is produced by
running the algorithm fo;), we find a number of points on whichh,(x) # h;(z),
and request their labels. With only a few such labels, we giea bit of information
about whetheer(h;) < er(h;) or vice versa. We then select themaking the smallest
number of mistakes in the worst of these comparisons, and@aclude that its error
rate cannot be much worse than any othgr

Algorithm 1 The Aggregation Procedure. Here it is assumed that US°,C;, and
that for eachi, A; is an algorithm achieving sample complexity at m8gte, ¢, h) for
the pair(C;, D). Both the main aggregation procedure and each algorithrtake a
number of label$ and a confidence parameteas parameters.

Let k be the largest integer sk? [721n(4k/5)] < t/2
fori=1,...,kdo
Let h; be the output of runningl; (|¢/(4i%)|,6/2) on the sequencgrz,—1}52+
end for
fori,5 € {1,2,...,k} do
if Pp(hi(z) # hj(x)) > 0then
Let R;; be the firstf 72 In(4k/6)] elementse in {2, }nz; With hi(z) # hj(z)
Request the labels of all examplesiy;
Let m;; be the number of elements ®;; on whichh; makes a mistake

else
Let mg; = 0
end if
end for
Returnfzt = h; wherei = argmin max Mg

ie{1,2,...,k} J€{1,2,....,k}

Using this algorithm, we can show the following sample cawjty bound. The
proof appears in Appendix B.

Theorem 2. For any distributionD, let Cy, Cs, . .. be a sequence of classes such that
for eachi, the pair (C;, D) has sample complexity at moS(e, 6, h) for all h € C;.
LetC = U2, C;. Then(C, D) has a sample complexity at most

‘min max {42‘2 [Si(e/2,6/2,h)],2i? {72 In 4;—‘ } )

i:heC;

foranyh € C. In particular, Algorithm 1 achieves this when given as inghe algo-
rithms A; that each achieve sample complexX§tye, d, k) on class(C;, D).

A particularly interesting implication of Theorem 2 is thhg ability to decompose
C'into a sequence of class€swith each paifC;, D) learnable at an exponential rate is

10



enough to imply thatC', D) is also learnable at an exponential rate. Sincevéréiable
sample complexity of active learning has received morentitie and is therefore better
understood, it is often useful to apply this result whenefetist known bounds on the
verifiable sample complexity; the approach loses nothirggimerality, as suggested by
the following theorem. The proof of this theorem. is incldde Appendix C.

Theorem 3. For any (C, D) learnable at an exponential rate, there exists a se-
quenceC’, Cy, ... with C = U2, C;, and a sequence of active learning algorithms
Ay, Ao, ... such that the algorithmi; achievesverifiable sample complexity at most
~ipolylog; (1/(ed)) for the pair(C;, D), wherey; is a constant independent oands.

In particular, the aggregation algorithm (Algorithm 1) aielves exponential rates when
used with these algorithms.

Note that decomposing a givéninto a sequence df; subsets that have good veri-
fiable sample complexities is not always a simple task. Omghfie tempted to think a
simple decomposition based on increasing values of velefsdample complexity with
respect toC, D) would be sufficient. However, this is not always the case,gerter-
ally we need to use information more detailed than verifigoleplexity with respect
to (C, D) to construct a good decomposition. We have included in AgpeD a sim-
ple heuristic approach that can be quite effective, and itiquéar yields good sample
complexities for everyC, D) described in Section 5.

Since it is more abstract and allows us to use known activailegalgorithms as a
black box, we frequently rely on the decompositional viewvdaduced here throughout
the remainder of the paper.

5 Exponential Rates

The results in Section 3 tell us that the sample complexigctif’e learning can be made
strictly superior to any passive learning sample compjexiten the VC dimension is
finite. We now ask how much better that sample complexity @arbparticular, we de-
scribe a number of concept classes and distributions ted¢arnable at aexponential
rate, many of which are known to requif¥ 1/¢) verifiablesample complexity.

5.1 Exponential rates for simple classes

We begin with a few simple observations, to point out situatiin which exponential
rates are trivially achievable; in fact, in each of the casestioned in this subsection,
the sample complexity is actualy(1).

Clearly if |[X| < oo or |C| < oo, we can always achieve exponential rates. In the
former case, we may simply request the label of ewarythe support ofD, and thereby
perfectly identify the target. The correspondifng= |X|. In the latter case, the CAL
algorithm can achieve exponential learning witk= |C'| since each queried label will
reduce the size of the version space by at least one.

Less obvious is the fact that a similar argument can be appdieanycountably
infinite hypothesis clas€'. In this case we can impose an ordering o, - - - over the
classifiers inC', and setC; = {h;} for all i. By Theorem 2, applying the aggregation
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procedure to this sequence yields an algorithm with sammieptexity S'(e, d, h;) =
2i2 [721n(4i/5)] = O(1).

5.2 Geometric Concepts, Uniform Distribution

Many interesting geometric conceptsid¥ are learnable at an exponential rate if the
underlying distribution is uniform on some subsetRf. Here we provide some ex-
amples; interestingly, every example in this subsectionduwame targets for which the
verifiablesample complexity i$2 (1/¢). As we see in Section 5.3, all of the results in
this section can be extended to many other types of disimifisias well.

Unions of k intervals under arbitrary distributions: Let X be the interval0, 1) and
let C(*) denote the class of unions of at mésntervals. In other wordg;'(*) contains
functions described by a sequerieg, a1, - - - ,as), whereag = 0,a, = 1, < 2k + 1,
andayg, - - - , ag is the (nondecreasing) sequence of transition points legtwegative
and positive segments (sois labeled+1 iff « € [a;,a;41) for someodd ). For any
distribution, this class is learnable at an exponential bgtthe following decomposition
argument. First, defin€; to be the set containing the all-negative function alondnwit
any functions that are equivalent given the distributionFormally,

Cy={heC® P(h(X)=+1)=0}.

ClearlyCy has verifiable sample complexity Fori = 2.3, ..., k+ 1, letC; be the set
containing all functions that can be represented as unibis-d intervals but cannot
be represented as unions of fewer intervals. More formakycan inductively define
eachC; as

Ci={heC® .3 € Cl=Vst.P(h(X)# K (X)) =0} \Uj;C; .

For ¢ > 1, within each subclas§’;, for eachh € C; the disagreement coefficient
is bounded by something proportional ko+ 1/w(h), wherew(h) is the weight of
the smallest positive or negative interval. Natgh) > 0 by construction of th€’; sets.
Thus running CAL withC; achieves polylogarithmic (verifiable) sample complexity f
anyh € C;. SinceC*) = U*T!C;, by Theorem 20(%) is learnable at an exponential
rate.

Ordinary Binary Classification Trees: Let X’ be the cubd0, 1], D be the uniform
distribution onX’, andC' be the class of binary decision trees using a finite number
of axis-parallel splits (see e.g., Devroye et al. [13], GbajR0). In this case, in the
same spirit as the previous example, wellgbe the set of decision treesdndistance
zero from a tree withi leaf nodes, not contained in aidy; for j < 4. For anyi, the
disagreement coefficient for arly € C; (with respect ta/C;, D)) is a finite constant,
and we can choosg, to have finite VC dimension, so eacl;, D) is learnable at an
exponential rate (by running CAL with’;). By Theorem 2(C, D) is learnable at an
exponential rate.
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Linear Separators

Theorem 4. Let C' be the concept class of linear separatorsiidimensions, and let
D be the uniform distribution over the surface of the unit sph&he pair(C, D) is
learnable at an exponential rate.

Proof. There are multiple ways to achieve this. We describe herenplsiproof that
uses a decomposition as follows. Lgt) be the probability mass of the minority class
under hypothesis. LetC'; be the set containing only the separafovgith A(h) = 0, let
Cy={h € C:\h)=1/2},andletCs = C'\(C,UC5). As before, we can use a black
box active learning algorithm such as CAL to learn within¢hessC's. To prove that we
indeed get the desired exponential rate of active learmieghow that the disagreement
coefficient of any separatdr € C;5 with respect tq Cs, D) is finite. Hanneke’s results
concerning the CAL algorithm [15, 17] then immediately imphat C5 is learnable at
an exponential rate. Sin&g, trivially has sample complexity, and(Cs, D) is known
to be learnable at an exponential rate [10, 4, 15, 12], coetbinith Theorem 2, this
would imply the result. Below, we will restrict the discussito hypotheses id’s,
which will be implicit in notation such a8 (h, r), etc.
First note that, to show;, < oo, it suffices to show that
lim P(DIS(B(h, 1)) < 00, (5.1)

r—0 r

so we will focus on this.

For anyh, there exists, > 0 s.t. VA’ € B(h,r),P(W(X) = +1) < 1/2 &
P(h(X) = +1) < 1/2, or in other words the minority class is the same among alll
h' € B(h,r). Now consider any)’ € B(h,r) for 0 < r < min{r,, A(h)/2}. Clearly
P(h(X) # /(X)) > |A(h) — A(h')|. Supposéi(x) = sign(w - x + b) andh’/(z) =
sign(w’ - x + b') (where, without loss, we assunfje|| = 1), anda(h, ') € [0, 7] is
the angle betweemw andw’. If «(h,R’) = 0 or if the minority regions of, andh’ do
not intersect, then clear§(h(X) # b/ (X)) > % min{A(h), A(h’)}. Otherwise,
consider the classifiefgz) = sign(w-r-+b) andh’(x) = sign(w’-z+b'), whereb and
b are chosen s.P(h(X) = +1) = P(h/(X) = +1) andA(h) = min{A(h), \(W)}.
That is,h and i/ are identical toh and k' except that we adjust the bias term of the
one with larger minority class probability to reduce its ity class probability to be
equal to the other’s. I # h, then most of the probability mass pf : h(z) # h(z)} is
contained in the majority class region/f(or vice versa ifh’ # h’), and in fact every
pointin {xz : h(z) # h(x)} is labeled byh according to the majority class label (and
similarly for 1’ andh’). Therefore, we havB(h(X) # b/ (X)) > P(h(X) # h/(X)).

We also have thaP(h(X) # h'(X)) > %’h')/\(ﬁ). To see this, consider the
projection onto th@-dimensional plane defined hyandw’, as in Figure 5.2. Because
the two decision boundaries must intersect inside the angke, the probability mass
contained in each of the two wedges (both witlh, 2") angle) making up the projected
region of disagreement betweénand i’ must be at least an(h, 1)/ fraction of
the total minority class probability for the respectivesdiier, implying the union of

these two wedges has probability mass at Iéﬁ%rt@A(B). Therefore, we must have
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Fig. 5.1.Projection ofh and?’ into the plane defined by andw’.

P(h(X) # h'(X)) > max{|)\(h) — AR)], 228D in{A(h), A(h’)}}, and thus

2a(h, i)
m

B(h,r) C {h  max {|)\(h) A1), min{ \(h), A(h’)}} < r} .

The region of disagreement of this set is at most

DIS ({h’ : M(A(h) —7) <7 ANR) = A(R)| < r}

CDISH{A :w' =wA |AK)—Ah)| <71})
UDIS({R : a(h, 1) < wr/A(h) A A(R) — A(K)| =1}),

where this last relation follows from the following reasogi Takey,,; to be the ma-
jority class ofh (arbitrary if A\(h) = 1/2). For anyh’ with |[\(h) — A(R))| < r, theh”
with a(h, h') = a(h, ') havingP(h(X) = yma;) — P(h"(X) = yma;) = r disagrees
with / on a set of points containinfr : h'(z) # h(z) = yma;}; likewise, the one
havingP(h(X) = Yma;) — P("(X) = yma;) = —r disagrees withh on a set of
points containingx : h'(x) # h(x) = —yma; }. SO any pointin disagreement between
h and somé’ with |A(h) — A(R')| < r anda(h, h") < mr/A(h) is also disagreed upon
by someh” with |A(h) — A(R")| = r anda(h,h") < 7r/A(h).

Some simple trigonometry shows that S({»’ : a(h,h’) < wr/A(h) A [A(h) —
A(R")] = r}) is contained in the set of points within distange(7r/A(h)) < wr/X of
the two hyperplanes representilagz) = sign(w-z+b1) andhs(z) = sign(w-x+bs)
defined by the property thath,) — A(h) = A(h) — A(h2) = r, so that the total region
of disagreement is contained within

{2 : h(2z) # ho(2z)} U{a: min{|w - & + b1, |w -2 + ba|} < 7r/A(R)}.

Clearly,P({x : hi(x) # ho(x)}) = 2r. Using previous results [2, 15], we know that
P({z : min{|w -z + b1|,|w - = + b2|} < 7r/A(h)}) < 2my/nr/A(h) (since the
probability mass contained within this distance of a hyfsare is maximized when
the hyperplane passes through the origin). Thus, the piltpadf the entire region
of disagreement is at moé2 + 2w+/n/A(h))r, so that (5.1) holds, and therefore the
disagreement coefficient is finite. O
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Fig. 5.2. lllustration of the proof of Theorem 5. The dark gray regions represd, (h1, 2r)
andBp, (h2, 2r). The functionh that gets returned is in the intersection of these. The light gray
regions represenBp, (h1, ¢/3) andBp, (h2,€/3). The target functiorh™ is in the intersection

of these. We therefore must have< ¢/3, and by the triangle inequality (h) < e.

5.3 Composition results

We can also extend the results from the previous subsediother types of distribu-
tions and concept classes in a variety of ways. Here we iectutew results to this
end.

Close distributions: If (C, D) is learnable at an exponential rate, then for any distribu-
tion D’ such that for all measurablé C X', \APp(A) < Pp/(A) < (1/N)Pp(A) for
some\ € (0,1], (C, D) is also learnable at an exponential rate. In particular, are ¢
simply use the algorithm fofC, D), filter the examples fronD’ so that they appear
like examples fromD, and then any large enough to find aa\-good classifier with
respect taD is large enough to find angood classifier with respect #0’. This general
idea has previously been observed for the verifiable sangpigkexity [10, 15].

Mixtures of distributions: Suppose there exist algorithrms and. A, for learning a
classC' at an exponential rate under distributidbs and D5 respectively. It turns out we
can also learn under amyixtureof D; and D at an exponential rate, by usiog and
A as black boxes. In particular, the following theorem redatee sample complexity
under a mixture to the sample complexities under the mixorgmonents.

Theorem 5. Let C' be an arbitrary hypothesis class. Assume that the p@itsD;)
and (C, D;) have sample complexitieS; (e, d, h*) and Sa(e,d, h*) respectively,
where D; and D, have density function®p,, and Pp, respectively. Then for
any a € [0,1], the pair (C,aD; + (1 — a)Dy) has sample complexity at most
2 [max{S1(e/3,0/2,h*), S2(e/3,0/2,h*)}].

Proof. If « = 0 or 1 then the theorem statement holds trivially. Assume instaatl
«a € (0,1). As we are only interested in proving the existence of anrélyo achieving
the desired sample complexity, we can describe a methodrrstef«, D, and Do,
and in particular it can depend on these items in essengdbigrary ways.

Suppose algorithmgl; and. A, achieve the stated sample complexities unber
and D, respectively. At a high level, the algorithm we define works'titering” the
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distribution over input so that it appears to come from tweams, one distributed ac-
cording toD, and one distributed according f%, and feeding these filtered streams to
A; and. A, respectively. To do so, we define a random sequences, - - - of indepen-
dent uniform random variables [f, 1]. We then run4, on the sequence of examples
x,; from the unlabeled data sequence satisfying

OéHDDl (.%‘l)
aPp, (x;) + (1 — a)Pp, (z;)’

U; <

and run4; on the remaining examples, allowing each to make an equabauaf label
requests.

Let hy and hy be the classifiers output hyl; and .4,. Because of the filtering,
the examples thatl; sees are distributed according £, so aftert/2 queries, the
current error ofh; with respect toD; is, with probability1l — ¢/2, at mostinf{¢’ :
Si(€/,6/2,h*) < t/2}. A similar argument applies to the error b with respect to
Ds.

Finally, let

r =inf{r : Bp, (h1,7) N Bp,(ha,r) # 0},

where
Bp,(hi,r) ={h € C : Pp,(h(z) # hi(z)) <r}.

Define the output of the algorithm to be ahye Bp, (h1,2r) N Bp,(hs, 2r). If a total
of t > 2 [max{S1(¢/3,6/2,h*), S2(e/3,0/2,h*)}] queries have been madg/'g by
A andt/2 by As), then by a union bound, with probability at ledst ¢, h* is in the
intersection of the:/3-balls, and sa: is in the intersection of th@¢/3-balls. By the
triangle inequality/ is within e of 2* under both distributions, and thus also under the
mixture. (See Figure 5.2 for an illustration of these ideas. a0

5.4 Lower Bounds

Given the previous discussion, one might suspectahgpair (C, D) is learnable at an
exponential rate, under some mild condition such as finitedil@nsion. However, we
show in the following that this isotthe case, even for some simple geometric concept
classes when the distribution is especially nasty.

Theorem 6. For any positive functionp(e) = o(1/¢), there exists a paif(C, D),
with the VC dimension of' equal 1, such that for any achievable sample complex-
ity S(e, 9, h) for (C, D), for anyé € (0,1/4),

Jh € Cs.t.S(e,d,h) # o(¢(e)).

In particular, takingg(e) = 1/+/€ (for example), this implies that there existé@ D)
that is not learnable at an exponential rate (in the senseefirition 4).

Proof. If we can prove this for any suah(e) # O(1), then clearly this would imply the
result holds forp(e) = O(1) as well, so we will focus om(e) # O(1) case. Lefl" be
a fixed infinite tree in which each node at depthasc; children;c; is defined shortly
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Fig. 5.3.A learning problem where exponential rates are not achievable. Tlamgesspace is an
infinite-depth tree. The target labels nodes along a single infinite path a@nd labels all other
nodes—1. For any¢(e) = o(1/¢), when the number of children and probability mass of each
node at each subsequent level are set in a certain way, sample kiieplef o(¢(¢)) are not
achievable for all targets.

below. We consider learning the hypothesis cldsshere eaclh € C corresponds to a
path down the tree starting at the root; every node alongptitis is labeled while the
remaining nodes are labeled!. Clearly for eacth € C there is precisely one node on
each level of the tree labelddy A (i.e. one node at each deptli).has VC dimension
1 since knowing the identity of the node labele@n leveli is enough to determine
the labels of all nodes on levels. . . , i perfectly. This learning problem is depicted in
Figure 5.3.

Now we defineD, a “bad” distribution forC'. Let {¢,}°, be any sequence of pos-
itive numbers s.ty".°, ¢; = 1. ¢; will bound the total probability of all nodes on level
1 according toD. Assume all nodes on levélhave the same probability according to
D, and call thisp;. We define the values of; andc; recursively as follows. For each
i > 1, we definep; as any positive number sgt; [¢(p;) ] H;;% c; < ¢; ando(p;) > 4,
and definec;_1 = [¢(p;)]. We are guaranteed that such a valueypéxists by the
assumptions thap(e) = o(1/¢), meaninglim._ ed(e) = 0, and thatp(e) # O(1).
Lettingpo =1—> .~ i ]_[;;é ¢; completes the definition dp.

With this definition of the parameters above, sincep; < 1, we know that for any
eg > 0, there exists some < ¢, such that for some level, p; = € and thusc;_; >
#(p;) = o(e). We will use this fact to show thakt ¢(e) labels are needed to learn
with error less tham for these values of. To complete the proof, we must prove the
existence of a “difficult” target function, customized teatlenge the particular learning
algorithm being used. To accomplish this, we will use théophilistic method to prove
the existence of a point in each leveduch that any target function labeling that point
positive would have a sample complexity ¢(p;)/4. Furthermore, we will show that
we can find such a point at each level in a recursive mannednasthte point at levelis
among the children of the point at leviel- 1. Then the difficult target function simply
strings these points together.

To begin, we define;; = the root node. Then for eacdh> 1, recursively define
x; as follows. Suppose, for arhy, the setR;, and the classifieh;, are, respectively, the
random variable representing the set of examples the repedgorithm would request,
and the classifier the learning algorithm would output, whésnthe target and its label
request budget is set to= | ¢(p;)/2]. For any node:, we will let Children(z) denote
the set of children of, and Subtref:) denote the set of along with all descendants
of x. Additionally, let h, denote any classifier i’ s.t. h,.(x) = +1. Also, for two
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classifiershy, ho, defineer(hy; ha) = Pp(h1(X) # he(X)). Now note that

inf P h ih) > p;
wEChﬁgs((li—l)hEC:}Lr(lx):-i-l {er(hn;h) > pi}

1

> inf ]P){e'r(iLh; h) > p;}
€i—1 cchildren(ar; 1) €@ =H1

1 .
> — Z P{Vh € C : h(z) = +1,Subtreéz) N Ry, = O A er(hp; h) > p;}
i1 cchildrenz: 1)

=K L Z I [Vh eC:h(zx) = +1,er(ﬁh; h) > pz}
Ciml cchildren(zs _1):
Subtre¢z)N Ry, =0
. 1 ,
>E x/echﬁgrlerrlimfl) Ci—1 xEChng(m ; I[z" # x]
L Subtreém)mR;L;I:iD
1 1
= Z(Ci_l —t— 1) - L¢(pz)J (I_(b(pZ)J - I_d)(pZ)/QJ - 1)
1
> i) /2—1)>1/4.
2 o] (lo(pi)]/2-1) =21/

The expectations above are over the unlabeled examples mnéhternal random
bits used by the algorithm. The above inequalities implyreéhexists somer <
Childrenz;_1) such that everyh € C that hash(z) = +1 hasS(p;,d,h) >
lo(pi)/2] = &(pi)/4; we will takex; to be this value of:. We now simply take the tar-
get functionh* to be the classifier that labets positive for alli, and labels every other
point negative. By construction, we have S(p;, d, h*) > ¢(p;)/4, and therefore

Veg > 0,3e < €g : S(€,0,h™) > ¢(e)/4,

so thatS(e, §, h*) # o(é(€)). O

Note that this implies that the(1/¢) guarantee of Corollary 1 is in some sense the
tightest guarantee we can make at that level of generalittypwt using a more detailed
description of the structure of the problem beyond the fivedimension assumption.

This type of example can be realized by certain nasty digiohs, even for a va-
riety of simple hypothesis classes: for example, lineaasaprs inR? or axis-aligned
rectangles ifR2. We remark that this example can also be modified to show teat w
cannot expect intersections of classifiers to preserve rexga@l rates. That is, the
proof can be extended to show that there exist clagseand Cs, such that both
(C1,D) and (Cs, D) are learnable at an exponential rate, bt D) is not, where
C= {hl Nhy:hy € Cl,hz € 02}
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6 Discussion and Open Questions

The implication of our analysis is that in many interestiages where it was previously
believed that active learning could not help, it turns ouwtt thctive learningloes help
asymptotically We have formalized this idea and illustrated it with a numdbieex-
amples and general theorems throughout the paper. Thigaah dramatically shifts
our understanding of the usefulness of active learningtengreviously it was thought
that active learning couldot provably help in any but a few contrived and unrealistic
learning problems, in this alternative perspective we negvthat active learning essen-
tially alwayshelps, and does so significantly in alit a few contrived and unrealistic
problems.

The use of decompositions 6f in our analysis generates another interpretation of
these results. Specifically, Dasgupta [10] posed the auresti whether it would be
useful to develop active learning techniques for lookingrdabeled data and “placing
bets” on certain hypotheses. One might interpret this wekreanswer to this question;
that is, some of the decompositions used in this paper cantempreted as reflecting
a preference partial-ordering of the hypotheses, sintléteas explored in the passive
learning literature [21, 19, 3]. However, the constructafra good decomposition in
active learning seems more subtle and quite different froexipus work in the context
of supervised or semi-supervised learning.

It is interesting to examine the role of target- and distiili-dependent constants
in this analysis. As defined, both the verifiable and true saropmplexities may de-
pend heavily on the particular target function and distidou Thus, in both cases, we
have interpreted these quantities as fixed when studyingsymaptotic growth of these
sample complexities asapproaches. It has been known for some time that, with only
a few unusual exceptions, any target- and distributiomjir@hdent bound on the ver-
ifiable sample complexity could typically be no better thha sample complexity of
passive learning; in particular, this observation leaddgdasa to formulate his splitting
index bounds as both target- and distribution-dependéit This fact also applies to
bounds on the true sample complexity as well. Indeed, thieeedistinction between
verifiable and true sample complexities collapses if we nanibe dependence on these
unobservable quantities.

One might wonder what the practical implications of the tsaenple complexity
of active learning might be since the theoretical improvetaeve provide are for an
unverifiable complexity measure and therefore they do ntiadly inform the user
(or algorithm) of how many labels to allow the algorithm t@uest. However, there
might still be implications for the design of practical algbms. In some sense, this is
the same issue faced in the analysis of universally comsiktarning rules in passive
learning [13]. There is typically no way to verify how closethe Bayes error rate a
classifier is (verifiable complexity is infinite), yet we ktivant learning rules whose
error rates provably converge to the Bayes error in the ljmie complexity is a finite
function of epsilon and the distribution ¢fX, Y")), and we often find such methods
quite effective in practice (e.gk-nearest neighbor methods). So this is one instance
where an unverifiable sample complexity seems to be a usefdégn algorithm de-
sign. In active learning with finite-complexity hypothesiasses we are more fortunate,
since the verifiable complexity is finite — and we certainlyntvalgorithms with small
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verifiable sample complexity; however, an analysis of uifiadnle complexities still
seems relevant, particularly when the verifiable compjdgitarge. In general, it seems
desirable to design algorithms for any given active leagmiroblem that achieve both
a verifiable sample complexity that is near optimal and asamaple complexity that is
asymptotically better than passive learning.

Open Questions: There are many interesting open problems within this fraomkw
Perhaps the most interesting of these would be formulatewel necessary and
sufficient conditions for learnability at an exponentidieteand determining whether
Theorem 1 can be extended to the agnostic case or to infinttacitg hypothesis
classes.

Subsequent Work: Since the initial publication of these results at the 2008f€@nce
on Learning Theory [5], there has been some progress in téé&worth reporting. In
particular, recall that Theorem 1 allows the algorithm tpeled on the distributio®

in arbitrary ways; that is, for each, we can use a different active learning algorithm
to achieve the improvements over the passive learning rdethdeed the proof of this
result presented in Appendix E employs an active learniggrahm that leverages this
dependence to such an extent that it does not seem feasiglmtwe this dependence
on the distribution without altering the fundamental nataf the algorithm. However,
using an entirely different type of active learning algomit, Hanneke [17] has recently
been able to strengthen Theorem 1, proving that for any y&assarning algorithm,
there is an active learning algorithm achieving asympaditicstrictly superior sample
complexities simultaneously for all nontrivial target @itionsand distributions.
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Appendix

A A Lower Bound on the Verifiable Sample Complexity of the
Empty Interval

Let h_ denote the all-negative interval. In this section, we lotweund the verifiable
sample complexity achievable for this classifier, with exggo the hypothesis clags
of interval classifiers under a uniform distribution Bn1]. Specifically, suppose there
exists an algorithny that achieves a verifiable sample complext, d, h) such that
for somee € (0,1/4) and some& < (0,1/4),

S(e,6,h) < B&J .

We prove that this would imply the existence of some inteidbr which the value of
S(e, 0, h') is not validunder Definition 1. We proceed by the probabilistic method.
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Consider the subset of intervals

H, = {[3¢e,3(z‘+1)e] ie {0,1,..., F;&J}} .

Lets = [S(e,6,h_)]. Foranyf € C, let Ry, izf, andéy denote the random variables
representing, respectively, the set of examles) for which A(s, §) requests labels

(including theiry = f(x) labels), the classifieA(s, §) outputs, and the confidence
boundA(s, ) outputs, whery is the target function. Letbe an indicator function that

is 1 if its argument is true and O otherwise. Then

maxP(PX (hf( ) # f(X)) > éf)

feHd
> 7 7 2 P () £ 50) > &)
> 5 2 (= ) (B (i) # 5(00)) > )
feH.
_E ‘1‘ S rfex (hs(x) £ £(X >)>ef}]
i fEH R;=Ry,_

>E ‘;‘ 3 H[(PX (hf(X)=+1)ge)A(éf§e)]] (A1)

fEH Rf=Ry

_E ‘}1‘ Z 1[(Px (;L;L_(X)?éh—(X))Se)/\(éh_ge)]](A.Z)

('fﬁ{e' ) I[Py (b (X) £ 0o (X)) <én < eH (A3)
H

All expectations are over the draw of the unlabeled exanaidsany additional random
bits used by the algorithm. Line A.1 follows from the factttlall intervalsf € H, are

of width 3¢, so iffzf labels less than a fractiarof the points as positive, it must make an
error of at leasRe with respect tof, which is more thasd; if é; < e. Note that, for any
fixed sequence of unlabeled examples and additional randsmded by the algorithm,
the setsk; are completely determined, and afiyand f’ for which Ry = Ry must
haveh; = hy andé; = ép. In particular, anyf for which Ry = R;,_ will yield
identical outputs from the algorithm, which implies line2A Furthermore, the only
classifiersf € H, for which Ry # R;,  are those for which somer, —1) € Ry
hasf(x) = +1 (i.e.,x is in the f interval). But since there is zero probability that any
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unlabeled example is in more than one of the interval& jnwith probability 1 there
are at moss intervalsf € H, with Ry # Ry, , which explains line A.3.

This proves the existence of some target funcfione C such thatP(er(hs ) >
€s.6) > d, which contradicts the conditions of Definition 1. a

B Proof of Theorem 2

First note that the total number of label requests used byatigregation proce-
dure in Algorithm 1 is at most. Initially running the algorithmsA,,..., Ay re-
quirestZlLt/(ZLi?)J < t/2 labels, and the second phase of the algorithm requires
k%[721n(4k/4)] labels, which by definition of is also less than/2. Thus this proce-
dure is a valid learning algorithm.

Now suppose that the true targetis a member of”;. We must show that for any
input¢ such that

t > max {4i® [S;(e/2,8/2,h*)],2i* [T21n(4i/6)]} .

the aggregation procedure outputs a hypotW@sﬂmch thatar(ﬁt) < e with probability
at leastl — ¢.

First notice that sinceé > 2i? [721n(44/6)], k > i. Furthermore, since/(4i%) >
[Si(e/2,8/2,h*)], with probability at least —&/2, runningA; ([ t/(4i%)], 6 /2) returns
a functionh; with er(h;) < ¢/2.

Let j* = argmin; er(h;). Sinceer(h;.) < er(hy) for any ¢, we would expect

h;~ to make no more errors thag on points where the two functions disagree. It then
follows from Hoeffding’s inequality, with probability aebstl — §/4, for all ¢,

Mjeg < 112 [721n (4k/6)]

and thus
mjnm;txmjg < % [721n(4k /)] .

J

Similarly, by Hoeffding’s inequality and a union bound, virobability at least —o /4,
for any/ such that

mej= < % [721n(4k/0)],
the probability that,, mislabels a point given thath,(z) # hj-(x) is less thar2/3,

and thuser(hy) < 2er(h;-). By a union bound over these three events, we find that, as
desired, with probability at leagt— ¢,

er(hy) < 2er(h;-) < 2er(h;) <e.
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C Proof of Theorem 3

Assume thatC, D) is learnable at an exponential rate. This means that théstsen
algorithm A such that for any targét* in C', there exist constants,- andk;,- such that
for anye ands, with probability at least — 6, for anyt > ;- (log (1/(ed)))*»*, after
t label requestsA(t, §) outputs are-good classifier.
For each;, let
Ci:{hECZ’thi,khgi}.

Define an algorithmi; that achieves the required polylog verifiable sample corifyle
on (C;, D) as follows. First, run the algorithm to obtain a functiorh 4. Then, output
the classifier inC; that isclosest toh 4, i.e., the classifier that minimizes the probability
of disagreement with 4. If ¢ > i(log (2/(€6)))?, then aftert label requests, with prob-
ability at leastl — 4, A(t, 6) outputs are/2-good classifier, so by the triangle inequality,
with probability at least — ¢, A;(¢, §) outputs are-good classifier.

It can be guaranteed that with probability at lehst ¢, the function output b,
has error no more thai = (2/6) exp {—(t/i)*/*}, which is no more thas, implying
that the expression above iverifiablesample complexity.

Combining this with Theorem 2 yields the desired result. O

D Heuristic Approaches to Decomposition

As mentioned, decomposing purely based on verifiable codtplaiith respect to
(C, D) typically cannot yield a good decomposition even for vemyp@e problems,
such as unions of intervals (see Section 5.2). The reasdraighe set of classifiers
with high verifiable sample complexity may itself have higdrifiable complexity.

Although we have not yet found a general method that can ptpwaways find a
good decomposition when one exists (other than the triveghad in the proof of The-
orem 3), we find that a heuristic recursive technique is feadjy effective. To begin,
defineC; = C. Then fori > 1, recursively defing’; as the set of alh € C;_; such
that#, = oo with respect to C;_1, D). (Hered,, is the disagreement coefficient bf
see Definition 3.) Suppose that for soVe C'y+1 = 0. Then for the decomposition
C1,Cs,...,Cn, everyh € C has#;, < oo with respect to at least one of the sets in
which it is contained, which implies that the verifiable sdnpomplexity ofh with
respect to that set i©(polylog(1/¢d)), and the aggregation algorithm can be used to
achieve polylog sample complexity.

We could alternatively perform a similar decompositiorngsa suitable definition
of splitting index [10], or more generally using

. Sc,_,(€,6,h)
lim sup Tk
=0 (log (5))
for some fixed constarit > 0.
This procedure does not always generate a good decompositiwvever, ifN <

oo exists, then it creates a decomposition for which the aggiey algorithm, com-
bined with an appropriate sequence of algorithful }, could achieve exponential
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rates. In particular, this is the case for all of ¢ D) described in Section 5. In fact,
even if N = oo, as long as everji € C does end up isomesetC; for finite 4, this
decomposition would still provide exponential rates.

E Proof of Theorem 1

We now finally prove Theorem 1. This section is mostly selftained, though we do
make use of Theorem 2 from Section 4 in the final step of thefproo

The proof proceeds according to the following outline. Wgiben Lemma 1 by
describing special conditions under which a CAL-like altfon has the property that
the more unlabeled examples it considers, the smaller #ltéidn of them it asks to be
labeled. Since CAL is able to identify the target's true ladireany example it consid-
ers (either the label of the example is requested or the eraimpot in the region of
disagreement and therefore the label is already known) ndeip with a set of labeled
examples growing strictly faster than the number of labguests used to obtain it.
This set of labeled examples can be used as a training seyipaasive learning al-
gorithm. However, the special conditions under which tlg@ipgens are rather limiting.
In Lemma 2, we exploit a subtle relation between overlapfiogndary regions and
shatterable sets to show that we can decompose any finite Méndion class into a
countable number of subsets satisfying these special tionsli This, combined with
the aggregation algorithm, and a simple procedure thattbdlos confidence level, ex-
tends Lemma 1 to the general conditions of Theorem 1.

Before jumping into Lemma 1, it is useful to define some addai notation. For
anyV C C andh € C, define

By (h,r) = {h €V :Pp(h(z) # W (z)) <7},

whereV is a countable dense subsefiaf Define theboundaryof 1 with respect taD
andV, denotedy h, as .
avh = hn}) DIS(BV (h, T))

Lemma 1. Suppose(C, D) is such thatC' has finite VC dimensiod, and Vh €
C,P(0ch) = 0. Then for any passive learning sample complejtte, 6, k) for (C, D)
which is nondecreasing as— 0, there exists an active learning algorithm achieving a
sample complexitg, (e, J, k) such that, for any > 0 and any target function* € C
with S, (¢, 0, h*) = w(1) andVe > 0,5, (¢, 6, h*) < oo,

Sal€,20,h™) = 0(Sy(e,0,h")) .

Proof. Recall thatt is the “budget” of the active learning algorithm, and our Igoa
in this proof is to define an active learning algorittMy and a functionS, (¢, 6, h*)
such that, ift > S,(e,6,h*) and h* € C is the target function, them,(¢,0)
will, with probability 1 — ¢, output ane-good classifier; furthermore, we require that
Sa(€, 20, h*) = o(Sy (€, 0, h*)) under the conditions oh* in the lemma statement.

7 See the note in Definition 3.

25



To construct this algorithm, we perform the learning in twaagpes. The first is a
passive phase, where we focus on reducing a version spashriti the region of
disagreement; the second is a phase where we construciedatzning set, which is
much larger than the number of label requests used to cangtsince all classifiers in
the version space agree on many of the examples’ labels.

To begin the first phase, we simply request the labels, of», . .., z|;/2|, and let

V={heC:Vi<|t/2],h(z;) = h*(x;)}.

In other wordsV is the set of all hypotheses i that correctly label the firsit /2|
examples. By standard consistency results [20, 6, 13 tlser universal constant> 0
such that, with probability at least— §/2,

dlnt+1n i
sup er(h) <<n+na> .
hev t

- dlnt +1nt
VQB<h*’c(ann§>)7

and thusP(DIS(V)) < A; where

s o (e (221)))

Clearly, A; goes tad) ast grows, by the assumption @{0c-h*).

Next, in the second phase of the algorithm, we will activelgstruct a set of labeled
examples to use with the passive learning algorithm. If eehaveP(DIS(V)) = 0
for some finitet, then clearly we can return aye V, so this case is easy.

Otherwise, letn; = |t/(24P(DIS(V))In(4/6))|, and supposeé > 2. By a
Chernoff bound, with probability at least — 4/2, in the sequence of examples
T(4/2) 415 T[t/2]+25 - - - » L|t/2|+n,» ALt MOSE /2 Of the examples are IDIS(V'). If this is
not the case, we fail and output an arbitranotherwise, we request the labels of every
one of thesey, examples that are BIS(V).

Now construct a sequena® = {(z7,v1), (5, %3), ..., (z;,,,y,,)} of labeled ex-
amples such that; = z,/2)1;, andy; is either the label agreed upon by all the el-
ements ofl/, or it is theh*(x|;/2)+;) label value we explicitly requested. Note that
becausénf;,cy er(h) = 0 with probability 1, we also have that with probabilityev-
eryy, = h*(x}). We may therefore use these examples as iid training examples for
the passive learning algorithm.

Supposed is the passive learning algorithm that guarant&gs, J, h) passive sam-
ple complexities. Then let; be the classifier returned by(L, §). This is the classifier
the active learning algorithm outputs.

Note that ifn, > S, (¢, d, h*), then with probability at least — ¢ over the draw of
L, er(hy) < e. Define

This implies that

Sa(€,26,h™) =1 +inf {s: s> 1441n(4/6)S,(e, 6, h") A} .
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This is well-defined whey), (¢, d, h*) < oo because), is nonincreasing is, so some
value ofs will satisfy the inequality. Note that if > S, (e, 25, h*), then (with probabil-
ity at leastl — §/2)

t

N — < .
(&0 1) < Tz A, S

So, by a union bound over the possible failure events listedve ¢/2 for
P(DIS(V)) > A, §/2 for more thant/2 examples ofL in DIS(V), and ¢ for
er(hy) > ¢ when the previous failures do not occur)¢if> S, (e, 24, h*), then with
probability at leastt — 26, er(h;) < e. S0S,(e, d,h*) is a valid sample complexity
function, achieved by the described algorithm. Furtheemor

Sa(€,20,h) <1+ 1441n(4/0)Sy (e, 6, h*) Ag, (e,25,n)—2-

If Sq(e,26,h*) = O(1), then sinceS, (¢, 6, h*) = w(1), the result is established. Oth-
erwise, sinces, (¢, 6, h*) is nondecreasing as— 0, S, (¢, 24, h*) = w(1), so we know
that Ag, (¢ 26,n+)—2 = 0(1). Thus,S, (¢, 20, h*) = 0 (S, (e, 6, h*)). O

As an interesting aside, it is also true (by essentially #aesargument) that un-
der the conditions of Lemma 1, tiwerifiable sample complexity of active learning is
strictly smaller than theerifiable sample complexity of passive learning in this same
sense. In particular, this implies a verifiable sample cexipf that iso (1/¢) under
these conditions. For instance, with some effort one camwghat these conditions
are satisfied when the VC dimension @fis 1, or when the support o is at most
countably infinite. However, for more complex learning gesbs, this condition will
typically not be satisfied, and as such we require some additwork in order to use
this lemma toward a proof of the general result in Theoremalard this end, we
again turn to the idea of a decomposition(of this time decomposing it into subsets
satisfying the condition in Lemma 1.

In order to prove the existence of such a decomposition, Werely on the as-
sumption of finite VC dimension. The essential insight herthat anytime boundary
regions are overlapping, we can shatter points in the queegions. To build the intu-
ition for this, it may be helpful to first go through a relateshf of a simpler (signif-
icantly weaker) result: namely, that not all classifiers i &ith VC dimensionl can
haveP(0ch) = 1.8 This situation corresponds to all boundaries overlappingpst
completely. To see that this is true, suppose the oppositecansider any two clas-
sifiershy, b} € C with P(hy(z) # h)(z)) > 0. Let A} = {z : hi(z) # h(z)}
and A; = P(A,)/3. Then, sinceP(0chy N dch)) = 1, there must be some re-
gion 4} C dchy N dch), with P(A}) > 0 and somehy € Be(hy, A;) for which
P(x € Ay A ha(z) # hi(x)) > 0 (becaused], C dch, and C is countable).
Furthermore, lettingd] = {z € A} : hao(xz) # hi(z)}, since AY C Och}
there exists somé, € Be(h, Ay) with P(z € A} A Bj(x) # hy(z)) > 0. Let
As = {x € A : hi(x) # hb(z)}. Since, by constructio®(hy (x) # ha(z)) < Ay

8 In fact, as mentioned, with a bit more effort, one can show that when éédimension isl,
everyh € C hasP(0ch) = 0. However, the weaker result studied here will be illustrative of
a general technique applied in Lemma 2.
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andP(hf (z) # hh(x)) < Ay, we have tha{z : hao(z) = hi(x) # Ri(z) = hi(x)}

is nonempty, so choose any poirt from this region. Furthermore, as mentioned, the
set A, is nonempty, so take any point € A,. Then we have thafhq, b, ho, hb}
shatters{x, x5}, which is a contradiction to the assumption that the VC disimmof
C'is 1. Itis not difficult to see that the argument can be appliegatgdly to add more
points to the shatterable set, each time doubling the numibelassifiers by finding
another classifier sufficiently close to a respective di@sgrom the previous round so
that it agrees with that one on most of all of the sé{s A,, etc., but disagrees with
that classifier on some subset of the overlap region of thademies of classifiers from
the previous rounds.

This general relationship between overlapping boundames shatterable sets is
the primary tool in proving the existence of a good decontfmsi To extend the idea
beyond the simple case of boundaries with probability oreepeed some way to show
that certain smaller boundaries will overlap under somelitmms. To this end, we will
prove that any set of classifiers that are sufficiently clogether must have significant
overlap in their boundaries, and thus if the boundaries Isawdar probabilities, the
regions will be almost the same, and we can apply the abowaremgt. The formal
details are given below.

Lemma 2. For any(C, D) whereC has finite VC dimensiod, there exists a countably
infinite sequencé’,, Cs, . .. such thatC' = U2, C; andVi, Vh € C;,P(0¢,h) = 0.

Proof. The case ofl = 0 is clear, so assumé> 0. A decomposition procedure is given
in Algorithm 2. We will show that, if we leHl = Decomposg’'), then the maximum
recursion depth is at mogt(counting the initial call as depth). Note that if this is true,
then the lemma is proved, since it implies titan be uniquely indexed bydtuple
of integers, of which there are at most countably many.

Algorithm 2 DecomposgH)
Let Hoo = {h € H : P(dxh) = 0}

if Hoo = H then
Return{H}
else

Fori € {1,2,...},letH; = {heH : P(dnh) € (1 + 27 @)~ (1 4 27 (@310}
Return |J  DecomposéH;) U {Hoo}

i€{1,2,...}
end if

For the sake of contradiction, suppose that the maximumrsexu depth of
Decomposg”) is more thand (or is infinite). Thus, based on the firgt+ 1 recur-
sive calls in one of those deepest paths in the recursion thieee is a sequence of
sets

C=H9>HD O>HP o ... Hyd+D) £
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and a corresponding sequence of finite positive integers, . .., i4+1 such that for
eachj € {1,2,...,d + 1}, everyh € H'Y) has

P(aH(jfnh) c ((1 + 2—(d+3))—ij’ (1 + 2—(d+3))1—ij} )

Take anyhg,1 € H@TD. There must exist some > 0 such thatyVj <
{1,2,...,d+1},

P(DIS(Byys-n (hat1,7))) € ((1+27 )74 (14 27 @) (1 4 27 (H9)) "E 1)
In particular, by (E.1), each € BHm (hgy1,7/2) has
P(Op-nh) > (142794370 > (14 272N IP(DIS( By 1) (hat1, 7)),
though by definition ob,,;-1)h and the triangle inequality,
P(d3-1h \ DIS(Byy-1)(has1,7))) = 0.

Recall that in general, for se and Ry, Rs, . .., Ry, if P(R; \ Q) = 0 for all ¢, then
P(N, R:) > [P(Q)—Zle(IP(Q)—IP’(Ri)). Thus, for anyj, any set o 2¢+! classifiers
T C By (hay1,7/2) must have

P(Nherdyu-nh) = (1-27 (1= (1427 D) 1)P(DIS(Byy-n (hat1,7))) > 0.

Thatis, any set of¢*? classifiers i) within distance-/2 of h.; will have bound-
aries with respect t@{(/—1) which have a nonzero probability overlap. The remainder
of the proof will hinge on this fact that these boundariesraye

We now construct a shattered set of points of gize 1. Consider constructing a
binary tree with2?+! leaves as follows. The root node containg.; (call this level
d+1). Lethy € Byya (hai1,7/4) be some classifier WitR(hy(X) # hay1(X)) > 0.
Let the left child of the root bé,; and the right child bé, (call this leveld). Define
Ag = {x : hg(x) # hap1(z)}, and leta, = 27@+2)P(A,). Now for each? €
{d—1,d —2,...,0} in decreasing order, we define théevel of the tree as follows.
Let Ty, denote the nodes at tiier 1 level in the tree, and letl; = (., Oxwh.
We iterate over the elements ©f. ; in left-to-right order, and for each orie we find
= BH(’f) (h, Ag+1) with

Pp(h(z) # 1 (z) Nx € A)) > 0.
We then define the left child df to beh and the right child to bé’, and we update
Ay — Ayn{x: h(z) #h' (2)}.

After iterating through all the elements @}, in this manner, definel, to be the
final value of 4, and A, = 27(4*2)P(A,). The key is that, because evelyin the
tree is withinr/2 of hq. 1, the setd) always has nonzero measure, and is contained
in Oy h for any h € T,yq, so there always exists dri arbitrarily close toh with
Pp(h(z) # 1 (x) Nz € A)) > 0.
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Note that for¢ € {0,1,2,...,d}, every node in the left subtree of anyat level
¢ + 1 is strictly within distance A, of h, and every node in the right subtree of any
at level? + 1 is strictly within distanc A, of the right child ofh. Thus,

P30 € Ty, b € Subtree(h') : b/ (z) # b (z)) < 2¢712A,.
Since

2919 A, = P(Ay)

=P (i € ﬂ Oy b’ andV siblingshy, he € Ty, hy(x) # hg(l')) ,

h'€Tpi1

there must be some set

A = {x € () Ol s.t.Vsiblingshy, hy € Ty, hi(x) #ha()
h'€Toq1

andvh € Ty, i/ € Subtree(h), h(x):h’(ac)} C Ay

with P(A}) > 0. That s, for every: at level? + 1, every node in its left subtree agrees
with h on everyz € Aj and every node in its right subtree disagrees wittn every

x € Aj. Therefore, taking anyzo, z1, z2,...,xq} such that each, € A} creates

a shatterable set (shattered by the set of leaf nodes indghg fFhis contradicts VC
dimensiond, so we must have the desired claim that the maximum recudgpth is at
mostd. a

Before completing the proof of Theorem 1, we have two addétioninor concerns
to address. The first is that the confidence level in Lemma lightly smaller than
needed for the theorem. The second is that Lemma 1 only apglienS, (¢, , h*) <
oo for all e > 0. We can address both of these concerns with the followingriam

Lemma 3. SupposgC, D) is such thatC' has finite VC dimensiod, and suppose
S’ (e,0,h*) is a sample complexity fofC, D). Then there is a sample complexity
Sa(e, 8, h*) for (C, D) s.t. for anyd € (0,1/4) ande € (0,1/2),

min {S’ (€/2,46, h*), 16d log(26/¢)+8log(4/d) }
(k +1)272log(4(k + 1)2/6)

)

Sa(€,0,h*) < (k+ 2) max {

wherek = [log(8/2)/ log(49)].

Proof. Supposed’, is the algorithm achieving’, (¢, 6, h*). Then we can define a new
algorithmA, as follows. Supposeis the budget of label requests allowedffands is
its confidence argument. We partition the indices of thehglkd sequence into-+ 2
infinite subsequences. Fore {1,2,... k}, leth; = Al (t/(k + 2),46), each time
running A/, on a different one of these subsequence, rather than on ltteefuence.

30



From one of the remaining two subsequences, we requestibls iaf the first/(k+2)
unlabeled examples and lef., denote any classifier i@ consistent with these labels.
From the remaining subsequence, for eache {1,2,...,k + 1} s.t. P(h;(X) #
h;(X)) > 0, we find the first|¢/((k + 2)(k + 1)k)] examplese s.t. h;(z) # h;(z),
request their labels and let,;; denote the number of mistakes madeyon these
labels (if P(h;(X) # h;(X)) = 0, we letm;; = 0). Now take as the return value of
A, the classifier; where; = arg min; max; mi;.

Suppose > S (e, 8, h*). First note that, by a Hoeffding bound argument (similar to
the proof of Theorem 2}, is large enough to guarantee with probabilityl — § /2 that
er(h;) < 2min; er(h;). So all that remains is to show that, with probabilityl —§/2,
at least one of thede, haser(h;) < €/2.

If S’ (e/2,46,h*) > 16d10g(26/¢ 118105(4/9) then the classic results for consistent
classifiers (e.g., [20, 6, 13])guarantee that, W|th prolitgb 1—6/2, er(hg+1) < €/2.
Otherwise, we have > (k + 2)S/ (¢/2,40, h*). In this case, each d@f, ..., h; has an
independent 1 — 44 probability of havinger(h;) < ¢/2. The probability at least one
of them achieves this is therefore at lest (46)% > 1 — §/2. O

We are now ready to combine these lemmas to prove Theorem 1.

Proof (Theorem 1)Theorem 1 now follows by a simple combination of Lemmas 1
and 2, along with Theorem 2 and Lemma 3. That is, the passaraifeg algorithm
achieving passive learning sample compleXye, 6, 1) on (C, D) also achieves pas-
sive sample complexitys, (e, 6,h) = ming<.[S,(¢,8,h)] on any(C;, D), where
C1,Cs, ... is the decomposition from Lemma 2. So Lemma 1 guaranteexisierece

of active learning algorithmsl,, A, ... such thatA; achieves a sample complexity
Si(€,28,h) = o(S,(€,8,h)) on(C;, D) forall § > 0 andh € C; s.t.5,(e, 6, h) is finite
andw(1). Then Theorem 2 tells us that this implies the existence @fcdine learning
algorithm based on thesé;, combined with Algorithm 1, achieving sample complex-
ity S’ (e,48,h) = o(S,(e/2,6,h)) on (C, D), for any§ > 0 andh s.t. S,(e/2,6, h)

is always finite and isv(1). Lemma 3 then implies the existence of an algorithm
achieving sample complexitg, (e, d, h) € O(min{S,(e/2,49,h),log(1/€)/e}) C
o(Sp(€/4,8,h)) C o(Sy(e/4,5,h)) forall § € (0,1/4) and allh € C. O

Note there is nothing special abouin Theorem 1. Using a similar argument, it can be
made arbitrarily close td.
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