SAT-based Compositional Verification using
Lazy Learning

Nishant Sinha‘, Edmund Clarke'

Feburary 2007
CMU-CS-07-109

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

*Elec. and Computer Engg. Dept., Carnegie Mellon University, PittsbusghJBA
fSchool of Computer Science, Carnegie Mellon University, PittsburghlUSs

This research was sponsored by the National Science Faandetder grant nos. CNS-0411152, CCF-0429120,
CCR-0121547, and CCR-0098072, the Semiconductor Res€&wugoration under grant no. 2006-TJ-1366, the
US Army Research Office under grant no. DAAD19-01-1-048%] #re Office of Naval Research under grant no.
NO00014-01-1-0796. The views and conclusions containedi;mdocument are those of the author and should not

be interpreted as representing the official policies, eixpressed or implied, of any sponsoring institution, th8.U
government or any other entity.

Keywords: Assume-Guarantee Reasoning, SAT, SMT, BMC, Learning

Abstract

A recent approach to automated assume-guarantee reag®@R) for concurrent systems relies
on computing environment assumptions for components ukawy* algorithm for learning regular
languages. While this approach has been investigated &abnfor message passing systems, it
still remains a challenge to scale the technique to largeesh@emory systems, mainly because
the assumptions have an exponential communication alplsaét®e In this paper, we propose a
SAT-based methodology that employs both induction andpotation to implement automated
AGR for shared memory systems. The method is based on damvapproach to assumption
learning, which avoids an explicit enumeration of the exgural alphabet set during learning
by using symbolic alphabet clustering and iterative corax@mple-driven localized partitioning.
Preliminary experimental results on benchmarks in Verdogl SMV are encouraging and show
that the approach scales well in practice.

1 Introduction

Verification approaches based on compositional reasotimg as to prove properties (or discover
bugs) for large concurrent systems in a divide-and-contagdrion. Assume-guarantee reasoning
(AGR) [26, 22, 29] is a particular form of compositional Viezation, where we first generate en-
vironment assumptions for a component and discharge theits @nvironment (i.e., the other
components). The primary bottleneck is that these appesaokquire us to manually provide
appropriate environment assumptions. Recently, an apprid®] has been proposed to automat-
ically generate these assumptions using learning algositfor regular languages assisted by a
model checker. Figure 1 shows a simplified view of this appino@r an AGR rule, calledNC.
This rule states that given finite state systehis A, and P, the parallel compositiod/; || M,
satisfiesP (written as)M; || M, F P) iff there exists arenvironment assumptiaa for M/; such
that the composition o/, and A satisfiesP (M, || A E P) and M, satisfiesA (M, F A). Itis
known that if M/; and P are finite-state (their languages are regular), then a fatigtee assumption
A exists. Therefore, the task of computiAgs cast as a machine learning problem, where an algo-
rithm for learning regular languagés [5, 33] is used to automatically compute The L* learner
computes a deterministic finite automaton (DFA) corresjpamntb an unknown regular language
by asking queries to seacherentity, which is capable of answering membership (whetheace
belongs to the desired assumption) and candidate (whdtherurrent assumption hypothesis is
correct) queries about the unknown language. Using thesges the learner improves its hy-
pothesis DFA using iterative state-partitioning (simi@rthe DFA minimization algorithms [21])
until the teacher replies that a given hypothesis is carrgcour context, a model checker plays
the role of the teacher. It answers the queries by essgntiadicking the two premises of the rule
NC with respect to the a given hypothesis

A Teacher (Model Checker)
E—.
M |AEP
My = A
PR
yes/no, M, | My =P
counterezample

Figure 1: Learning-based Assume-Guarantee Reasoningguoe (simplified).

While this approach is effective for small systems, theresaneimber of problems in making
it scalable:

o Efficient Teacher Implementatiorithe teacher, i.e., the model checker, must be able to
answer membership and candidate queries efficiently. Maegely, each query may itself
involve exploration of a large state space making exp§itate model checking infeasible.

e Alphabet explosionif M; and M, interact using a seX of global shared communication
variables, the alphabet of the assumptibrtonsists of all the valuations of and is ex-
ponential in size ofX. The learning algorithm explicitly enumerates the alphadet at

1

each iteration and performs membership queries for enuroarstep. Therefore, it is pro-
hibitively expensive to apply.* directly to shared memory systems with a large number of
shared communication variables. Indeed, it is sometimg@®asible to enumerate the full
alphabet set, let alone learning an assumption hypoth®gesrefer to this problem as the
alphabet explosioproblem.

e System decompositiorthe natural decompositions of a system according to its maodu
syntactic description may not be suitable for compositioeasoning. Therefore, techniques
for obtaining good decompositions automatically are resli

In this work we address the first two problems. More precisely propose (i) to efficiently
implement the teacher using SAT-based model checking; @nd [azy learning approach for
mitigating the alphabet explosion problem. For an appradedling with the third problem, see,
for instance, the work in [27].

SAT-based Teacherln order to allow the teacher to scale to larger models, we@se to im-
plement it using a SAT-based symbolic model checker. Inqaddr, we use SAT-based bounded
model checking (BMC) [10] to process both membership and idatel queries. BMC is effec-
tive in processing membership queries, since they invohrelling the system transition relation
to a finite depth (corresponding to the given tragend require only a Boolean answer. The
candidate queries, instead, require performing unbounamdel checking to show that there is no
counterexample for any depth. Therefore, we employ corapiatiants of BMC to answer the can-
didate queries. In particular, we have implemented tweedgiht variants based érinduction [34]
and interpolation [25] respectively. Moreover, we use a Sddlver as the main decision proce-
dure [36, 3].

Lazy Learning. The main contribution of our work is &zy learning algorithm/* which
tries to ameliorate the alphabet explosion problem. Thg #ggproach avoids an expensive eager
alphabet enumeration Igfusteringalphabet symbols and exploring transitions on these chiste
symbolically. In other words, while the states of the asstimmpare explicit, each transition cor-
responds to a set of alphabet symbols, and is explored sycabhpl The procedure for learning
from a counterexamplee obtained from the teacher is different: besides partitigrthe states of
the previous hypothesis as in thé algorithm, the lazy algorithm may also partition an alphtabe
cluster (termed asluster-partitioning based on the analysis of the counterexample. Note that
since our teacher uses a SAT-based symbolic model chetleedsily able to answer queries for
traces where each transition corresponds to a set of alpbgimdols. Moreover, this approach is
able to avoid the quantifier elimination step (expensivé\8iAT) that is used to compute the tran-
sitions in an earlier BDD-based approach to AGR [31]. We lameeloped several optimizations
to [*, including a SAT-based counterexample generalizationriggie that enables coarser cluster
partitions.

Our hope, however, is that in real-life systems where corntiposl verification is useful, we
will require only a few state and cluster partitions until a@nverge to an appropriate assumption
hypothesis. Indeed if the final assumption has a small nuoftstates and its alphabet set is large,
then there must be a large number of transitions between gaiclof states in the assumption
which differ only on the alphabet label. Therefore, a smalinier of cluster partitions should

be sufficient to distinguish the different outgoing clustBom each state. Experiments based on
the earlier BDD-based approach to AGR [31, 27] as well as ppr@ach have confirmed this
expectation.

We have implemented our SAT-based compositional appreeaidol called SMODA (stands
for SYmbolic MODular Analyzer). The tool implements SATsmal model checking algorithms
based ork-induction and interpolation together with the lazy leamialgorithms presented in
this paper. Preliminary experiments on Verilog and SMV eghbes show that our approach is
effective as an alternative to the BDD-based approach irbadimg alphabet explosion and is able
to outperform the latter on some examples.

Related Work. Compositional verification based on learning was propose@diyieigh et
al. [15] in the context of rendezvous-based message pasggigms and safety properties using
explicit-state model checking. It has been extended to aoeshmemory systems using symbolic
algorithms in [31, 27]. The problem of whether it is possitleobtain good decompositions of
systems for this approach has been studied in [16]. An osenaf other related work can be
found in [19, 27, 13]. SAT-based bounded model checking fidr properties was proposed by
Biere et al. [10] and several improvements, including tegbes for making it complete have been
proposed [30, 4]. All the previous approaches are non-caitipoal, i.e., they build a monolithic
transition relation for the whole system. To the best of onowledge, our work in the first to
address automated compositional verification in the gptifrSAT-based model checking.

The symbolic BDD-based AGR approach [31] for shared mempgsyesns using automated
system decomposition [27] is closely related to ours. Thhr@gue uses a BDD-based model
checker and avoids alphabet explosion by using eager g#attoning to introduce all possible
new states in the next assumption, and by computing theiticanselation (edges) using BDD-
based quantifier elimination. In contrast, we use a SAT4basedel checker and our lazy learning
approach does not require a quantifier elimination stepchvig expensive with SAT. Moreover,
due to its eager state-partitioning, the BDD-based apbroa&y introduce unnecessary states in
the assumptions.

Recently, two approaches for improved learning based dmasigt under-approximation and
iterative enlargement [12, 19] have been proposed. Ourdppyoach is complementary: while the
above techniques try to reduce the overall alphabet by sapjgroximation, our technique tries to
compactly represent a large alphabet set symbolically anfdpms localized partitioning. In cases
where a small alphabet set is not sufficient, the previousigces may not be effective. We also
note that both the above approaches can be combined withpptwach by removing assumption
variables during learning and adding them back iterativ&liearning algorithm for parameterized
systems (alphabet consists of a small set of basis symbads, @ which is parameterized by
a set of boolean variables) was proposed in [9]. Our lazyniegralgorithm is different: we
reason about a set of traces directly using a SAT-based ncheéeker and perform more efficient
counterexample analysis by differentiating positive aadative counterexamples (cf. Section 4).

In contrast to the counterexample-guided abstractionesfent (CEGAR) approach [23, 14,
7], the assumption languages may change non-monotonmaibss iterations of the learning al-
gorithm. The CEGAR approach removes spurious behaviors &orabstraction by adding new
predicates. In contrast, the learning-based approachstistes and cluster-partitioning based on

the Nerode congruence [21] to both remove and add behaviirsilar to a lazy approach to
CEGAR [20], the lazy learning algorithm localizes the cluggartitioning to the follow set of a
particular state and adds only a single cluster to the foHletg at each iteration.

2 Notation and Preliminaries

We define the notions of symbolic transition systems, autajrend composition which we will
use in the rest of the paper. Our formalism borrows notatiomf[28, 24]. LetX = {xy,...,x,}

be a finite set of typed variables defined over a non-emptyefohiimain of value®. We define
alabel a as a total map fromX to D which maps each variable; to valued;. An X-trace p

is a finite sequence of labels on. The next-time label is" = a(X/X") is obtained from: by
replacing eaclr; € dom(a) by z. Given variablesX and the corresponding next-time variables
X', let us denote the (finite) set of all predicatesXnJ X’ by & (TRUE andFALSE denote the
boolean constants). Given labelsindb on X, we say that a label pair, t') satisfies a predicate
¢ € dx, denoteds(a, V'), if ¢ evaluates taRUE under the variable assignment givendgndb'.

CFA. A communicating finite automa{&FA) C on a set of variableX (called the support set)
is atuple(X, @, 0,4, F); @ denotes a finite set of states), is the initial statey C Q x Py x @
is the transition relation and’ is the set of final states. For statgs) € Q and¢ € Py, if
d(q, ¢, q’) holds, then we say thatis a transition predicate betweerandq’. For each state, we
define its follow sefol(q) to be the set of outgoing transition predicates, f@(q) = {¢|3¢ €
Q. (g, 0,q)}. We say thafol(q) is complete iff\/{¢ € fol(¢)} = TRUE and disjoint iff for all
¢i, ¢; € fol(q), ¢: A ¢; = FALSE. Also, we say thad is complete (deterministic) iff for eache @),
fol(¢q) is complete (disjoint). The alphabgtof C is defined to be the set of label paiis a’) on
variablesX and.X’. The above definition of transitions (on current and naxtetivariables) allows
compact representation of CFAs and direct composition witBsSbelow.

A run of C is defined to be a sequen¢g), ..., q,) of states inQ such thaty, = ¢0. A run
is said to be accepting if, € F. Given alW-trace X C W), p = ay,...,a,, iS said to be a
trace ofC' if there exists an accepting runo, . . ., ¢,) of C, such that for allj < n, there exists a
predicatep, such thab(g;, ¢, ¢;41) andg(a;, ;) holds. In other words, the labels anda;,
must satisfy some transition predicate betwegandg,.,. TheWW-trace languagé.y, (C) is the
set of alll¥/-traces ofC. Note that this definition of¥/-trace allows a sequence of labels &n
to be extendedy all possible valuations of variables iy \ X and eases the definition of the
composition operation below. In general, we assuinées the universal set of variables and write
L(C) to denote the language Of.

A CFA can be viewed as an ordinary finite automaton with alphabghich accepts a regular
language oveE. While the states are represented explicitly, fibleow function allows clustering
a set of alphabet symbols into one transition symbolicdllye common automata-theoretic oper-
ations, viz., union, intersection, complementation arntéiheinization via subset-construction can
be directly extended to CFAs. The complementiok denoted by”, wherelL(C) = L(C).

Symbolic Transition System.A symbolic transition syste(®TS)M isatuple(X, S, I, R, F),
defined over a set of variables called itssupport whereS consists of all labels oveX, I(X) is

4

r#0Va #£1

Figure 2: A CFA on suppotX = {z}; z isabooleant = {(z = 0,2’ = 0), (z = 0,2 = 1), (z =

Lo’ =0),(z=1,2"=1)}. fol(qo) = {(z =0A2' =1),(x 0V a' #1)}. fol(¢1) = {TRUE}.

Note that the first element &bl(q,) corresponds to an alphabet symbol while the second element
is an alphabet cluster. Also, bafhl(q,) andfol(q;) are disjoint and complete.

the initial state predicatd?(X, X') is the transition predicate arfd(X) is the final state predicate.
Given a variable sét/ (X C W), aW-tracep = ay, .. ., a, iS said to be a trace a¥/ if I(ay) and
F(a,) hold and for allj < n, R(a;,d},,) holds. The trace languadg M) of M is the set of all
traces ofM .
CFAasan STSGivena CFAC = (X¢, Q¢, ¢0¢, ¢, Fe), there existsan ST = (X, S, I, R, F)
such thatL(C') =LL(M). We constructV/ as follows: (i).X = X U {q} whereq is a fresh variable
which ranges ove), (ii) 1(X) = (¢ = ¢0), (iii) F(X)=3q¢; € Fo.(¢ = ¢), and (V) R(X, X') =
(F01,2 € Qc, 0 €. (= Nq' = @2 Ndo(qr, ¢, ¢2) N d(Xe, Xi))

Synchronous Composition of STSsSuppose we are given two ST8§ = (X, 51, [1, Ry, F)
and My = (Xy, Sa, I, Ry, F5). We define the compositiod/; || M, to be a STSM =
(X, S, I, R, F) where: ()X = X; U Xy, (ii) S consists of all labels oveX, (iii) I = I; A I, (iv)
R=Ry N Ry,and (V)F = F1 A\ F.

Lemma 1 Given two STS8/; and My, L(M; || M) = L(M;) NL(Ms).

We use STSs to represent system components and CFA on shaedidesto represent automata
computed in the various AGR sub-tasks. We assume that akb §&%& total transition predicates.
We define the composition of an STi$ with a CFAC, denoted by\/ || C, to beM || M¢, where
M¢ is the STS obtained frord'. Although we use a synchronous notion of composition in this
paper, our work can be directly extended to asynchronougposition also.

Definition 1 (Model Checking STSs)Given an ST3/ and a property CFAP, the model check-
ing question is to determine ¥/ = P wherelF denotes a conformance relation. Using the trace
semantics for STSs and CFAs and set containment as the camcemelation, the problem can
be reduced to checkinglif(M) C L(P).

Since CFAs are closed under negation and there is a langupieakent STS for each CFA, we
can further reduce the model checking question to checKifidA/ || Mp) is empty, where the
STS M5 is obtained by complementing to form P and then converting it into an STS. Let STS
M =M || Mp. In other words, we are interested in checking if there isereptingtrace inM,
i.e., a trace that ends in a state that satisfies

1We overload the symbdil () to describe the trace language of both CFAs and STSs.

2.1 SAT-based Model Checking

It is possible to check for existence of an accepting traemiS TSM using satisfiability checking.
A particular instance of this problem is bounded model chvexKLO] where we check for existence
of an accepting trace of lengthusing a SAT solver.

Bounded Model Checking(BMC). Given an integer bound, the BMC problem can be
formulated in terms of checking satisfiability of the follmg formula [10]:

BMC(M, k) = In(so) A\ Ru(sjisis) A\ Fulsy) (1)
0<j<k—1 0<j<k

Heres; (0 < 5 < k) represents the set of variabl&s,, at depth;. The transition relation oM is
unfolded up tak steps, conjuncted with the initial and the final state pratgis at the first and the
last steps respectively, and finally encoded as a propoaltformula that can be solved by a SAT
solver. If the formula is SAT then the satisfying assignmamtesponds to an accepting trace of
lengthk (a counterexample td/ E P). Otherwise, no accepting trace exists of lengtbr less. It
is possible to check for accepting traces of longer lengghadreasingt and checking iteratively.

Unbounded Model Checking(UMC). The unbounded model checking problem involves
checking for an accepting trace of any length. Several S#geld approaches have been pro-
posed to solve this problem [30]. In this paper, we consider approaches, one based kbn
induction [34, 18, 6] and the other based on interpolatidsj.[2

The k-induction technique [34] tries to show that there are naepting traces of any length
with the help of two SAT checks corresponding to the base adddtion cases of the UMC prob-
lem. In the base case, it shows that no accepting trace ofhléngr less exists. This exactly
corresponds to the BMC formula (Eq. 1) being UNSAT. In theuiciibn step, it shows that if no
accepting trace of lengthor less exists, then there cannot be an accepting tracegthlént 1 in
M, and is represented by the following formula:

Step(./\/l, k) = /\ RM(Sj, Sj+1) N /\ ﬁFM(Sj) A FM (Sk+1) N /\ S; 7é Sj+1 (2)

0<j<k 0<j<k 0<i<j<k

The induction step succeedsStep(M, k) is UNSAT. Otherwise, the depthis increased itera-
tively until it succeeds or the base step is SAT (a countengta is found). The set of constraints
of form s; # s, in (EQ. 2) (also known as simple path or uniqueness constieane necessary
for completeness of the method and impose the conditiorathstiates in the accepting trace must
be unique. The method can be implemented efficiently usinmeremental SAT solver [18],
which allows reuse of recorded conflict clauses in the SAVesohcross iterations of increasing
depths. Thek-induction technique has the drawback that it may requirenasy iterations as
the length of the longest simple path between any two statdd (also known as recurrence di-
ameter [10]), which may be exponentially larger than thegkst of all the shortest paths (or the
diameter) between any two states.

Another approach to SAT-based UMC is based on using intargel[25]. The method com-
putes an over-approximatiah of the reachable set of states .M, which is also an inductive
invariant for M, by using the UNSAT proof of the BMC instance (Eq. 1).Zldoes not overlap

with the set of final states, then it follows that there eximgisaccepting trace inM. An important
feature of this approach is that it does not require unfgdhre transition relation beyond the di-
ameter of the state space .0, and, in practice, often succeeds with shorter unfoldings. do
not present the details of this approach here; they can belfou[25, 4].

In order to use a SAT solver, the above formula instancestoave translated into propositional
logic. A lot of structural information is lost (e.g., relati between bits of an encoded variable)
due to this translation and may lead to useless computagaiidd SAT solver. We can avoid
this translation by using an SMT solver [36, 3]. Besidesvaithg propositional constraints, an
SMT solver also supports input formulas in one or more (gdjuirst order theories, e.g., the
guantifier-free fragment of linear arithmetic over integefherefore, both BMC and UMC based
on k-induction can be carried out using a SMT solver, providesdiiports the theories over which
the above formulas are defined. A particular mixed boole#edier encoding of hardware RTL
constructs can be found in [11]. Similarly, interpolatibased UMC may be carried out using an
interpolating prover provided it can generate interpaantthe required theories.

3 Assume-Guarantee Reasoning using Learning

Assume-Guarantee reasoning allows dividing the verificattask of a system with multiple com-
ponents into subtasks each involving a small number of compis. AGR rules may be syntacti-
cally circular or non-circular in form. In this paper, we Wile concerned mainly with the following
non-circular AGR rule:

Definition 2 Non-circular AGR (NC) Given STS4/;, M, and CFAP, show thatV/; || M, E P,
by picking an assumption CFA, such that bott{n1) M; || A E P and(n2) M E A hold.

The following circular rule has also been proposed in liier@[8, 27].

Definition 3 Circular AGR (C) Show that)/; | M, F P holds by picking an CFA assumption
tuple, (A;, A2), such that each of the following holdcl) M, || A; F P (c2) M, || A, F P and
(c3)A; || A2 E P.

Both NC andC rules are sound and complete [28, 8, 27]. Moreover, both eaaxbended to a
system ofr STSsM; ... M, by picking a set of assumptions (represented as a tdgle). . A,,_1)
for NC and (4, ... A,,) for C respectively [15, 8, 27]. The proofs of completeness fohlibese
rules rely on the notion of weakest assumptions.

Lemma 2 (Weakest Assumptionsiziven a finite ST3/ with support sefX,; and a CFAP with
support setX p, there exists a unique weakest assumption CFA, WA, such Yh#t (i WAE P
holds, and (ii) for all CFAA whereM || A E P, L(A) C L(WA) holds. MoreoverL(WA) is
regular and the support variable set of WAXS, U Xp.

Proof. By definitionL(M) NIL(A) C P. On rearranging, we get,(A) C L(M) UL(P). Hence,
for the weakest assumptidA L(WA) =L(M)UL(P). Since, the support set &f M) andL(P)
is Xy and X respectively, the support @f(WA) and therefordVAis X, U Xp.?

As mentioned earlier (cf. Section 1), a learning algorittonregular languaged,*, assisted
by a model checker based teacher, can be used to automatjeaktrate the assumptions [15, 8].
However, there are problems in scaling this approach tcelaftared memory systems. Firstly,
the teacher must be able to discharge the queries efficiemdly if it involves exploring a large
state space. Secondly, the alphabebtf an assumptiom is exponential in its support set of
variables. Since.* explicitly enumerates: during learning, we need a technique to curb this
alphabet explosion. We address these problems by propassfj-based implementation of the

teacher and a lazy algorithm based on alphabet clusterishgenative partitioning (Section 4).

3.1 SAT-based Assume-Guarantee Reasoning

We now show how the teacher can be implemented using SAdmasdel checking. The teacher
needs to answer membership and candidate queries.

Membership Query. Given a trace, we need to check if € LL(WA) which corresponds to
checking ifM; || {t} £ P holds. To this end, we first converinto a language-equivalent ST\%,,
obtainM = M, || M, and perform a single BMC chedMC(M, k) (cf. Section 2.1) wheré is
the length of trace. Note that sincel/, accepts only at the depth we can remove the final state
constraints at all depths excefpt The teacher replies with BRUE answer if the above formula
instance is UNSAT; otherwisem\LSE answer is returned.

Candidate Query. Given a deterministic CFA4, the candidate query involves checking the
two premises oNC, i.e., whether both\/; | A E P andM, F A hold. The latter check maps
to SAT-based UMC (cf. Section 2.1) in a straightforward wispte that sinced is deterministic,
complementation does not involve a blowup. For the previaheck, we first obtain an STH =
M, || M4 where the STS\/, is language-equivalent té (cf. Section 2) and then use SAT-based
UMC for checkingM E P.

In our implementation, we employ both induction and intéagion for SAT-based UMC. Al-
though the interpolation approach requires a small numb&e@tions, computing interpolants,
in many cases, takes more time in our implementation. Thadioh-based approach, in con-
trast, is faster if it converges within small number of itewsas. Now, automated AGR is car-
ried out in the standard way (details can be found in [15, BP@Bed on the above queries. The
learner sets the support variable set for the assumptitmthe support of the weakest assumption
(Xwe = Xy, U Xp) and iteratively computes hypotheses assumptions by gskémbership and
candidate queries untill holds. The last assumption is then presented in a candidaty g/hich
checks ifn2 holds. Ifn2 holds, then the procedure terminates. Otherwise, a caxdemplece
is returned.ce may be spurious; a membership querydens used to check if it is spurious. In
that casec¢e is projected taX,,, to obtaince’ and learning continues with the’. Otherwise ce
is returned as an actual counterexample\ip | M, F P. The termination of this procedure is
guaranteed by the existence of a unique weakest assumfglorlowever, it is important to note

2We would like to thank Kedar Namjoshi for suggesting a singptsof.

that we seldom need to compuéA In practice, this procedure terminates with any assumptio
A that satisfiesil andn2 and the size oA is much smaller than that 8WA

4 Lazy Learning

This section presents our new lazy learning approach toesddhe alphabet explosion problem
(cf. Section 1); in contrast to the eager BDD-based learaiggrithm [31], the lazy approach (i)
avoids use of quantifier elimination to compute the set oesdnd (i) introduces new states and
transitions lazily only when necessitated by a countergtamWe first propose a generalization
of the L* [33] algorithm and then present the laZyalgorithm based on it.

Notation. We represent the empty trace byFor a traceu € ¥* and symbok € 3, we say
thatwu - a is an extension ofi. The membership functioft] is defined as follows: . € Ly,
[u] = 1, otherwise[u] = 0. For eachu € ¥*, we define dollow function follow : ¥* — 2%,
where follow(u) consists of the set of alphabet symbolg X thatw is extended by in order to
formu - a. A counterexample trace is positive if [ce] = 1, otherwise, it is said to be negative.

The basis of our generalization &f is thefollow function; instead of allowing each € ¥*
to be extended by the full alphabgtas in original L*, we only allowu to be extended by the
elements infollow(u). With follow(u) = X (for eachu) the generalized algorithm reduces to the
original algorithm.

Recall thatZ.* is an algorithm for learning the minimum DFA corresponding to an unknown
regular languagé.;; defined over alphabet. The algorithm is based on the Nerode congru-
ence [21]: Fom, v’ € ¥*, u = o' iff

YweX*u-vely & v -vely

L* iteratively identifies the different congruence classe$.inby discovering a representative
prefix trace ¢ € X*) for each of the classes with the help of a set of distingaglsuffixes
V' C ¥* that differentiate between these classes.

4.1 GeneralizedL* Algorithm

L* maintains an observation tabfe = (U, UA, V, T') consisting of tracessamplesrom L;,. Here
U C ¥*isaprefix-closed set of traces aidC X" is a set of suffixes. The algorithm also maintains
extensions of: € U in UA on thefollow set ofu, i.e.,UA = {u - alu € U,a € follow(u)}. T
maps each, € (U U UA) to a function?'(u) : V' — {0,1} so thatT'(u)(v) = [u - v]. We write
T(u)(v) asT'(u,v) for ease of notation. We define a congruercas follows: foru, v’ € U UUA,
u=uiff Yo e V, T(u,v) = T(v,v). We can view= as the restriction of Nerode congruence to
prefixes inU U UA and suffixes ir//.

Well-formed Table. An observation tablg is said to be well-formed if for alk,, v" € U,
u # v'. In the generalized algorithnd; is always well-formed.

3A notion of consistencys usually used in presentation &f [5]. We ignore it sincel/ never contains distinct
elementas, v’ so thatu = u'. Therefore table consistency is always maintained.

Learner L*
Let7 = (U,V,T) be an observation table
Init:

Close _Table (7)
while 7 is not closed
U=V = {e Picku' € UA/\ such thatv'u € U/ uFEu
Yu € ¥*, setfollow(u) =% U_::UU{U }’UA;: UAN {u}
Fill () Fill A1l Succs(u')
Fill A1l Succs (€)
Loop:
Close_Table(7)
DFA D := Mk _DFA(T)
if (Ask_Cand_Q (D) = TRUE)
returnD;
else
Let the counterexample he
Learn CE (ce)

Fill A11 Succs (u)
Foralla € follow(u)
UA:=UAU{u-a}
Foreachv € V: Fill(u - a, v)

Fill (u, V)
T(u,v) := Ask Mem Q(u - v)
Figure 3: The generalizet* algorithm

Table Closure. The observation tabl€ is said to be closed if for each- a € UA, there is a
u € U, sothatu - a = «'. In this case, we write/ = [u - a]” and say that/ is therepresentative
trace for u - a. Note thatu’ is unique sinceZ is well-formed. We extend|” to U by defining
[u]" = u for eachu € U. This is possible sinc& is well-formed. For alk. € (U UUA), we denote
the set of traces equivalent by [u|, where

[u] = {u' € (UUUA) | u=u"}

Given any observation tablg, we assume that a procedW®ose_Table makes it closed.

DFA Construction. Given a closed tablg’, L* obtains a DFAD = (Q, qo, 0, ') from it as
follows: @ = {[u] | w € U}, where a statg € @ corresponds to the equivalence clagsof a
traceu € U, qo = [¢], 6([u],a) = [u - a] for eachu € U anda € follow(u). F ={[u] | u €
UANT(u,e) = 1}. Suppose that a procedure calledDFA implements this construction. Note that
D is deterministic and iff ollow(u) = X, thenD is complete.

Figure 3 shows the pseudocode of the generalizedlgorithm. Thelnit block performs the
initialization steps while the.oop block performs the learning task iteratively. We assume tha
the teacher provides procedures to perform the membersigify sk Mem_Q) and the candidate
query (Ask_Cand_ Q). In the Init block, L* initializes the setd/ andV with the empty trace.

It then updates the m&p by first asking a membership query for table element) (using the
Fill procedure) and then for all elements in its follow getiow(e) (using theFill A1l Succs
procedure). Thé.oop block executes the following tasks iteratively: it first neakl” closed (using
theClose_Table procedure), computes a candidate DPAusing theMk DFA procedure) and then
performs a candidate quenysk_Cand_Q) with D. If the candidate query succeeds,finishes by
returning D; otherwise, thd.oop block continues iteratively by learning from the countereple
obtained (using the procedutearn CE).

Learn CE procedure. In order to describeearn _CE, we first extend:]” (defined undefable
Closure above) to anyw € ¥* as follows. Giverw € ¥*, we definw|” = u (u € U), such that
if ¢ = 05(qo0,w), theng = [u|". It follows from the construction of DFAD that such a: must

10

exist'. Intuitively, [w]" is the representative element of the unique siafiequivalence class) that
w reaches when it is run ob starting aty,. We define an-split of the counterexample: to be a
tuple (u;, v;), wherece = u; - v; and|u;| = 4. In words, an-split of ce (0 < i < |ce[), consists of its
prefixu; of length: and the corresponding suffix. Further, for an-split, we definey; = [[u;]" - v;]

(o € {0,1}) [33]. It can be shown that, = [[e]" - ce] = [ce] andoye.| = [[ce]” - €] # [ce] [33].
Intuitively, o; checks whether the prefix; is classified into the correct equivalence class$ °;

if a; = [ce], it implies thatu; is classified correctly, otherwise it is mis-classified aridmust
re-classifyu; to a different equivalence class. But, the counterexampls mis-classified by
definition and hence..| # [ce]. TheLearn CE procedure is given by the following pseudocode:

Learn CE (ce)
Find i by binary search such that # «a;.4
V=Vvu {Ui+1}
Forallu € U UUA. Fill(u,vi4)

Sinceay # o, there must exist somg 0 < i < |ce|, SO thate; # o;41. In that case,
Learn CE will add v;,, to the set of suffixe$” and update the table. Intuitively, ,, is wrongly
classified into the equivalence cldss,], (which corresponds to a state in, sayq), andv;; is
a witness for this mis-classification. Adding,; to V' distinguishes the correct equivalence class
(sayq’) from ¢ and redirects; , ; to the correct equivalence clags We call this astate partition(of
q). Rivest and Schapire [33] show tHatarn CE must add at least one state to the new candidate
DFA constructed in the next iteration. Since the numberatiestin any candidate DFA is bounded
by the number of states in the minimum DFA foy;, generalized.* must eventually terminate
with the minimum DFA.

Learning CFAs with GeneralizedL*. L* can be directly extended to learn a CFA correspond-
ing to L;; over a support variable séf by setting: to all total labels onX U X’ (cf. Section 2).
However,Y is exponential in the size of and will pose a bottleneck fat*. More precisely, the
loop in the procedur@ill A1l Succs will execute an exponential number of times, leading to
inefficiency.

Figure 4 illustrates the generalized* algorithm computation for the language; =
(alb|c|d)(alb)* with 3 = {a,b,c,d}. Note that the symbols, e.gsb, etc., actually represent
predicates over program variables, eqgs= (z = 0 A 2’ = 1). The algorithm begins witl/ =
V = {e} (top part of the table) anfills the table entry corresponding to row and column elements
e to 0 by asking a membership query. Then, it asks four memberdlepies for extensions af
on each symbol in alphabet followed by column elemeexplicitly (a - €, b - €, etc.) and stores
the result in the table. Note th@ta) = (1) but7'(¢) = (0). ThereforeClose_Table addsa to
U and then algorithm again asks explicit membership quedéd the table on extensions af,
i.e.,a-a,a-b,etc. Oncel is closed,L* constructs a hypothesis DFA (sB&A Construction
above), shown in the figure on left, and makes a candidateyquién it. The teacher provides a
counterexamplee = a - d - c. Learn_CE analyzes: and adds a distinguishing suffixo V. Again,

4For tracesw € U U UA, this extension coincides with the earlier definition.
SFor example, ife is rejected iy, i.e.,. [ce] = 0, then each of its prefixes; must fall into an equivalence class
[u;] such thafu;] rejects the corresponding suffix, i.e., [[u;]" - v;] = a; = 0.

11

€ ¢
€ € 0 1 (q)
€ 0 () a 1 0 (¢)
a 1 () a-c 0 0 (gqo)
(bleld) | 1 (blc|d) 10
a-(ald) | 1 a- (alb) 10
a-(c|d) |0 a-d 00
a-c-(albleJd) |0 O
CTED e
(i) (ii)

Figure 4: lllustration of the generalizdd algorithm forlLy; = (a|b|c|d)(a|b)*. Rows and columns
represent elements éf U UA andV respectively. For row elementand column element, the
table entries correspond fa-v]. Elements irlU are labeled with corresponding stateslterations
(i) and (ii) correspond to the first and second candidatgsecs/ely and their observation tables.
The teacher provides a counterexamplei - ¢ for the first queryLearn CE addsc to V. Similar
rows are clustered together by overloading ftsgmbol for compact illustration.

L* obtains a closed table and asks a candidate query on theypnthlesis. Since this hypothesis
is correct, the algorithm terminates.

4.2 Lazy!l* Algorithm

The main bottleneck in generalizéd algorithm is due to alphabet explosion, i.e., it enumerates
and asks membership queries on all extensions of an elemerif on the (exponential-sized)
explicitly. The lazy approach avoids this as follows. lality, the follow set for each contains a
singleton element, the alphabet clusteug, which requires only a single enumeration step. This
cluster may then be partitioned into smaller clusters inléiter learning iterations, if necessitated
by a counterexample. In essence, the lazy algorithm notaetisrmines the states of the unknown
CFA, but also computes the set of distinct alphabet clusteigoing from each state lazily.

More formally,* performs queries on trace sets, wherein each transitimegponds to an alpha-
bet cluster. We therefore augment our learning setup tolbaseds of traces. Let denote the set
2* and concatenation operatdoe extended to sets of tracésandS, by concatenating each pair
of elements fromS; and S, respectively. The follow function is redefined asllow : ¥* — 2%
whose range now consists of alphabet cluster elementsgbalaét predicates). The observation
table 7 is a tuple(U, UA, V,T) whereU C S* is prefix-closed,VV C $* and UA contains all
extensions of elements i on elements in their follow setq(u, v) is defined on a sets of traces
u andw, so thatl'(u,v) = [u - v] where the membership functidr] is extended to a set of traces
as follows: given a trace sét, [S] = 1 iff V¢ € S. [t] = 1. In other words, 5] = 1iff S C Ly.
This definition is advantageous in two ways. Firstly, the $#&Eed teacher (cf. Section 3.1) can
answer membership queries in the same way as before by timigvarsingle trace set into the
corresponding SAT formula instance. Secondly, in conti@st more discriminating 3-valued in-

12

Init: Vu € ¥*, setfollow(u) = TRUE

Learn_CE(ce) Learn_CE_0(ce)
if ([ce] =0) Findi so thato; = 0 anda;,, = 1
Learn CE O(ce) V=V Uu{vi}
elseLearn CE_1(ce) Forallu € U UUA: Fill(u,v;44)
Learn_CE_1(ce) Partition _Table (u,,¢,a)
Findi so thato; = 1 anda; 1 =0 O1:=pNa, Py = Na
if vign €V follow(u,) := follow(u,) U{d1, p2} \ {0}
V=V U{vig} LetUext={uecU|weS* u=u -¢ v}
Forallu € U UUA: Fill(u,vi.4) Let UAext= {u - ¢f | u € Uext A ¢y € follow(u)}
else U:=U\Uezt
Letce = u; - 0; - V41 UA := UA\ UAext
Letg = [u;] andq’ = [u; - /] Foru € {u, - ¢1,u, - $2}
Suppos&ic(q, ¢,q') ando; € ¢ UA:=UAU {u}

Partition _Table([u;]", ¢, o) Forallv € V: Fill (u,v)

Figure 5: Pseudocode for the laZyalgorithm (mainly the procedutiesarn_CE).

terpretation of[.S] in terms of0, 1 andundefined/alues, this definition enablésto be more lazy
with respect to state partitioning.

Figure 5 shows the pseudocode for the proceduarern CE, which learns from a counterex-
ample ce and improves the current hypothesis CEA Learn CE calls theLearn CE.0 and
Learn _CE_1 procedures to handle negative and positive counterexamgdpectivelyLearn CE_0
is the same aBearn CE in generalized.*: it finds a split ofce at position: (say,ce = u; - v; =
u; - 0; - Vi11), SO thato; # «; 1 and adds a new distinguishing sufiix ; (which must exist by
Lemma3 below) toV' to partition the state corresponding|tq - o;]. The procedur@earn CE_1,
in contrast, may either partition a state or partition armalet cluster. The case when, is notin
V' is handled as above and leads to a state partition. Othervise, is already inl/, Learn CE_1
first identifies states in the current hypothesis GFA&orresponding téu;| and[u; - o;], say,q and
¢ respectively, and the transition predicateorresponding to the transtion on symiaplfrom ¢
to ¢'. Letu, = [u;]". Note thaty is also an alphabet cluster fivllow(u,) and ifo; = (a;,), then
¢(a;, b)) holds (cf. Section 2).

The procedur@artition Table is then used to partitiopp usingo; (into ¢; = ¢ A o; and
®2 = ¢ A\ —o;) and update the follow set af. by removingy and addingp,; and¢,. Note thatl/
andUA may also contain extensions of - ¢, given byUext andUAextrespectively. In order to
keepU prefix-closed and have only extensiongbin UA, the procedure removésext andUAext
from U andUA respectively. Finally, it adds the extensionspbn the new follow set elemenis
and¢, to UA and performs the corresponding membership queries. Natesthce all the follow
sets are disjoint and complete at each iteration, the hgs®ICFA obtained from a closed table
T is always deterministic and complete (cf. Section 2).

Example Figure 6 illustrates th& algorithm for the unknown languade; = (a|b|c|d) - (a|b)*.

13

) € ¢
€ 0 1 (q)
€ € 0 (qo)
T 1 0 ()
T |1 (q0) T-a 1 Ta 10
TT1|0 T 1 Th 1 0
T-(alp) | O T(alb)-T|0 0
(a|b)
b.‘ OROwSoCROL0 DT

(i) (|||)

Figure 6: lllustration of thé* algorithm forLLy = (alb|c|d)(alb)*. Rows and column represent
elements ofU U UA andV respectively. Alphabets are represented symbolically: (t|/c|d),

(alb) = (c|d).

Recall that the labels, b, ¢ andd are, in fact, valuations of program variables. The algonith
converges to the final CFA using four candidate queries; thedighows the hypotheses CFAs for
first, third and last queries. The first three queries are ceessful and return counterexamples
(positive),a - b (positive),a - d - ¢ (negative). Note that the algorithm avoids explicitly erarating
the alphabet set for computing extensions of elements imtil required. Also, note that the
algorithm is insensitive to the size of alphabet set to soxtent: if L, is of the formX - (a|b)*,
the algorithm always converges in the same number of itaratsince only two cluster partitions
from stateg; need to be made.

The drawback of this lazy approach is that it may require noaredidate queries as compared
to the generalized* in order to converge. This is because the algorithm is labtaining infor-
mation on the extensions of elementdirand therefore builds candidates using less information,
e.g., it needs two candidate queries to be able to partitiercluster’ on botha andb (note that
the corresponding counterexamptes: anda - b differ only in the last transition). We have devel-
oped a SAT-based method(presented below) that acceléatasg in such cases by generalizing
a counterexampler to include a set of similar counterexamples’) and then usinge’ to perform
acoarsercluster artition.

Lemma 3 The procedurd.earn CE_0 must lead to addition of at least one new state in the next
hypothesis CFA.

Proof. We first show that; ¢ V. Supposey; € V. We know thatw; = [[w;]" - 0; - v;] = 0
anda;1 = [[u; - o;]" - v;] = 1. Also there must exisp € follow([u;]") SO thatol € ¢ and
T([w]" - ¢, v;) = T([u; - 0;]",v;) = 1. Therefore, by definitionya € ¢, [[w]" - a - v;] = 1. But,
0; € ¢ and[[u;]" - o; - v;] = 0. Contradiction.

14

Letua = ([u;]" - ¢) andu’ = ([[u;]” - ¢]"). Addingv; to V- makesua # v’ which were equivalent
earlier. Moreover, since’ must be inU already, both.a and«’ must be inequivalent to all other
u € U. ThereforeClose Table must addua to U and thereforélk DFA will add at least one new
state in the next hypothesis.

Lemma 4 The procedurd.earn_CE_1 either leads to addition of at least one new state or one
transition in the next hypothesis CFA.

Proof. If v; ¢ V, we can argue that at least one state will be added in a walasitoithe previous
lemma. Ifv; € V, then we know thaf[u;]" - o; - v;] = 1 and there exists € follow([u;]") so that
0; € ¢ and[[w;]" - ¢ - v;] = 0. In this caseLearn CE_1 splits the clustep into ¢; = ¢ A 0; and
2 = ¢ A —o;. It follows from definition of[-] that[[u;]" - ¢1 - v;] = 1 and[[u;]" - ¢2 - v;] = 0.
Hence,p; and¢, must go to different states, causing addition of at leasttraresition.

Remark. AlthoughLearn_CE_1 may add a transition, the number of states in the next hypothe
sis may decrease. This is because partitioning a clusteaisayause a state partition causjag’
to split into two previously existing states, i.e., the neavtpioned traces may become equivalent
to some previously existing elements(of

Theorem 1 [* terminates inD(k - 27) iterations wheret is the alphabet size andis the number
of states in the minimum deterministic CE, corresponding td..

Proof. Consider the prefix tre€7" obtained from the prefix-closed set of element&/inNote that
each node iPT corresponds to a different state (equivalence class) irpathgsis CFAC. Also,
consider computation tre@7’ obtained by unrolling the transition structure@f,. Note thatPT'
of depthd can be embedded int07" where different nodes i7" at a given depttk (¢ < d)
correspond to different (possibly overlapping) subsettates inC'T" at depthk. Learn CE_O
introduces a new node iRT while Learn_CE_1 partitions an alphabet cluster outgoing from some
node in PT, so that the size of each of the new clusters is smaller. lufifscgent (with respect
to adding and removing states) to considerffi; of depthd = 2" since each node i#7
corresponds to (i) an elemente U whereT'(u) is unique for each. and also (ii)to a subset of
states reachable at depth in C,,,. Note that a node may be removed fra@tii’ only if an outgoing
cluster of one of its ancestor nodes can be partitioned. Noeed.earn CE_1 always partitions
some cluster in the prefix tree into smaller ones, this cap&awnlyk number of times for the
nodes at a given depth A7, until each transition corresponds to a single alphabet syntksing
induction on depth of’T}, it follows that the clusters at all nodes i1’y will be fully partitioned
in at mostk - 2" iterations. Therefore, the algorithm will make at mést 27) calls toLearn CE
(or candidate queries) before terminating.

4.3 Optimizing [*

Although the complexity is bad (mainly due to the reason thatay introduce a state correspond-
ing to each subset of states reachable at a given deih, Jnour experimental results show that
the algorithm is effective in computing small size assuonion real-life examples. Moreover,

in context of AGR, we seldom need to learf), completely; often, an approximation obtained at

15

an intermediate learning step is sufficient. We now propesersl optimizations to the basit
algorithm outlined above.

Coarser Cluster partitioning using ce generalization. Recall thatce = u; - a - v;1; where
a is a label onX U X’. Letu, = [u;]". Cluster partitioning occurs in thisearn CE_1 procedure
wherefu, - a - v;]] =1 and[u, - ¢ - v;] =0. ThePartition Table procedure uses the symbol
a (called therefining predicatg to partition the cluster in follow(u,) into ¢; and ¢,. Since
a is an alphabet symbol, this leads to a fine-grained pariitgof follow(u,). Moreover, note
that multiplesimilar counterexamples may cause repeated partitioningtbw (u,), which may
lead to explicit enumeration of in the worst case. For example, there may be several positive
counterexamples of form; - o' - v;;; wherea’ € ¢ andd’ differs froma only in a few variable
assignments. Therefore, we propose a SAT-based techmiguedrforms @oarserpartitioning of
¢ by firstenlargingthe refining predicate to a new predicate, say,, and then using! to partition
0.

Recall that the value dfu, - a - v;41] is computed using a BMC instance. Given a predigate
over X U X', let E(p) represent the BMC formula corresponding to the evaludting p - v;41].
We know that the formula(a) is UNSAT while E(¢) is SAT (cf. Section 3.1). We say that
a predicateA is an enlargement of if « = A. We are interested in computing the maximum
enlargement! of a so thatF(A) is UNSAT. This is equivalent to solving an All-SAT problen03
and is computationally expensive with SAT. Instead, we psapa greedy approach to compute a
maximalenlargement of. by using a variable lifting technique [32] in the followingayt Since
a may be viewed as a conjunction of variable assignment cainssr we iteratively remove these
variable assignments to obtain larger enlargemdrds long as the formul&(A) remains UNSAT.
The procedur&nlarge shows the pseudocode for this technique. It can be implesdesiticiently
using an incremental SAT solver and made efficient by obsgréie UNSAT core obtained at each
iteration [35].

Enlarge (F, a)

A=a

Il A is a set of constraints of fornx(= d;)

Loop:
Pick anewconstraintz; = d; in A; If impossible, returnA
A=A\ {(2; = di)}
if (E(A)is SAT)

Lemma 5 The procedur&€nlarge finds a maximal enlargemedt,, of a when it terminates. Also,
A,, must partition the cluste into two disjoint clusters.

Proof. Note thatE/(p) can be written ag’ A p for some formulal’. We know thatz(a) is UNSAT
andE(¢) is SAT.Enlarge must terminate with at least one constraintlinsinceF (TRUE) is SAT.
(E(TRUE) = F ATRUE=F A (¢ V —¢) = E(¢) V f' for some formulaf’). It is clear from the
pseudocode that,, computed on termination is maximal.

Sincea = ¢ anda = A,,, SO¢ A A,, # FALSE. HenceA,, must splity into two disjoint
clustersp; = ¢ A A,,, andgs = ¢ A —A,,.

16

Follow transfer on partitioning. Recall thaPartition Table procedure partitions the clus-
ter ¢ in follow set ofu, into ¢; and¢, and removes all extensiob&zt of u,.. However, this may
lead to loss of information about follow sets of elementd/efrt which may be useful later. We
therefore copy the follow set information for eaghe Uext (v = u, - ¢ - v for some v) to the
corresponding partitioned traces, - ¢; - v andu,. - ¢5 - v.

Reusingv € V. In theLearn CE_1 algorithm, it is possible that; ; ¢ V. Instead of eagerly
addingv;,; to setV, we check if some < V can act as a substitute foy,, i.e.,a; = 1 and
a;+1 = 0 with v substituted fow; ;. If we find suchv, we use the other caseliearn_CE_1 which
performs cluster partitioning. Intuitively, adding an mlent toV may cause unnecessary state
partitions corresponding to other element#/inwhile reusing a previous elementinwill lead to
a cluster partition whose effect will be local 49 - ¢ and its successors.

Membership Cache and Counterexample HistoryT he results of all membership queries are
stored in amembership cachso that multiple queries on the same trace are not broughteto t
teacher each time, but instead looked up in the cache. Wekakm acounterexample history
set, which stores all the counterexamples provided by thehter. Before making a candidate
guery, we check that the new hypothesis agrees with the uwkt@nguage on all the previous
counterexamples in the counterexample history set. Thise$ul because of the lazy nature of
the algorithm: it may become necessary to learn again froroléer counterexample since the
previous learning step only extracted partial informati@m it.

Another Lazy learning algorithm: [*. We briefly discuss another algorithih that may be
viewed as an extension to a learning algorithm for paranestéisystems [9]. Instead of represent-
ing the follow sets for each € U with one or more alphabet cluster predicates, we only keep a s
of representative alphabet symbols in the follow set foheaand a function¥,, which maps each
representative symbol to an alphabet cluster. As a restiiggh the observation table only con-
tains a selected set of extensions for eaeh U from the follow set, we can still obtain a complete
CFA using the functior¥, for eachu. Also, in contrast td*, the table elements correspond to
single traces (as in the original algorithm). Moreover, its complexity is the same as thathef t
original L* algorithm [33]. In order to perform counterexample anaythe original algorithm [9]
adds all prefixes of a counterexamplelfo Instead, we propose to perform more sophisticated
counterexample analysis in tune withas follows. In order to learn from a counterexampie
two cases need to be differentiated. First case simply adusdfia to the sefl” causing a state-
partition; the second case leads to addition of a new reptatee element in a follow set, which
causes splitting of alphabet cluster in the range set ofuhetion F,, for someu. Like [*, [does
not need to restart learning after a follow set is updatedohtrast td’, the elements of the follow
set in{* are alphabet clusters, where each alphabet cluster condspo a set of representative
elements instead of a single one ag'inWe comparé* (Lazy-AGR) with[* (P-AGR) in the next
section.

5 Implementation and Experiments

We have implemented our SAT-based AGR approach basdd@andC rules in a tool called
SYMODA, written in C++. Thel* algorithm is implemented together with related optimiaas.

17

The input language of the tool is a simple intermediate lagguSIL), which allows specification
of a set of concurrent modules which execute synchronolislgh module may have its internal
variables and communicates with other modules using ghedn@hbles. Variables are of boolean,
enumerated and bit-vector types and sequential logic aeifsgd in terms of control flow based
on guarded commands. Each module may also have a block oficatioimal logic in terms of
boolean equations. In order to evaluate our approach, wsl&ie both SMV and Verilog programs
into SIL. Translator from Verilog to SIL is implemented ugithe ICARUS Verilog parser. Trans-
lation from SMV is done using a python script. The encodingfgrams into formula is done
as follows. We translate enumerated types to integers witin@ constraints. Bit-vector variables
are "bit-blasted” currently. We check the correctness eftilanslation by monolithic SAT-based
model checking on the translated models. We use the inca8MT solver YICES [3, 17]
as the main decision procedure. Interpolants are obtaised whe library interface to the FOCI
tool [1]. We represent states of a CFA explicitly while BDD® arsed to represent transitions
compactly and avoid redundancy.

Experiments. All experiments were performed on a 1.4GHz AMD machine wi@B3of mem-
ory running Linux. Table 1 compares three algorithms foroaudted AGR: a BDD-based ap-
proach [31, 27] (BDD-AGR), our SAT-based approach uging.azy-AGR) and (P-AGR), which
uses a learning algorithm for parameterized systems [9¢ [&kt algorithm was not presented in
context of AGR earlier; we have implemented it using a SASdubteacher and other optimizations
for comparison purposes. The BDD-AGR approach autométipaltitions the given model be-
fore learning assumptions while we manually assign eacthetagd module to a different partition.
Benchmarksla s1h guidance msiandsyncarbare derived from the NuSMV tool set and used
in the previous BDD-based approach [27] whitgerson andC'C' are obtained from the VIS and
Texas97 benchmark sets [2]. All examples exegptiance andC'C' can be proved using mono-
lithic SAT-based UMC in small amount of time. Note that in soof these benchmarks, the size
of the assumption alphabet is too large to be even enumearateshort amount of time.

The SAT-based Lazy-AGR approach performs better than theBBsed approach aria and
s2a (cf. Table 1); although they are difficult for BDD-based mbdeecking [31], SAT-based UMC
quickly verifies them. On thewsi example, the Lazy-AGR approach scales more uniformly com-
pared to BDD-AGR. BDD-AGR is able to compute an assumptiath v states on theyncarbd
benchmark while our SAT-based approaches with interpmiaimeout with assumption sizes of
around 30. The bottleneck is SAT-based UMC in the candidaéeygchecks; thé-induction ap-
proach keeps unfolding transition relations to increasiegths while the interpolants are either
large or take too much time to compute. On glegerson benchmark, BDD-AGR finishes earlier
but with larger assumptions of size up to 34 (for two pamiipand 13 (for four partitions). In
contrast, Lazy-AGR computes assumptions of size up to e HAGR computes assumptions of
size up to 8. This shows that it is possible to generate muetisnassumptions using the lazy ap-
proach as compared to the eager BDD-based approach. Baghitherce andsyncarb examples
require interpolation-based UMC and timeout inside a cdaugi query with thé-induction based
approach. P-AGR timeouts in many cases where Lazy-AGR #sisince the former performs
state partitions more eagerly and introduces unnecestdgssn the assumptions.

18

Example| TV | GV | T/F BDD-AGR P-AGR Lazy-AGR
NC C NC C NC C

#A | Time | #A | Time || #A | Time | #A | Time || #A | Time | #A | Time
sla 86 | 5 T 2 | 754 | 2 | 223 || 3 3 3 3 3 35| 3 1.3
slb 94 | 5 T 2 | TO 2 | 1527 3 33 | 3 3.3 3 39 | 3 2
guidance| 122 | 22 | T 2119 | 2 6.6 1 315 | 5 | 146 1 | 40 3 55
msi(3) 57 | 22 | T 2 21 | 2 0.3 1 8 * TO 1 8 3 17
msi(5) 70 | 25| T 2 |1183| 2 32 1 16 * TO 1 15 3 43
syncarb | 21 | 15| T - - 67| 30 * | TO | x| TO * | TON | x| TO
peterson| 13 | 7 | T - - 34| 2 6 | 53 | 8 |210 || 6 | 13 | 6 | 88
CC(2a) | 78 | 30 | T - - - - 1 8 * TO 1 8 4 26
CC(3a) (115 44 | T - - - - 1 8 * TO 1 7 4 20
CC(2by | 78 | 30 | T - - - - * TO | * TO || 10 | 1878| 5 87
CC(Bby | 115 44 | T - - - - * TO | * TO 6 | 2037 | 11 | 2143

Table 1: Comparison of BDD-based and Lazy AGR schemes. P-A€&R a learning algorithm
for parameterized systems [9] while Lazy-AGR ugesTV and GV represent the number of total
and global boolean variables respectively. All times aredoonds. TO denotes a timeout of 3600
seconds.#A denotes states of the largest assumptionnetegs that data could not be obtained due
to the lack of tool support (The tool does not supporti@ rule or Verilog programs as input).
The superscriptdenotes that interpolant-based UMC was used.

Example| T/F | with CE Gen| w/o CE Gen
sla T 1.3 1.1

slb T 2 1.87
s2a F 26 TO

s2b T 36 TO
msi(5) T 43 86
guidance, T 55 57
Peterson| T 13 175
CC(3b) T 2143 TO

Table 2: Effect of the counterexample generalization ojz@ton on the* algorithm.

19

6 Conclusions

We have presented a new SAT-based approach to automated é&/GiRdred memory systems
based on lazy learning of assumptions: alphabet explosioingllearning is avoided by repre-
senting alphabet clusters symbolically and performinglemand cluster partitioning during learn-
ing. Experimental results demonstrate the effectivenéssioapproach on hardware benchmarks.
Since we employ an off-the-shelf SMT solver, we can diret#lyerage future improvements in
SAT/SMT technology. We are also investigating techniquesxploit incremental SAT solving
for answering queries for a particular AGR premise, e.qicsiwe need to check/ || A E P
repeatedly for many different assumptiafiswe could add and remove constraints corresponding
to A at each iteration while retaining the rest of the constmadrresponding td/ and P. Fi-
nally, the problem of finding good system decompositionsaltowing small assumptions needs
to be investigated. Although presented for the case of fstdge systems, our technique can be
extended to infinite-state systems, where the weakest asgumhas a finite bisimulation quotient.
It can also be applied to compositional verification of canent software by first obtaining a finite
state abstraction based on a set of predicate variable®iandgarning assumptions based on these
predicate variables. We also plan to use interpolants toawgpcoarse cluster partitioning.
Acknowledgements. We would like to thank Flavio Lerda for help wth the transtabmm
SMV to SIL and the C interface to FOCI and also for numerousfaéfiscussions. We would
like to thank Constantinos Bartzis and Tamir Heyman for ssvieformative discussions. We
also thank Dilsun Kaynar for carefully reading through afdoé this paper and providing useful
comments.

References

[1] Foci: An interpolating proverhttp://www.kenmcmil.com/foci.html
[2] http://visi.coloradu.edu/ vis/
[3] Yices: An smt solverhttp://yices.csl.sri.com/

[4] Nina Amla, Xiaoqun Du, Andreas Kuehlmann, Robert P. Kars, and Kenneth L. McMil-
lan. An analysis of sat-based model checking techniques ima@ustrial environment. In
CHARME pages 254-268, 2005.

[5] Dana Angluin. Learning regular sets from queries andnterexamples. Iinformation and
Computationvolume 75(2), pages 87-106, November 1987.

[6] Roy Armoni, Limor Fix, Ranan Fraer, Scott Huddlestonr Riterman, and Moshe Y. Vardi.
Sat-based induction for temporal safety propertidsctr. Notes Theor. Comput. Sdi19(2):
3-16, 2005.

[7] Thomas Ball and Sriram K. Rajamani. Generating absteaptanations of spurious coun-
terexamples in C programs. Technical report MSR-TR-2092Microsoft Research, Red-
mond, Washington, USA, January 2002.

20

[8] H. Barringer, D. Giannakopoulou, and C.S Pasareanu. fRubes for automated composi-
tional verification. In2nd Workshop on Specification and Verification of Componese8
Systems, ESEC/FSE 2003

[9] Therese Berg, Bengt Jonsson, and Harald Raffelt. Regqufierence for state machines with
parameters. IRASE pages 107-121, 2006.

[10] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofériéhman, and Y. ZueBounded
Model Checkingvolume 58 ofAdvances in computer&cademic Press, 2003.

[11] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatiders Fran2n, Ziyad Hanna,
Zurab Khasidashvili, Amit Palti, and Roberto Sebastiamic&ting rtl constructs for mathsat:
a preliminary reportElectr. Notes Theor. Comput. Sd44(2):3-14, 2006.

[12] Sagar Chaki and Ofer Strichman. Optimized L* for assugnerantee reasoning. TACAS
2007. To Appear.

[13] Sagar Chaki, Edmund Clarke, Nishant Sinha, and Prasaha#i. T Automated assume-
guarantee reasoning for simulation conformance Pioc. of 17th Int. Conf. on Computer
Aided Verification 2005.

[14] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, Hedmut Veith.
Counterexample-guided abstraction refinement for symimetidel checkingJournal of the
ACM (JACM) 50(5):752—794, September 2003.

[15] Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Coi$ Pasareanu. Learning as-
sumptions for compositional verification. TACAS volume 2619. Springer-Verlag, 2003.

[16] Jamieson M. Cobleigh, George S. Avrunin, and Lori A. CarlBreaking up is hard to do:
an investigation of decomposition for assume-guarantesor@ng. INSSTA pages 97-108,
2006.

[17] Bruno Dutertre and Leonardo de Moura. A fast lineatkametic solver for DPLL(T). In
CAV, pages 81-94, 2006.

[18] Niklas Eén and Niklas 8rensson. Temporal induction by incremental sat solviBtgctr.
Notes Theor. Comput. Sc89(4), 2003.

[19] Mihaela Gheorghiu, Dimitra Giannakopoulou, and CordhaPasareanu. Refining interface
alphabets for compositional verification. TARCAS 2007. To Appear.

[20] Thomas A. Henzinger, Ranijit Jhala, Rupak Majumdar, @nejoire Sutre. Lazy abstraction.
In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium oniplea®f Program-
ming Langauges (POPL '02yolume 37(1) ofSIGPLAN Noticespages 58—-70. ACM Press,
January 2002. ISBN 1-58113-450-9.

21

[21] JE Hopcroft and JD Ulimarntroduction to Automata Theory, Languages, and Computatio
Addison-Wesley, Reading, Massachusetts, 1979.

[22] CIiff B. Jones. Tentative steps toward a developmentwefor interfering programsACM
Trans. Program. Lang. Sysbt(4):596-619, 1983.

[23] Robert P. KurshanComputer-aided verification of coordinating processes: dbtomata-
theoretic approachPrinceton University Press, 1994. ISBN 0-691-03436-2.

[24] Patrick Maier. A set-theoretic framework for assumeantee reasoning. ICALP, pages
821-834, 2001.

[25] Kenneth L. McMillan. Interpolation and sat-based mod®ecking. InCAV, pages 1-13,
2003.

[26] Jayadev Misra and K. Mani Chandy. Proofs of networks otpsseslEEE Trans. Software
Eng, 7(4):417-426, 1981.

[27] Wonhong Nam and Rajeev Alur. Learning-based symba@guae-guarantee reasoning with
automatic decomposition. IATVA pages 170-185, 2006.

[28] Kedar S. Namjoshi and Richard J. Trefler. On the compkse of compositional reason-
ing. InProceedings of the 12th Int. Conference on Computer Aidedia&ion (CAV2000Q)
number 1855, pages 139-153. Springer-Verlag, 2000.

[29] A. Pnueli. In transition from global to modular tempbr@asoning about programs. lliogics
and models of concurrent systerBpringer-Verlag New York, Inc., 1985.

[30] Mukul R. Prasad, Armin Biere, and Aarti Gupta. A survdyrecent advances in sat-based
formal verification.STTT 7(2):156-173, 2005.

[31] W. Nam R. Alur, P. Madhusudan. Symbolic compositionaiification by learning assump-
tions. InProc. of 17th Int. Conf. on Computer Aided Verificati@005.

[32] Kavita Ravi and Fabio Somenzi. Minimal assignmentsifounded model checking. In
TACAS pages 31-45, 2004.

[33] Ronald L. Rivest and Robert E. Schapire. Inference afdiautomata using homing se-
guences. Iinformation and Computatigrvolume 103(2), pages 299-347, 1993.

[34] Mary Sheeran, Satnam Singh, and Gunnar Stalmarck. @igeslfety properties using in-
duction and a sat-solver. IRAroceedings of the Third International Conference on Formal
Methods in Computer-Aided Desigmges 108-125, London, UK, 2000. Springer-Verlag.

[35] ShengYu Shen, Ying Qin, and Sikun Li. Minimizing courgeeample with unit core extraction
and incremental sat. MMCAI, pages 298-312, 2005.

[36] C. Tinelli and S. Ranise. @ SMT-LIB: The Satisfiability Mold Theories Library.
http://goedel.cs.uiowa.edu/smtlib/ , 2005.

22

Appendix

Y

Given a labek over X andY C X, we define the label projectian|y = o’ wheredom/(a')
anda(y) = d'(y) foreachy € Y.

Definition 4 (Product of CFAs.) Given CFAs C; = (X1,Q1,401,01,F;) and Cy =
(Xa, Q2,q04, 0, Fy), their productC' = C} x Cyis atuple(X, Q, 0,6, F) whereX = X; U X5,
Q = Q1 x Q2, q0 = (¢01,¢0,), F = F; x Fy and for a labelc over X U X', ¢;,¢, € @, and
G2, ¢35 € Qa, (¢1, %) € 9((q1, g2), ¢) iff @1 € 01(q1, ¢|x,0x;) ANy € Ja(ga, ¢|x,uxy)-

Lemma 6 For CFAsC; andCy, L(Cy x Cy) = L(Ch) NL(Cy).

Definition 5 (Support set of a Language)We define the supposipt(L) of a regular languagd.
recursively as follows:

e If L =1(C) fora CFAC with support sefX, thenSpt(L) = X.
e If L =L;N Ly forlanguages.; and Ly, thenSpt(L) = Spt(L,) U Spt(Ls).

e If L= L,, for alanguagel;, thenSpt(L) = Spt(L,).
It follows that for L = Ly U Ly = Ly N Lo, Spt(L) = Spt(L1) U Spt(Ly).
Lemma 7 A regular language with suppoiX is accepted by a CFA with suppoxt.

Proof. We prove by structural induction over the definition%ft(L). The base case holds trivially
sinceL =1L(C) for aC with support seiX. If L = ;N L,, by inductive hypothesis, there must exist
CFAs(C, andC;, whereL; = LL(C}) and L, = L(C3), with support setsy; and X, respectively,
so thatX = X; U X,. LetC = () x Cy. Now, L(C) = L(Cy) NL(Cy) = L. Therefore,L is
accepted by the CF& whose support set i&. Again, if L = L, on support sef(, there exist a
CFA C on support selX, so thatlL(C) = L;. Let C' denote the CFA obtained by determinizing
and complementing’;. Note thatC' has supporX’ andL(C) =1L(C}) = L.

In the proof of the following theorems, we use propositiologfic notation for representing
intersection, complementation and union of languages.li/uet= (M) andim, = L(M;) and
Ip = L(P). Given an assumption CFA; and A,, la; = L(A4;) andlay = L(A,). The weakest
assumption language iga; = —(Im;) V Ip (i € {1,2}).

Theorem 2 RuleNC is sound and complete.

Proof.

e SoundnessWe need to show that ifm; A la; = Ip andims, = la; hold, then
ImiANlmy = Ipholds. Sincelm, = la,, therefordmAlms — ImiAlay = Ip.

23

e CompletenessiVe show that ifim,; A lms = Ip, then both the premises dIC hold for
the weakest assumption. The first premise, A la; —> Ip holds sincémy A =(Im4 V Ip)
=Imy Alpandlm; Alp = Ip.

Theorem 3 RuleC is sound and complete.

Proof.

e SoundnessMVe need to show thatiin; Ala; = Ip (i € {1,2}) and—la; A —lay = Ip,
thenlm; A lmy, = Ip. Given a trace € Im; A lms, we consider three cases:
— t € =lay A —lay: It follows from the third premise thate Ip.
— t € lay: Sincet € Imy, it follows from the first premise thate [p.
— t € lay: Sincet € [ms, it follows from the second premise thiat [p.
e CompletenessGiven (i) lm; A lms = [p, we show that all the three premises hold for
the weakest assumption languages, and/wa,. The first two premises hold by definition.

Note that for; € {0, 1}, =lwa; = lm; A —lp. Now, —lwa; A =lwas = lmy Almg A —lp which
impliesip due to (i).

24

