
Kalman-Tree: an Index Structure on Spatio-Temporal Data

Ning Hu

Computer Science Department

Carnegie Mellon University

ninghu@cs.cmu.edu

Minglong Shao

Computer Science Department

Carnegie Mellon University

shaoml@cs.cmu.edu

April 25, 2003

Abstract

In the research area of spatio-temporal databases, we need to answer the queries like ”select the

objects which will be in a specific area at a future time” quickly and accurately. Solutions to this

question include two aspects: a mathematic model to predict future location with adequate accuracy

and an index structure that can retrieve the qualified objects quickly. Currently, the proposed future

location estimation in this field is limited to some simple linear functions of velocity. It might not

be able to get ideal prediction results as the prediction algorithms are too simple.

This paper proposes a technique targeting the future location estimation problem in spatio-

temporal databases. It uses the useful estimator Kalman filter to predict the continuous trajectory

of the moving objects in multi-dimensional space. Based on the algorithm, we propose a modified

R-tree indexing structure (KR-tree) that is well suitable and efficient for the Kalman equations.

1 Introduction

In the applications of wireless communication and mobile computing, tracking the changing position of

objects is becoming more and more necessary. This poses new challenges on spatio query processing.

Traditional spatio algorithms/structures/database systems, which mainly focus on storing and retrieving

locations of static objects, don’t suffice in the new mobile environment. New spatio-temporal solutions

are called for in order to answer the location queries with temporal parameters.

The work presented in this paper targets at providing a fast and accurate method to answer the

spatio-temporal queries like ”select the mobile users who will be in a specific area in the next five

minutes”. This involves two aspects:

• an algorithm that can predict future locations of moving objects based on the past information;

• a time-parameterized index structure that can retrieve spatio locations effectively.

1

We argue that the desirable solution should meet the following requirements:

• first, the prediction algorithm to be as simple as possible in the sense that the training and

predicting process is fast and the index structure integrated with it is not too complex;

• secondly, the parameters of the prediction algorithm should be calculated incrementally so that

when the predicted positions are too far from the actual positions, the algorithm can adapt itself

in the changing environment with little efforts;

• last but not least, it should be accurate as much as possible in order to give right answers.

In this paper, we adopted a simplified Kalman function to predict future object positions. Intuitively,

Kalman equations can describe the trajectory of a moving object more accurately than the existing

models that use velocity. Based on this prediction algorithm, we proposed Kalman-R-tree (KR-tree for

short), an R-tree like index structure, which can locate the qualified objects quickly.

This project is inspired by the work of TPR-tree [11] (time-parameterized R-tree). Therefore, KR-tree

belongs to the same classification of indexing [11]. Similar to the TPR-tree, KR-tree has the following

characteristics: data is indexed its native, d-dimensional space. We will parameterize the index structure

using n previous positions so it can predict the future positions; KR-tree index structure partitions the

data, using an R-tree like partition strategy (minimum bounding rectangle); KR-tree does not employ

replications; KR-tree doesn’t require periodic rebuilding. But the performance might deteriorate as

time progresses. The bounding rectangles in the KR-tree are functions of time. Due to its R-tree origin,

KR-tree is capable of indexing points in one-, two-, and three- dimensional space, which suffice the most

cases in real applications.

After the brief introduction of KR-tree, the rest of the paper is organized as the following: section

2 presents a survey of moving objects indexing, Kalman filter and the on-line update methods for

its parameters. Section 3 describes the proposed method in details, including the architecture of the

system, the customization of Kalman filters and design details, the structure of KR-tree and its related

algorithm. Experiment setup and results will be discussed in section 4. We conclude our work and

propose possible future work in Section 5.

2 Survey

2.1 Indexing Moving Objects

Index on moving objects is proposed to support database applications involving continuous movement.

It usually targets at answering queries like ”Given a rectangle R and real value tq, report all K points

of S that lie inside R at time tq” [1]. It can be classified into two different types: one is indexing current

2

and anticipated future positions of moving object; the other is indexing histories of the positions of

moving objects [11]. We will focus on the former indexing problem in this project.

• Index on historic data

In many applications, such as traffic supervision or mobile communication systems, spatio-temporal

queries asking for historic data mainly focus on summarized data (or aggregate information). Ag-

gregate R-tree [8] improves the original R-tree towards aggregate processing by storing, in each

intermediate entry, summarized data about objects residing in the subtree. In the situation where

some MBRs are covered by query rectangle, such aggregate information stored in the node can

avoid accessing nodes in the subtree since it already has sufficient information.

• Index on current and future positions

TPR-tree (time-parameterized R-tree) [11] is a balanced, multi-way tree with the structure of

an R-tree that can answer prediction queries on moving objects. Entries of TPR-Tree in leaf

nodes are pairs of the position of a moving point which is represented by a reference position and

a corresponding velocity – (x, v). Reference position is the location at time tref which usually

takes the index creating time tl. A internal node of TPR-Tree is represented with (1) minimum

bounding rectangle (MBR) that bounds its child nodes at reference time tl, and (2) a velocity

vector. As in traditional R-trees, the MBR tightly encloses all entries in the node at time tl. The

velocity vector of the (intermediate) MBR is determined as follows: (1) the velocity of the upper

(right) edge is the maximum of all velocities on this dimension in the sub-tree; (2) the velocity

of the lower (left) edge is the minimum of all velocities on this dimension. This ensures that the

MBR always encloses the underlying objects at any time no earlier than tl, but it is not necessarily

tight. This kind of MBR is termed ”conservative bounding rectangles”.

When answering query about future location, TPR-tree employs a simple linear function x(t) =

x(tref) + v(t − tref) to predict object position at future time t. The MBRs at the future query

time will also be computed based on the current extents and velocity vectors. So the queries at

future time can be processed in exactly the same way as in the tradition R-Tree, except that

the extents of the MBRs are computed dynamically and then compared with the query window.

TPR-Tree is a successful index method in answering queries on moving objects. But due to its

simple prediction method, it is unavoidably inaccuracy on prediction. Queries far in the future

may be of little value. So it has parameters of querying window (W) which specifies how far

queries can ”look” into the future, index usage time (U) which is the time interval during which

an index will be used for querying, and time horizon (H) which is the sum of index usage time

(U) and the querying window (W).

[5] employs the dual data transformation where a line x = x(tref) + v(t − tref) is transformed to

3

the point (x(tref), v). Thus it can use regular spatial indexes to access spatio-temporal data. This

paper focused studying the one and two dimensional case and gave a dynamic, external memory

algorithm with guaranteed worst case performance and linear space. It also gave other practical

approximation algorithms with different restrictions. More details can be found in the paper.

The common characteristic of the two index methods is that they both adopt simple linear function

to predict future positions.

2.2 Trajectory Prediction

Trajectory prediction is the process of predicting the future positions of a moving object based on the

historic data. So we can answer the queries like ”reporting all the cars that will in the region R in the

next 5 minutes”. It is usually implemented by using a pre-defined moving function. Linear function is

the easy-to-thought method which predicts position at time t using x(t) = x(tnow) + v(t − tnow).

Though the linear function is simple and requires fewer storage requirements, the too simple model

will adversely affect the accuracy of prediction which may further impair the performance of the index.

For example, the index needs to be update more frequently and the query window might be restricted

to a small range.

Kalman filtering is a widely used method in the field of signal processing. It is more powerful

in extracting trajectory features than the simple velocity function. We can expect that trajectory

prediction with Kalman Filter will be more accurate.

2.3 Kalman Filter

The Kalman filter is an iterative model designed to calculate forecasts and forecast variances for time

series models. It is deemed as the best possible (optimal) estimator for a large class of problems and a

very effective and useful estimator for an even larger class [15]. Since the time of its introduction, the

Kalman filter has been the subject of extensive research and application, particularly in several areas

like autonomous or assisted navigation, computer graphics and computer vision. This is likely due in

large part to advances in digital computing that made the use of the filter practical, but also to the

relative simplicity and robust nature of the filter itself. So it is not unexpected to observe that the

Kalman filter has recently popping up in a even wider variety of computer applications.

The Kalman filter targets on modeling a Linear Dynamical System (LDS), which is a partially ob-

served stochastic process with linear dynamics and linear observations, both subject to Gaussian noise.

It can be defined as follows, where xt is the hidden state at time t, and zt is the observation.

xk = Axk−1 + wk, State Transition (1)

zk = Hxk + vk, Observation (2)

4

A is the transition matrix that relates the state at the previous time step k − 1 to the state at the

current step k, and H is the coefficient matrix that relates the state to the measurement zk. The

process and measurement noise wk and vk are assumed to be independent (of each other), white, and

with normal probability distributions, i.e. distributed according to w ∼ N(0, Q) and v ∼ N(0, R).

The Kalman filter trys to perform filtering on this model, i.e., computing possibility P (xt|y1, ..., yt).

From the statistical perspective, the Kalman filter model can be infered from Hidden Markov Model

(HMM). It is reasonable because Linear Dynamic Systems (LDSs) and Hidden Markov Models are based

on the same assumption: a hidden state variable, of which we can make noisy measurements, evolves

with Markovian dynamics. And both have the same independent diagram and consequently the learning

and inference algorithms for both have the same structure. Thus the forward-backward equations for

the HMM, specialized to linear-Gaussian assumptions, would lead directly to Kalman filtering [6].

It can be also explained in the sense of signal processing. The Kalman filter is essentially a set of

mathematical equations that implement a predictor-corrector type estimator that is optimal in the sense

that it minimizes the estimated error covariance – when some presumed conditions are met. The way

the Kalman filter works is to estimate a process by using a form of feedback control: the filter estimates

the process state at some time and then obtains feedback in the form of (noisy) measurements. As

such, the equations for the Kalman filter fall into two groups: time update (”predictor”) equations and

measurement update (”corrector”) equations. The time update equations are responsible for projecting

forward (in time) the current state and error covariance estimates to obtain the a priori estimates

x̂−

k ∈ ℜn for the next time step. The measurement update equations are responsible for the feedback

– i.e. for incorporating a new measurement into the a priori estimate x̂−

k to obtain an improved a

posteriori estimate x̂k ∈ ℜn.

The final estimation algorithm resembles that of a predictor-corrector algorithm for solving numerical

problems as shown in Figure 1.

Besides the variables described previously, other variables in Figure 1 are the a priori estimate

error covariance P−

k , the a posteriori estimate error covariance Pk, and the Kalman gain Kk ∈ ℜn×m

producing a state estimate that minimizes the mean squared error of the reconstruction.

However, if the process to be estimated and (or) the measurement relationship to the process is

non-linear, the Kalman filter is no longer applicable here due to the condition restrictions. To tackle

such restrictions, various versions of Kalman filter have been proposed. Some of the representatives

filters are: the Extended Kalman filter (EKF) [15] uses the gradient linearization Jacobian to linearizes

the non-linear process difference and measurement relationships; the Unscented Kalman filter (UKF)

[10] is also a non-linear model but it replaces the Jacobians used in the EKF with unscented non-linear

transformations, reducing linearization errors in all cases.

The Kalman filter would not work in the system with non-Gaussian noise either. The represented

method that can model the system with unknown distribution noise is the Particle filter, which is a

5

Figure 1: A complete picture of the operation of the Kalman filter

popular sequential Monte Carlo technique. And it has the reputation of best performance over all

similar filters.

The Kalman filter is essentially a one-step predictor. But it can also be used for multi-step prediction.

Consider a sequence of predictions into the future which are made at step k, and let us juxtapose with

these predictions the expressions for the corresponding values of the true state variables. Then, on the

assumption that Ak = A is a constant matrix, we have

x̂−

k+1
= Ax̂k xk+1 = Axk + wk+1

x̂−

k+2
= A2x̂k xk+2 = A2xk + Awk+1 + wk+2

x̂−

k+3
= A3x̂k xk+3 = A3xk + A2wk+1 + Awk+2 + wk+3

...

x̂−

k+t = Atx̂k xk+t = Atxk +
∑t−1

j=0
Ajwk+t−j

(3)

It follows that the error in predicting t periods into the future is given by

x̂−

k+t − xk+t = An(x̂k − xk) −
t−1
∑

j=0

Ajwk+n−j (4)

As illustrated above, the Kalman filter is ideal for trajectory prediction. It is way more advanced than

the current published trajectory prediction algorithms used in spatio-temporal databases [11] and will

definitely produce much more precise predictions. Even for the computational cost, though of course it

is more expensive than the simple linear function of time, in practical it will not greatly reduce system

performance.

6

2.4 On-line Update of Kalman Filter Parameters

The transition matrix A, H, process noise covariance Q and measurement noise covariance R are

important parameters of the Kalman filter. The filter performance is largely determined by how well

the parameters are tuned according to the system. The closer they are to the actual characteristics of

the current system, the better filtering result it will get.

There are some techniques for off-line parameters training. A popular one is em [4] [12]. It finds

maximum likelihood estimates of the parameters from sequence of training data. But EM is quite

computationally expensive. That is why it’d best to be used off-line.

However in real applications, it is pretty common that the dynamics, process and measurement noise

of the system is unknown before the filtering process, or they will change from time to time. In this

case, on-line update of the parameters during the filtering process is necessary.

Several methods are proposed for on-line parameters update. A representative branch is called

Kalman adaptive filter (AKF) [3]. A considerable amount of research has been carried out in this area,

but in practice it is often necessary to redesign the adaptive Kalman scheme according to the particular

characteristics of the problem at hand. For example, it is hard to directly use Kalman adaptive filter

for multi-step prediction, as the state transition matrix A is replaced by the transition matrix of the

state estimation error in AKF. But A is particulaly important to multi-step prediction, see Equation 4.

[7] proposed another kind of Adaptive Kalman filter and gave out a method to update A on-line.

However in their paper, A is estimated with only two last state vectors. This can result in un-stable A

during the process, while from database point of view, A needs to converge and become stable as fast

as possible to avoid frequently indexing update.

Eventually we found Recursive Least-Squares Estimation (RLS), which is the recursive version of

Least Squares Estimation (LSE). LSE is designed for solving the classical linear regression model y = Ax

for A by minimizing the squares error. The formal definition is: given N samples, (x1[i], ..., xv [i], y[i]), i =

1, ...N , find the a1, ..., av that minimize

min
a1,···,av

N
∑

i=1

(y[i] − a1x1[i] − · · · avxv[i])
2 (5)

Using matrix notation, the solution is:

a = (XT × X)−1 × (XT × y) (6)

The matrix X is the N × v matrix with the N samples of the v dimensions. Let D = XT × X, so

the key step is to get D−1. Inversion of a v × v matrix takes O(v3) time. This is acceptable only when

the number of data samples is fixed and small. However, it is not suitable for applications where there

are large number of data sampels and new samples are added dynamically, because the new matrix D

and its inverse should be computed whenever a new set of samples arrive.

7

Recursive Least-Squares Estimation (RLS) provides an alternative to compute D−1 incrementally.

Specifically, it computes D−1
n from D−1

n−1, where Dn denotes the D matrix at time n. This is made pos-

sible by the matrix inversion lemma [9]. And its computation cost is reduces to O(v2). Its applications

prove that RLS is robust as well as efficient.

The RLS formulas for the solutions is: defining the so called RLS gain matrix Gn = D−1
n . Gn(n =

1, · · ·) can be computed recursively as follows,

Gn =
1

λ
Gn−1 −

1

λ
(λ + x[n] × Gn−1 × x[n]T)−1 × (Gn−1 × x[n]T) × (x[n] × Gn−1), n > 1. (7)

λ is called forgetting factor ranging from 0 to 1 (λ = 1 means ”not forgetting”). It represents the

diminishing rate of the effect of each sample as time elapses. In practise, λ is set to be 0.99. x[n] is the

x value at time n. Thus the coefficient vector an after the n-th sample has arrived, can also be updated

incrementally,

an = an−1 − Gn × x[n]T × (x[n] × an−1 − y[n]) (8)

The initial G0 = δ−1×I, and a0 = 0, where δ is a small positive number (e.g., 0.004), I is the identity

matrix, and 0 is a column vector of v zeros.

From the description above, we can see that RLS can be used for recursively updating the transition

matrix A, sicne the linear algebraic equation to be solved in RLS has similar form of the state trantision

equation Eq.1. Actually RLS is also used in filtering and can be deemed as a special Kalman filter with

no process or measurement noise. A nice description of RLS can be found at [2], algorithm details at

[9].

3 Proposed Method

Since Kalman filtering is a more accurate model to predict future positions, we propose to replace the

linear prediction module in the existing index algorithm with Kalman filter. The project can be divided

into following parts:

3.1 Customization of the Kalman Filter

Designing the state representation is a crucial part. It should be able to properly represent the true

hidden state of the system. Otherwise the performance will be greatly hurted. For modeling roughly

smooth trajectories, some common forms of the state design are xk = [p, v]Tk or xk = [p, v, a]Tk [14] with

the obervation state as zk = pk [13], where p, v, and a represent the position, velocity and acceleration

at step k respectively. However, in order to simplify structure and reduce computational cost, we design

the state in the following form:

xk = [pk, pk−1, pk−2, ...pk−n]Tk (9)

8

It means the last n positions will be included in xk. Thus the observation state of the filter in our

system is

zk = xk, (10)

which means, H is an identity matrix. Further more, the state transition matrix A will look like

A =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1,1 a1,2 · · · a1,n−v−1 a1,n−v · · · a1,n×v

a2,1 a2,2 · · · a2,n−v−1 a2,n−v · · · a2,n×v

...
... · · ·

...
... · · ·

...

av,1 av,2 · · · av,n−v−1 av,n−v · · · av,n×v

1 0 · · · 0 0 · · · 0

0 1 · · · 0 0 · · · 0
...

... · · ·
...

... · · ·
...

0 0 · · · 1 0 · · · 0

0 0 · · · 0 1 · · · 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (11)

where v is the dimension of the position. So only v rows of A needs update, other parts are constant,

i.e. when RLS is applied to estimate A, it just computes the first v rows of A respectively.

Each trajectory object has its own current state xk, observation state zk, state transition A, and RLS

gain G. Currently we simplify the system assumption that the process and measurement error are 0.

That is to say, the current system doesn’t model noise Q and R. But it could be implemented in the

future extention.

Moreover, as the process noise w is centered, the latter complex term in the multi-step prediction

quation Eq.4 can be ignored to some extent. H is an identity matrix, the term related to measurement

noise v can be ignored too. Thus we only need state x and transition A for prediction. This proves that

our simplied assumption is reasonable.

3.2 Overview of the System

In this section, we will describe the typical scenario of using KR-tree. The whole system consists of

two parts: moving objects (clients) and a central KR-tree index (server). We assume that each object

has a small buffer (location buffer) that can store the most recently locations and it also has a limited

computing ability. The objects will measure (sense) their locations at a fixed or changing time interval

and update the location buffers. The objects are responsible to decide whether the prediction is accurate

enough. If the parameters of the prediction function are out of date that can’t describe the trajectory

with required accuracy, the object will update the parameters through an incremental algorithm (please

refer to the section of RLS algorithm). These new parameters will be sent to the server part and used

9

to update the corresponding entries in the KR-tree. A graphic description of the system is shown in

Figurei 2.

reference time
reference location

Transform matrix

location
Buffer

Object 1

reference time
reference location

Transform matrix

location
Buffer

Object n

Update

Current time
Current location
Updated Matrix

Update

Current time
Current location
Updated Matrix

... ...

... ...

KR−tree

... ...

... ...

Figure 2: Overview of the System

3.3 Integration of Kalman Filter and R-tree

Different from the indexes on static spatio data, where coordinates of locations provide enough infor-

mation to retrieve object through index, indexes on spatio-temporal data should be a function of time

and locations so that it is possible to answer the queries asking future positions. For each entry in the

leaf node in the KR-tree, which corresponds to a moving object, it is natural to store the transform

matrix, reference time, and locations at that time. New locations at future time can be easily calcu-

lated through Kalman functions. For internal nodes within KR-tree, it is not straightforward on what

kind of information should be stored and how to apply Kalman functions to prediction locations. The

challenges here lie in the following aspects: first, we want the internal nodes to use similar prediction

functions as the leaf entries. But it is not clear on how to define the motion of an internal node and what

the transform matrix will look like; secondly, according to the property of R-tree, rectangles of parent

nodes should fully contain their child nodes. In the context of KR-tree, it means that this property

should always hold at any time in the future; thirdly, we hope that the bound rectangles should be as

tight as possible so that the search performance of KR-tree won’t be too bad.

In this project, we proposed a method that uses two bound transform matrixes (Amin and Amax)

and two bound locations (Xmin and Xmax) to ”describe” the motion of the internal nodes.

3.3.1 Structure of the KR-tree

• Entry in the leaf node

10

The structure of entries in the leaf nodes includes three parts:

– a transform matrix as defined in Kalman equations, denoted as A;

– a reference time, denote as tref ;

– locations information at tref , denoted as Xref .

Note that Xref might contain location information at tref−1, tref−2 or more. The choice of how

many previous locations should be used depends on the desired update frequency and accuracy,

and the technical limitations. For example, in the two-dimensional space, if we use two locations

to predict, the entry in the leaf node will contain the following data:

– A: a 2 ∗ 4 matrix,

– X: a 1 ∗ 4 vector,

– t timestamp

According to the equation:














xt

yt

xt−1

yt−1















= A ∗















xt−1

yt−1

xt−2

yt−2















The last two rows of A are [1 0 0 0] and [0 1 0 0]. Therefore, we compress A into a 2∗4 matrix.

This saves space, thus increase the fan out of the KR-tree. It is especially useful when we have to

use more steps to predict locations in high-dimensional space.

• Internal node

The structure of internal nodes includes five parts:

– two bound matrixes, denoted as Amin and Amax;

– two bound locations, denoted as Xmin and Xmax;

– a reference time tref .

Amin is a ”minimum matrix” of its child nodes. It is defined as follows:

(amin)ij = min
n

(an)ij , n = 1..K

K is the number of children of the node (amin)ij = Amin. Amax is a ”maximum matrix” of the

child nodes. It is defined as:

(amax)ij = max
n

(an)ij (12)

11

Xmin is a ”minimum location” of the child nodes. It is defined as:

(xmin)i = min
n

(xn)i (13)

Xmax is a ”maximum location” of the child nodes. It is defined as:

(xmax)i = max
n

(xn)i (14)

tref is deinfed as

max
n

(tref)

We assume that the coordinates of any moving objects are always positive. This is a reasonable

assumption since we can define the origin as we want.

According to the definitions above, it is easy to see that Xmin and Xmax will give us the bound

rectangle at the reference time. For the bound rectangle at a future time tq, Xtq is calculated by

the equation:

Xnew = An ∗ Xold(n = tq − tref)

We need to define a way to calculate Aminn and Amaxn so that Xminnew and Xmaxnew will

give use the bound rectangle at time tq that still cover all the child rectangles.

we define A ∗ B = C as

(cmin)ij =
n

∑

k=1

min(aik ∗ bkj) (15)

(cmax)ij =
n

∑

k=1

max(aik ∗ bkj)

In this way, we will first calculate A,A2, A4, ..., Alog2n, then use these matrixes to finally obtain

An. This method can guarantee that the Aminn and Amaxn are bound matrixes at time tq. So

Xminnew = Aminn ∗ Xminold and Xmaxnew = Aminn ∗ Xmaxold are bound locations at time

tq. Therefore, bound rectangle at tq still cover its kids. This is a conservative method, which may

result in a relatively loose bound rectangle.

One potential problem in the calculation of Aminn and Amaxn is that for entries that greater than

1, they will increase very quickly which may end up with a very loose rectangle. This potential

drawback will limit the steps we can look into the future. In our experiments, we found that in

most cases, the entries in the transform matrix are less than 1 which doesn’t have this problem.

So combining with the predication accuracy provided by Kalman function, we can look further in

the future than TPR-tree.

12

3.3.2 Search, Insertion, Deletion, and Update

• Search

KR-tree accepts queries like ”report the objects which will be at some specific area in a future

time tq”. When searching the KR-tree, rectangles of each node will be calculated using the above

method. The other process is the same as the traditional R-tree.

• Insertion

Insertion is a little bit tricky, because we have to choose which subtree to follow and how to deal

with overflow. In out current implementation, we adopt the quadratic algorithm which chooses

the subtree whose cover rectangle needs the least enlargement. As for the split algorithm, we use

the split strategy that optimizes area. For moving object, the currently close objects may be far

away in the near future, so we look n steps forward to calculate the bound rectangles. n is a

tunable parameter. We use two as a default value in our experiment. If new inserted node has a

more recent timestamp, the root reference time will be updated according to the new timestamp.

The Amin and Amax, Xmin and Xmax will be adjusted accordingly.

• Deletion and Update

The operation of deletion is essentially the same as the traditional R-tree except the fact that

we calculate cover rectangle of a node dynamically. We implement update as a combination of

deletion and insertion. We argue that deletion followed by an insertion is actually better than a

”real” update because first the cost of deletion and insertion is similar to the cost of real update;

secondly, the combination of deletion and insertion may put the node in a more optimal place

that results in a smaller bound rectangle.

4 Experiment

We implemented KR-tree based on the DR-tree code. The clients (moving objects) are organized using

a B+tree structure. We did the experiments on a Pentium III machine running Linux. Although the

experiments mainly focus on two dimensional space, KR-tree has no difficult dealing with data at a

higher dimension because of its R-tree origin.

KR-tree has to store more information than TPR-tree. In the two-dimensional space, if we use two

steps in prediction, a 1k page can contain only 9 entries. This is a big problem of the current KR-tree.

In the following experiments, we will use the same configurations, shown in Table 1 .

Our experiments are limited by the lack of test data. Our synthesized data has limitations of rep-

resentativeness and amount. So we didn’t evaluate the KR-tree in terms of time and I/O performance

13

Dim of the space 2

Number of previous locations used in prediction 2

Steps used to calculate rectangle during insertion 2

Trajectories used synthesized data including circle, line, parabola, etc.

Table 1: configurations in the experiments

which require a statistical approach. The results showed in this section mainly focus on comparing the

prediction accuracy. We also show a graph of KR-tree.

4.1 Prediction Accuracy Comparison

Our K-Rtree utilizes the state transition matrix A for prediction, which is recursively computed by RLS,

while the comparable indexing structure TPR tree utilizes velocity. We are interested in comparing the

prediction accuracy of these two kinds of R-tree structure to show the advantage of our K-Rtree over

other comparable indexing structures.

As we are using RLS to update A recursively and estimated process or measurement noise are 0, we

call ours RLS algorithm; We don’t have the TPR-tree system at hand to do the real comparison, thus

we simulates its prediction principle accordingly, namely Velocity algorithm.

We generate several representative trajectories on 2-dimensional plane and feed them into these two

different algorithms. At each time step, the algorithms will predict the position at future time t. The

RLS algorithm uses the last n samples to be the state x. Error is measured in the sense of distance

between the predicted position and the actual position.

Figure 3 shows a circling trajectory and Figure 4 shows the prediction error on that circling trajectory

for at future time t = 10 from Velocity and RLS. RLS uses n = 2 last samples.

As we can see in Figure 4, the prediction error from Velocity is constantly high, while that from RLS

is clearly converging to minimum. Figure 5 shows the prediction error on the same circling trajectory

and same t, except that n = 3 here. Comparing it with Figure 4, we can see the prediction error from

RLS with n = 3 reduces even faster. It is reasonable, as more information contained in the state x will

certainly help model the system better and converge A faster.

Figure 6 shows a straight line trajectory with some noise. Figure 7 shows the prediction error on such

trajectory with n = 2, t = 10. Here we can see for those trajectories with noise, which is a common case

in real world, Velocity certainly performs badly, while RLS can still successfully handles it. Note that

process and measurement noise Q and R haven’t been embedded into our current K-Rtree structure

yet.

14

We also tried the parabola trajectories, with or without noise, and other common trajectories such

as sinusoid. In all those experiments, RLS always outperforms Velocity.

From the experiments above, we can clearly see that using merely velocity to predict future position

is good only when it has constant velocity. It would not work if there is any derivative of the velociy,

no matter whether it is noise or arbitrary accleration, while RLS can model those pretty well. One may

say what if accleration is taken into account in TPR-tree, but K-Rtree should still perform better, as it

has better flexibility and scalability.

As future prediction time t increase, the error from Velocity and RLS both increase too. However, It

is clearly that the error increasing rate of Velocity is faster than that of RLS.

The experiments also help make up some decision on our system design. For example, it shows that

there should be an offset time tinit for building the KR-tree, as A needs some time to adjust to the

system and converge to a stable state. Normally setting tinit >= 50 is ok. Also since updating the

indexing structure is somewhat expensive, we also design the system that on the client object side, the

A matrix needs not to be updated at every step unless the one-step prediction error is greater than some

threshold. Once it is updated, the client side will send a request to the indexing server side to delete

and re-insert the trajectory object. The experiments also show that even for n = 2, only including

last two samples in the state, is surprisingly good enough for most trajectories we’ve tested. Of course

greater n will result in better result, but it will also cost extra computing power and storage.

4.2 MBR of KR-tree

The following KR-tree uses two-step forward to calculate rectangle during the insertion, bound rectangle

is looser than common Rtree.

5 Conclusions and Future Work

KR-tree is a new structure toward providing a fast and accurate method to index spatio-temporal data.

By integrating the Kalman prediction function into existing R-tree, it can answer the queries like ”find

the objects which will be in some area at a future time” effectively. KR-tree has better performance

in the sense of prediction accuracy when compared with TPR-tree. What’s more, the parameters of

Kalman function can be updated incrementally so that the functions are adaptive to the changes in the

trajectories.

We currently implemented a simplified K-Rtree, though its assumption is reasonble for prediction

purpose and gives out satisfying result, further extention to fully utilize the power of Kalman filter

would be exciting. On indexing side, more interesting work can be done in designing tighter rectangles,

compressing information at each node to increase the fan out of KR-tree, designing a better split strategy

so that the overall bound rectangles will overlap less and have smaller area.

15

6 Acknowledgement

We are grateful to Dr. Tony Tao for his invaluable guidance and thought invoking discussions. We

thank professor Christos Faloutsos for his advice on incremental update of transforming matrix. We

would like to thank Edoardo Airoldi for his help in understanding Kalman filter, and Simonas Saltenis

for his previous work on TPR-tree.

References

[1] Pankaj K. Agarwal, Lars Arge, and Jeff Erickson. Indexing moving points. In Symposium on

Principles of Database Systems, pages 175–186, 2000.

[2] Theodore Johnson H. V. Jagadish Christos Faloutsos Alexandros Biliris Byoung-Kee Yi, N.

D. Sidiropoulos. Online data mining for co-evolving time sequences. May 1999.

[3] A. Gelb. Editor. Applied optimal estimation. 1974.

[4] Z. Ghahramani and G. E. Hinton. Parameter estimation for linear dynamical systems. Technical

Report CRG-TR-96-2, Department of Computer Science, University of Toronto, 1996.

[5] George Kollios, Dimitrios Gunopulos, and Vassilis J. Tsotras. On indexing mobile objects. In Pro-

ceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems, May 31 - June 2, 1999, Philadelphia, Pennsylvania, pages 261–272. ACM Press, 1999.

[6] Tom Minka. From hidden markov models to linear dynamical systems. Technical report, 1998.

[7] JP Urban P. Wira. A new adaptive kalman filter applied to visual servoing tasks.

[8] Dimitris Papadias, Panos Kalnis, Jun Zhang, and Yufei Tao. Efficient OLAP operations in spatial

data warehouses. Lecture Notes in Computer Science, 2121:443–??, 2001.

[9] D.S.G. Pollock. Time series analysis. May 1999.

[10] J. K. Uhlmann S. J. Julier and H. F. Durrant-Whyte. A new approach for filtering nonlinear

systems. Proceedings of the American Control Conference, pages 1628–1632, June 1995.

[11] Simonas Saltenis, Christian S. Jensen, Scott T. Leutenegger, and Mario A. Lopez. Indexing the

positions of continuously moving objects. In SIGMOD Conference, pages 331–342, 2000.

[12] J. R. Rohlicek V. Digalakis and M. Ostendorf. Ml estimation of a stochastic linear system with

the em algorithm and its application to speech recognition. pages 431–442, oct 1993.

16

[13] Y. Gao W. Wu, M. J. Black and E. Bienenstock etc. Inferring hand motion from multi-cell record-

ings in motor cortex using a kalman filter. In SAB02-Workshop on Motor Control in Humans and

Robots Edinburgh Scotland (UK), pages 66–73, aug 2002.

[14] Y. Gao W. Wu, M. J. Black and E. Bienenstock etc. Neural decoding of cursor motion using a

kalman filter. In Neural Information Processing Systems, dec 2002.

[15] Greg Welch and Gary Bishop. An introduction to the kalman filter. ACM SIGGRAPH 2001 Course

Notes, 2001.

17

Contents

1 Introduction 1

2 Survey 2

2.1 Indexing Moving Objects . 2

2.2 Trajectory Prediction . 4

2.3 Kalman Filter . 4

2.4 On-line Update of Kalman Filter Parameters . 7

3 Proposed Method 8

3.1 Customization of the Kalman Filter . 8

3.2 Overview of the System . 9

3.3 Integration of Kalman Filter and R-tree . 10

3.3.1 Structure of the KR-tree . 10

3.3.2 Search, Insertion, Deletion, and Update . 13

4 Experiment 13

4.1 Prediction Accuracy Comparison . 14

4.2 MBR of KR-tree . 15

5 Conclusions and Future Work 15

6 Acknowledgement 16

i

Figure 3: The circling trajectory

Figure 4: Prediction error on the circling trajectory (t = 10, n = 2)

Figure 5: Prediction error on the circling trajectory (t = 10, n = 3)

ii

Figure 6: The noisy line trajectory

Figure 7: Prediction error on the noisy line trajectory (t = 10, n = 2)

iii

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45

"tree0"

Figure 8: MBR of KR-tree with 30 trajectories

iv

