
SAT-based Compositional Verification using
Lazy Learning

Nishant Sinha∗, Edmund Clarke†

Feburary 2007
CMU-CS-07-109

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗Elec. and Computer Engg. Dept., Carnegie Mellon University, Pittsburgh, PA, USA
†School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

This research was sponsored by the National Science Foundation under grant nos. CNS-0411152, CCF-0429120,
CCR-0121547, and CCR-0098072, the Semiconductor ResearchCorporation under grant no. 2006-TJ-1366, the
US Army Research Office under grant no. DAAD19-01-1-0485, and the Office of Naval Research under grant no.
N00014-01-1-0796. The views and conclusions contained in this document are those of the author and should not
be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

Keywords: Assume-Guarantee Reasoning, SAT, SMT, BMC, Learning

Abstract

A recent approach to automated assume-guarantee reasoning(AGR) for concurrent systems relies
on computing environment assumptions for components usingtheL∗ algorithm for learning regular
languages. While this approach has been investigated extensively for message passing systems, it
still remains a challenge to scale the technique to large shared memory systems, mainly because
the assumptions have an exponential communication alphabet size. In this paper, we propose a
SAT-based methodology that employs both induction and interpolation to implement automated
AGR for shared memory systems. The method is based on a newlazy approach to assumption
learning, which avoids an explicit enumeration of the exponential alphabet set during learning
by using symbolic alphabet clustering and iterative counterexample-driven localized partitioning.
Preliminary experimental results on benchmarks in Verilogand SMV are encouraging and show
that the approach scales well in practice.

1 Introduction

Verification approaches based on compositional reasoning allow us to prove properties (or discover
bugs) for large concurrent systems in a divide-and-conquerfashion. Assume-guarantee reasoning
(AGR) [26, 22, 29] is a particular form of compositional verification, where we first generate en-
vironment assumptions for a component and discharge them onits environment (i.e., the other
components). The primary bottleneck is that these approaches require us to manually provide
appropriate environment assumptions. Recently, an approach [15] has been proposed to automat-
ically generate these assumptions using learning algorithms for regular languages assisted by a
model checker. Figure 1 shows a simplified view of this approach for an AGR rule, calledNC.
This rule states that given finite state systemsM1, M2 andP , the parallel compositionM1 ‖ M2

satisfiesP (written asM1 ‖ M2 � P) iff there exists anenvironment assumptionA for M1 such
that the composition ofM1 andA satisfiesP (M1 ‖ A � P) andM2 satisfiesA (M2 � A). It is
known that ifM1 andP are finite-state (their languages are regular), then a finitestate assumption
A exists. Therefore, the task of computingA is cast as a machine learning problem, where an algo-
rithm for learning regular languagesL∗ [5, 33] is used to automatically computeA. TheL∗ learner
computes a deterministic finite automaton (DFA) corresponding to an unknown regular language
by asking queries to ateacherentity, which is capable of answering membership (whether atrace
belongs to the desired assumption) and candidate (whether the current assumption hypothesis is
correct) queries about the unknown language. Using these queries, the learner improves its hy-
pothesis DFA using iterative state-partitioning (similarto the DFA minimization algorithms [21])
until the teacher replies that a given hypothesis is correct. In our context, a model checker plays
the role of the teacher. It answers the queries by essentially checking the two premises of the rule
NC with respect to the a given hypothesisA.

Learner

Teacher (Model Checker)

M1 ‖ A |= P

M2 |= A

A

yes/no,

L∗

counterexample
M1 ‖ M2 |= P

Figure 1: Learning-based Assume-Guarantee Reasoning procedure (simplified).

While this approach is effective for small systems, there area number of problems in making
it scalable:

• Efficient Teacher Implementation:The teacher, i.e., the model checker, must be able to
answer membership and candidate queries efficiently. More precisely, each query may itself
involve exploration of a large state space making explicit-state model checking infeasible.

• Alphabet explosion:If M1 andM2 interact using a setX of global shared communication
variables, the alphabet of the assumptionA consists of all the valuations ofX and is ex-
ponential in size ofX. The learning algorithm explicitly enumerates the alphabet set at

1

each iteration and performs membership queries for enumeration step. Therefore, it is pro-
hibitively expensive to applyL∗ directly to shared memory systems with a large number of
shared communication variables. Indeed, it is sometimes impossible to enumerate the full
alphabet set, let alone learning an assumption hypothesis.We refer to this problem as the
alphabet explosionproblem.

• System decomposition:The natural decompositions of a system according to its modular
syntactic description may not be suitable for compositional reasoning. Therefore, techniques
for obtaining good decompositions automatically are required.

In this work we address the first two problems. More precisely, we propose (i) to efficiently
implement the teacher using SAT-based model checking; and (ii) a lazy learning approach for
mitigating the alphabet explosion problem. For an approachdealing with the third problem, see,
for instance, the work in [27].

SAT-based Teacher.In order to allow the teacher to scale to larger models, we propose to im-
plement it using a SAT-based symbolic model checker. In particular, we use SAT-based bounded
model checking (BMC) [10] to process both membership and candidate queries. BMC is effec-
tive in processing membership queries, since they involve unrolling the system transition relation
to a finite depth (corresponding to the given tracet) and require only a Boolean answer. The
candidate queries, instead, require performing unboundedmodel checking to show that there is no
counterexample for any depth. Therefore, we employ complete variants of BMC to answer the can-
didate queries. In particular, we have implemented two different variants based onk-induction [34]
and interpolation [25] respectively. Moreover, we use a SMTsolver as the main decision proce-
dure [36, 3].

Lazy Learning. The main contribution of our work is alazy learning algorithml∗ which
tries to ameliorate the alphabet explosion problem. The lazy approach avoids an expensive eager
alphabet enumeration byclusteringalphabet symbols and exploring transitions on these clusters
symbolically. In other words, while the states of the assumption are explicit, each transition cor-
responds to a set of alphabet symbols, and is explored symbolically. The procedure for learning
from a counterexamplece obtained from the teacher is different: besides partitioning the states of
the previous hypothesis as in theL∗ algorithm, the lazy algorithm may also partition an alphabet
cluster (termed ascluster-partitioning) based on the analysis of the counterexample. Note that
since our teacher uses a SAT-based symbolic model checker, it is easily able to answer queries for
traces where each transition corresponds to a set of alphabet symbols. Moreover, this approach is
able to avoid the quantifier elimination step (expensive with SAT) that is used to compute the tran-
sitions in an earlier BDD-based approach to AGR [31]. We havedeveloped several optimizations
to l∗, including a SAT-based counterexample generalization technique that enables coarser cluster
partitions.

Our hope, however, is that in real-life systems where compositional verification is useful, we
will require only a few state and cluster partitions until weconverge to an appropriate assumption
hypothesis. Indeed if the final assumption has a small numberof states and its alphabet set is large,
then there must be a large number of transitions between eachpair of states in the assumption
which differ only on the alphabet label. Therefore, a small number of cluster partitions should

2

be sufficient to distinguish the different outgoing clusters from each state. Experiments based on
the earlier BDD-based approach to AGR [31, 27] as well as our approach have confirmed this
expectation.

We have implemented our SAT-based compositional approach in a tool called SYMODA (stands
for SYmbolic MODular Analyzer). The tool implements SAT-based model checking algorithms
based onk-induction and interpolation together with the lazy learning algorithms presented in
this paper. Preliminary experiments on Verilog and SMV examples show that our approach is
effective as an alternative to the BDD-based approach in combating alphabet explosion and is able
to outperform the latter on some examples.

Related Work. Compositional verification based on learning was proposed byCobleigh et
al. [15] in the context of rendezvous-based message passingsystems and safety properties using
explicit-state model checking. It has been extended to to shared memory systems using symbolic
algorithms in [31, 27]. The problem of whether it is possibleto obtain good decompositions of
systems for this approach has been studied in [16]. An overview of other related work can be
found in [19, 27, 13]. SAT-based bounded model checking for LTL properties was proposed by
Biere et al. [10] and several improvements, including techniques for making it complete have been
proposed [30, 4]. All the previous approaches are non-compositional, i.e., they build a monolithic
transition relation for the whole system. To the best of our knowledge, our work in the first to
address automated compositional verification in the setting of SAT-based model checking.

The symbolic BDD-based AGR approach [31] for shared memory systems using automated
system decomposition [27] is closely related to ours. The technique uses a BDD-based model
checker and avoids alphabet explosion by using eager state-partitioning to introduce all possible
new states in the next assumption, and by computing the transition relation (edges) using BDD-
based quantifier elimination. In contrast, we use a SAT-based model checker and our lazy learning
approach does not require a quantifier elimination step, which is expensive with SAT. Moreover,
due to its eager state-partitioning, the BDD-based approach may introduce unnecessary states in
the assumptions.

Recently, two approaches for improved learning based on alphabet under-approximation and
iterative enlargement [12, 19] have been proposed. Our lazyapproach is complementary: while the
above techniques try to reduce the overall alphabet by under-approximation, our technique tries to
compactly represent a large alphabet set symbolically and performs localized partitioning. In cases
where a small alphabet set is not sufficient, the previous techniques may not be effective. We also
note that both the above approaches can be combined with our approach by removing assumption
variables during learning and adding them back iteratively. A learning algorithm for parameterized
systems (alphabet consists of a small set of basis symbols, each of which is parameterized by
a set of boolean variables) was proposed in [9]. Our lazy learning algorithm is different: we
reason about a set of traces directly using a SAT-based modelchecker and perform more efficient
counterexample analysis by differentiating positive and negative counterexamples (cf. Section 4).

In contrast to the counterexample-guided abstraction refinement (CEGAR) approach [23, 14,
7], the assumption languages may change non-monotonicallyacross iterations of the learning al-
gorithm. The CEGAR approach removes spurious behaviors froman abstraction by adding new
predicates. In contrast, the learning-based approach usesstate- and cluster-partitioning based on

3

the Nerode congruence [21] to both remove and add behaviors.Similar to a lazy approach to
CEGAR [20], the lazy learning algorithm localizes the cluster partitioning to the follow set of a
particular state and adds only a single cluster to the followsets at each iteration.

2 Notation and Preliminaries

We define the notions of symbolic transition systems, automata, and composition which we will
use in the rest of the paper. Our formalism borrows notation from [28, 24]. LetX = {x1, . . . , xn}
be a finite set of typed variables defined over a non-empty finite domain of valuesD. We define
a label a as a total map fromX to D which maps each variablexi to valuedi. An X-trace ρ
is a finite sequence of labels onX. The next-time label isa′ = a〈X/X ′〉 is obtained froma by
replacing eachxi ∈ dom(a) by x′

i. Given variablesX and the corresponding next-time variables
X ′, let us denote the (finite) set of all predicates onX ∪ X ′ by ΦX (TRUE andFALSE denote the
boolean constants). Given labelsa andb onX, we say that a label pair(a, b′) satisfies a predicate
φ ∈ ΦX , denotedφ(a, b′), if φ evaluates toTRUE under the variable assignment given bya andb′.

CFA. A communicating finite automata(CFA)C on a set of variablesX (called the support set)
is a tuple〈X,Q, q0, δ, F〉; Q denotes a finite set of states,q0 is the initial state,δ ⊆ Q × ΦX × Q
is the transition relation andF is the set of final states. For statesq, q′ ∈ Q andφ ∈ ΦX , if
δ(q, φ, q′) holds, then we say thatφ is a transition predicate betweenq andq′. For each stateq, we
define its follow setfol(q) to be the set of outgoing transition predicates, i.e.,fol(q) = {φ|∃q′ ∈
Q. δ(q, φ, q′)}. We say thatfol(q) is complete iff

∨
{φ ∈ fol(q)} = TRUE and disjoint iff for all

φi, φj ∈ fol(q), φi∧φj = FALSE. Also, we say thatδ is complete (deterministic) iff for eachq ∈ Q,
fol(q) is complete (disjoint). The alphabetΣ of C is defined to be the set of label pairs(a, a′) on
variablesX andX ′. The above definition of transitions (on current and next-time variables) allows
compact representation of CFAs and direct composition with STSs below.

A run of C is defined to be a sequence(q0, . . . , qn) of states inQ such thatq0 = q0. A run
is said to be accepting ifqn ∈ F . Given aW -trace (X ⊆ W), ρ = a0, . . . , an, is said to be a
trace ofC if there exists an accepting run(q0, . . . , qn) of C, such that for allj < n, there exists a
predicateφ, such thatδ(qj, φ, qj+1) andφ(aj, a

′
j+1) holds. In other words, the labelsaj andaj+1

must satisfy some transition predicate betweenqj andqj+1. TheW -trace languageLW (C) is the
set of allW -traces ofC. Note that this definition ofW -trace allows a sequence of labels onX
to beextendedby all possible valuations of variables inW \ X and eases the definition of the
composition operation below. In general, we assumeW is the universal set of variables and write
L(C) to denote the language ofC.

A CFA can be viewed as an ordinary finite automaton with alphabet Σ which accepts a regular
language overΣ. While the states are represented explicitly, thefollow function allows clustering
a set of alphabet symbols into one transition symbolically.The common automata-theoretic oper-
ations, viz., union, intersection, complementation and determinization via subset-construction can
be directly extended to CFAs. The complement ofC is denoted byC, whereL(C) = L(C).

Symbolic Transition System.A symbolic transition system(STS)M is a tuple〈X,S, I, R, F〉,
defined over a set of variablesX called itssupport, whereS consists of all labels overX, I(X) is

4

x = 0 ∧ x′
= 1

x 6= 0 ∨ x′ 6= 1 Tq0
q1

Figure 2: A CFA on supportX = {x}; x is a boolean.Σ = {(x = 0, x′ = 0), (x = 0, x′ = 1), (x =
1, x′ = 0), (x = 1, x′ = 1)}. fol(q0) = {(x = 0 ∧ x′ = 1), (x 6= 0 ∨ x′ 6= 1)}. fol(q1) = {TRUE}.
Note that the first element offol(q0) corresponds to an alphabet symbol while the second element
is an alphabet cluster. Also, bothfol(q0) andfol(q1) are disjoint and complete.

the initial state predicate,R(X,X ′) is the transition predicate andF (X) is the final state predicate.
Given a variable setW (X ⊆ W), aW -traceρ = a0, . . . , an is said to be a trace ofM if I(a0) and
F (an) hold and for allj < n, R(aj, a

′
j+1) holds. The trace languageL(M) of M is the set of all

traces ofM .1

CFA as an STS.Given a CFAC = 〈XC , QC , q0C , δC , FC〉, there exists an STSM = 〈X,S, I, R, F〉
such thatL(C) = L(M). We constructM as follows: (i)X = XC ∪ {q} whereq is a fresh variable
which ranges overQC , (ii) I(X) = (q = q0), (iii) F (X) = ∃qi ∈ FC .(q = qi), and (iv)R(X,X ′) =

(∃q1, q2 ∈ QC , φ ∈ Φ. (q = q1 ∧ q′ = q2 ∧ δC(q1, φ, q2) ∧ φ(XC , X ′
C))

Synchronous Composition of STSs.Suppose we are given two STSsM1 = 〈X1, S1, I1, R1, F1〉
and M2 = 〈X2, S2, I2, R2, F2〉. We define the compositionM1 ‖ M2 to be a STSM =
〈X,S, I, R, F〉 where: (i)X = X1 ∪ X2, (ii) S consists of all labels overX, (iii) I = I1 ∧ I2, (iv)
R = R1 ∧ R2, and (v)F = F1 ∧ F2.

Lemma 1 Given two STSsM1 andM2, L(M1 ‖ M2) = L(M1) ∩ L(M2).

We use STSs to represent system components and CFA on shared variables to represent automata
computed in the various AGR sub-tasks. We assume that all STSs have total transition predicates.
We define the composition of an STSM with a CFAC, denoted byM ‖ C, to beM ‖ MC , where
MC is the STS obtained fromC. Although we use a synchronous notion of composition in this
paper, our work can be directly extended to asynchronous composition also.

Definition 1 (Model Checking STSs)Given an STSM and a property CFAP , the model check-
ing question is to determine ifM � P where� denotes a conformance relation. Using the trace
semantics for STSs and CFAs and set containment as the conformance relation, the problem can
be reduced to checking ifL(M) ⊆ L(P).

Since CFAs are closed under negation and there is a language-equivalent STS for each CFA, we
can further reduce the model checking question to checking if L(M ‖ MP) is empty, where the
STSMP is obtained by complementingP to form P and then converting it into an STS. Let STS
M = M ‖ MP . In other words, we are interested in checking if there is anacceptingtrace inM,
i.e., a trace that ends in a state that satisfiesFM.

1We overload the symbolL() to describe the trace language of both CFAs and STSs.

5

2.1 SAT-based Model Checking

It is possible to check for existence of an accepting trace inan STSM using satisfiability checking.
A particular instance of this problem is bounded model checking [10] where we check for existence
of an accepting trace of lengthk using a SAT solver.

Bounded Model Checking(BMC). Given an integer boundk, the BMC problem can be
formulated in terms of checking satisfiability of the following formula [10]:

BMC(M, k) := IM(s0) ∧
∧

0≤j≤k−1

RM(sj, sj+1) ∧
∨

0≤j≤k

FM(sj) (1)

Heresj (0 ≤ j ≤ k) represents the set of variablesXM at depthj. The transition relation ofM is
unfolded up tok steps, conjuncted with the initial and the final state predicates at the first and the
last steps respectively, and finally encoded as a propositional formula that can be solved by a SAT
solver. If the formula is SAT then the satisfying assignmentcorresponds to an accepting trace of
lengthk (a counterexample toM � P). Otherwise, no accepting trace exists of lengthk or less. It
is possible to check for accepting traces of longer lengths by increasingk and checking iteratively.

Unbounded Model Checking(UMC). The unbounded model checking problem involves
checking for an accepting trace of any length. Several SAT-based approaches have been pro-
posed to solve this problem [30]. In this paper, we consider two approaches, one based onk-
induction [34, 18, 6] and the other based on interpolation [25].

Thek-induction technique [34] tries to show that there are no accepting traces of any length
with the help of two SAT checks corresponding to the base and induction cases of the UMC prob-
lem. In the base case, it shows that no accepting trace of length k or less exists. This exactly
corresponds to the BMC formula (Eq. 1) being UNSAT. In the induction step, it shows that if no
accepting trace of lengthk or less exists, then there cannot be an accepting trace of lengthk + 1 in
M, and is represented by the following formula:

Step(M, k) :=
∧

0≤j≤k

RM(sj, sj+1) ∧
∧

0≤j≤k

¬FM(sj) ∧ FM(sk+1) ∧
∧

0≤i≤j≤k

si 6= sj+1 (2)

The induction step succeeds ifStep(M, k) is UNSAT. Otherwise, the depthk is increased itera-
tively until it succeeds or the base step is SAT (a counterexample is found). The set of constraints
of form si 6= sj+1 in (Eq. 2) (also known as simple path or uniqueness constraints) are necessary
for completeness of the method and impose the condition thatall states in the accepting trace must
be unique. The method can be implemented efficiently using anincremental SAT solver [18],
which allows reuse of recorded conflict clauses in the SAT solver across iterations of increasing
depths. Thek-induction technique has the drawback that it may require asmany iterations as
the length of the longest simple path between any two states in M (also known as recurrence di-
ameter [10]), which may be exponentially larger than the longest of all the shortest paths (or the
diameter) between any two states.

Another approach to SAT-based UMC is based on using interpolants [25]. The method com-
putes an over-approximationI of the reachable set of states inM, which is also an inductive
invariant forM, by using the UNSAT proof of the BMC instance (Eq. 1). IfI does not overlap

6

with the set of final states, then it follows that there existsno accepting trace inM. An important
feature of this approach is that it does not require unfolding the transition relation beyond the di-
ameter of the state space ofM, and, in practice, often succeeds with shorter unfoldings.We do
not present the details of this approach here; they can be found in [25, 4].

In order to use a SAT solver, the above formula instances haveto be translated into propositional
logic. A lot of structural information is lost (e.g., relation between bits of an encoded variable)
due to this translation and may lead to useless computation by the SAT solver. We can avoid
this translation by using an SMT solver [36, 3]. Besides allowing propositional constraints, an
SMT solver also supports input formulas in one or more (ground) first order theories, e.g., the
quantifier-free fragment of linear arithmetic over integers. Therefore, both BMC and UMC based
onk-induction can be carried out using a SMT solver, provided itsupports the theories over which
the above formulas are defined. A particular mixed boolean/integer encoding of hardware RTL
constructs can be found in [11]. Similarly, interpolation-based UMC may be carried out using an
interpolating prover provided it can generate interpolants in the required theories.

3 Assume-Guarantee Reasoning using Learning

Assume-Guarantee reasoning allows dividing the verification task of a system with multiple com-
ponents into subtasks each involving a small number of components. AGR rules may be syntacti-
cally circular or non-circular in form. In this paper, we will be concerned mainly with the following
non-circular AGR rule:

Definition 2 Non-circular AGR (NC) Given STSsM1, M2 and CFAP , show thatM1 ‖ M2 � P ,
by picking an assumption CFAA, such that both(n1) M1 ‖ A � P and(n2) M2 � A hold.

The following circular rule has also been proposed in literature [8, 27].

Definition 3 Circular AGR (C) Show thatM1 ‖ M2 � P holds by picking an CFA assumption
tuple,〈A1, A2〉, such that each of the following hold:(c1) M1 ‖ A1 � P (c2) M2 ‖ A1 � P and
(c3)A1 ‖ A2 � P .

BothNC andC rules are sound and complete [28, 8, 27]. Moreover, both can be extended to a
system ofn STSsM1 . . . Mn by picking a set of assumptions (represented as a tuple)〈A1 . . . An−1〉
for NC and〈A1 . . . An〉 for C respectively [15, 8, 27]. The proofs of completeness for both these
rules rely on the notion of weakest assumptions.

Lemma 2 (Weakest Assumptions)Given a finite STSM with support setXM and a CFAP with
support setXP , there exists a unique weakest assumption CFA, WA, such that (i) M ‖ WA � P
holds, and (ii) for all CFAA whereM ‖ A � P , L(A) ⊆ L(WA) holds. Moreover,L(WA) is
regular and the support variable set of WA isXM ∪ XP .

7

Proof. By definitionL(M) ∩ L(A) ⊆ P . On rearranging, we get,L(A) ⊆ L(M) ∪ L(P). Hence,
for the weakest assumptionWA, L(WA) = L(M)∪L(P). Since, the support set ofL(M) andL(P)
is XM andXP respectively, the support ofL(WA) and thereforeWA is XM ∪ XP .2

As mentioned earlier (cf. Section 1), a learning algorithm for regular languages,L∗, assisted
by a model checker based teacher, can be used to automatically generate the assumptions [15, 8].
However, there are problems in scaling this approach to large shared memory systems. Firstly,
the teacher must be able to discharge the queries efficientlyeven if it involves exploring a large
state space. Secondly, the alphabetΣ of an assumptionA is exponential in its support set of
variables. SinceL∗ explicitly enumeratesΣ during learning, we need a technique to curb this
alphabet explosion. We address these problems by proposinga SAT-based implementation of the
teacher and a lazy algorithm based on alphabet clustering and iterative partitioning (Section 4).

3.1 SAT-based Assume-Guarantee Reasoning

We now show how the teacher can be implemented using SAT-based model checking. The teacher
needs to answer membership and candidate queries.

Membership Query. Given a tracet, we need to check ift ∈ L(WA) which corresponds to
checking ifM1 ‖ {t} � P holds. To this end, we first convertt into a language-equivalent STSMt,
obtainM = M1 ‖ Mt and perform a single BMC checkBMC(M,k) (cf. Section 2.1) wherek is
the length of tracet. Note that sinceMt accepts only at the depthk, we can remove the final state
constraints at all depths exceptk. The teacher replies with aTRUE answer if the above formula
instance is UNSAT; otherwise aFALSE answer is returned.

Candidate Query. Given a deterministic CFAA, the candidate query involves checking the
two premises ofNC, i.e., whether bothM1 ‖ A � P andM2 � A hold. The latter check maps
to SAT-based UMC (cf. Section 2.1) in a straightforward way.Note that sinceA is deterministic,
complementation does not involve a blowup. For the previouscheck, we first obtain an STSM =
M1 ‖ MA where the STSMA is language-equivalent toA (cf. Section 2) and then use SAT-based
UMC for checkingM � P .

In our implementation, we employ both induction and interpolation for SAT-based UMC. Al-
though the interpolation approach requires a small number of iterations, computing interpolants,
in many cases, takes more time in our implementation. The induction-based approach, in con-
trast, is faster if it converges within small number of iterations. Now, automated AGR is car-
ried out in the standard way (details can be found in [15, 27])based on the above queries. The
learner sets the support variable set for the assumptionA to the support of the weakest assumption
(Xwa = XM1

∪ XP) and iteratively computes hypotheses assumptions by asking membership and
candidate queries untiln1 holds. The last assumption is then presented in a candidate query which
checks ifn2 holds. If n2 holds, then the procedure terminates. Otherwise, a counterexamplece
is returned.ce may be spurious; a membership query once is used to check if it is spurious. In
that case,ce is projected toXwa to obtaince′ and learning continues with thece′. Otherwise,ce
is returned as an actual counterexample toM1 ‖ M2 � P . The termination of this procedure is
guaranteed by the existence of a unique weakest assumptionWA. However, it is important to note

2We would like to thank Kedar Namjoshi for suggesting a simpleproof.

8

that we seldom need to computeWA. In practice, this procedure terminates with any assumption
A that satisfiesn1 andn2 and the size ofA is much smaller than that ofWA.

4 Lazy Learning

This section presents our new lazy learning approach to address the alphabet explosion problem
(cf. Section 1); in contrast to the eager BDD-based learningalgorithm [31], the lazy approach (i)
avoids use of quantifier elimination to compute the set of edges and (ii) introduces new states and
transitions lazily only when necessitated by a counterexample. We first propose a generalization
of theL∗ [33] algorithm and then present the lazyl∗ algorithm based on it.

Notation. We represent the empty trace byǫ. For a traceu ∈ Σ∗ and symbola ∈ Σ, we say
that u · a is an extension ofu. The membership functionJ·K is defined as follows: ifu ∈ LU ,
JuK = 1, otherwiseJuK = 0. For eachu ∈ Σ∗, we define afollow functionfollow : Σ∗ → 2Σ,
wherefollow(u) consists of the set of alphabet symbolsa ∈ Σ thatu is extended by in order to
form u · a. A counterexample tracece is positive ifJceK = 1, otherwise, it is said to be negative.

The basis of our generalization ofL∗ is thefollow function; instead of allowing eachu ∈ Σ∗

to be extended by the full alphabetΣ as in originalL∗, we only allowu to be extended by the
elements infollow(u). With follow(u) = Σ (for eachu) the generalized algorithm reduces to the
original algorithm.

Recall thatL∗ is an algorithm for learning the minimum DFAD corresponding to an unknown
regular languageLU defined over alphabetΣ. The algorithm is based on the Nerode congru-
ence [21]: Foru, u′ ∈ Σ∗, u ≡ u′ iff

∀v ∈ Σ∗, u · v ∈ LU ⇔ u′ · v ∈ LU

L∗ iteratively identifies the different congruence classes inLU by discovering a representative
prefix trace (u ∈ Σ∗) for each of the classes with the help of a set of distinguishing suffixes
V ⊆ Σ∗ that differentiate between these classes.

4.1 GeneralizedL∗ Algorithm

L∗ maintains an observation tableT = (U, UA, V, T) consisting of tracesamplesfrom LU . Here
U ⊆ Σ∗ is a prefix-closed set of traces andV ⊆ Σ∗ is a set of suffixes. The algorithm also maintains
extensions ofu ∈ U in UA on thefollow set ofu, i.e., UA = {u · a|u ∈ U, a ∈ follow(u)}. T
maps eachu ∈ (U ∪ UA) to a functionT (u) : V → {0, 1} so thatT (u)(v) = Ju · vK. We write
T (u)(v) asT (u, v) for ease of notation. We define a congruence≡ as follows: foru, u′ ∈ U ∪UA,
u ≡ u′ iff ∀v ∈ V , T (u, v) = T (u′, v). We can view≡ as the restriction of Nerode congruence to
prefixes inU ∪ UA and suffixes inV .

Well-formed Table. An observation tableT is said to be well-formed if for allu, u′ ∈ U ,
u 6≡ u′. In the generalized algorithm,T is always well-formed3.

3A notion of consistencyis usually used in presentation ofL
∗ [5]. We ignore it sinceU never contains distinct

elementsu, u
′ so thatu ≡ u

′. Therefore table consistency is always maintained.

9

Learner L∗

Let T = (U, V, T) be an observation table
Init:

U := V := {ǫ}
∀u ∈ Σ∗, setfollow(u) = Σ
Fill (ǫ,ǫ)
Fill All Succs (ǫ)

Loop:
Close Table(T)
DFA D := Mk DFA(T)
if (Ask Cand Q (D) = TRUE)
returnD;

else
Let the counterexample bece
Learn CE (ce)

Close Table (T)
while T is not closed
Picku′ ∈ UA such that∀u ∈ U. u 6≡ u′

U := U ∪ {u′}, UA := UA \ {u′}
Fill All Succs(u′)

Fill All Succs (u)
For alla ∈ follow(u)
UA := UA∪ {u · a}
For eachv ∈ V : Fill(u · a, v)

Fill (u, v)
T (u, v) := Ask Mem Q(u · v)

Figure 3: The generalizedL∗ algorithm

Table Closure. The observation tableT is said to be closed if for eachu · a ∈ UA, there is a
u′ ∈ U , so thatu · a ≡ u′. In this case, we writeu′ = [u · a]r and say thatu′ is therepresentative
trace for u · a. Note thatu′ is unique sinceT is well-formed. We extend[·]r to U by defining
[u]r = u for eachu ∈ U . This is possible sinceT is well-formed. For allu ∈ (U ∪UA), we denote
the set of traces equivalent tou by [u], where

[u] = {u′ ∈ (U ∪ UA) | u ≡ u′}

Given any observation tableT , we assume that a procedureClose Table makes it closed.
DFA Construction. Given a closed tableT , L∗ obtains a DFAD = 〈Q, q0, δ, F 〉 from it as

follows: Q = {[u] | u ∈ U}, where a stateq ∈ Q corresponds to the equivalence class[u] of a
traceu ∈ U , q0 = [ǫ], δ([u], a) = [u · a] for eachu ∈ U anda ∈ follow(u). F = {[u] | u ∈
U ∧T (u, ǫ) = 1}. Suppose that a procedure calledMk DFA implements this construction. Note that
D is deterministic and iffollow(u) = Σ, thenD is complete.

Figure 3 shows the pseudocode of the generalizedL∗ algorithm. TheInit block performs the
initialization steps while theLoop block performs the learning task iteratively. We assume that
the teacher provides procedures to perform the membership query (Ask Mem Q) and the candidate
query (Ask Cand Q). In the Init block, L∗ initializes the setsU andV with the empty traceǫ.
It then updates the mapT by first asking a membership query for table element(ǫ, ǫ) (using the
Fill procedure) and then for all elements in its follow setfollow(ǫ) (using theFill All Succs

procedure). TheLoop block executes the following tasks iteratively: it first makesT closed (using
theClose Table procedure), computes a candidate DFAD (using theMk DFA procedure) and then
performs a candidate query (Ask Cand Q) with D. If the candidate query succeeds,L∗ finishes by
returningD; otherwise, theLoop block continues iteratively by learning from the counterexample
obtained (using the procedureLearn CE).

Learn CE procedure. In order to describeLearn CE, we first extend[·]r (defined underTable
Closure above) to anyw ∈ Σ∗ as follows. Givenw ∈ Σ∗, we define[w]r = u (u ∈ U), such that
if q = δ∗D(q0, w), thenq = [u]r. It follows from the construction of DFAD that such au must

10

exist4. Intuitively, [w]r is the representative element of the unique stateq (equivalence class) that
w reaches when it is run onD starting atq0. We define ani-split of the counterexamplece to be a
tuple(ui, vi), wherece = ui · vi and|ui| = i. In words, ani-split of ce (0 ≤ i ≤ |ce|), consists of its
prefixui of lengthi and the corresponding suffixvi. Further, for ani-split, we defineαi = J[ui]

r ·viK
(αi ∈ {0, 1}) [33]. It can be shown thatα0 = J[ǫ]r · ceK = JceK andα|ce| = J[ce]r · ǫK 6= JceK [33].
Intuitively, αi checks whether the prefixui is classified into the correct equivalence class[ui]

5;
if αi = JceK, it implies thatui is classified correctly, otherwise it is mis-classified andL∗ must
re-classifyui to a different equivalence class. But, the counterexamplece is mis-classified by
definition and henceα|ce| 6= JceK. TheLearn CE procedure is given by the following pseudocode:

Learn CE (ce)
Find i by binary search such thatαi 6= αi+1

V := V ∪ {vi+1}
For allu ∈ U ∪ UA. Fill(u, vi+1)

Sinceα0 6= α|ce|, there must exist somei, 0 ≤ i ≤ |ce|, so thatαi 6= αi+1. In that case,
Learn CE will add vi+1 to the set of suffixesV and update the table. Intuitively,ui+1 is wrongly
classified into the equivalence class[ui+1], (which corresponds to a state inD, sayq), andvi+1 is
a witness for this mis-classification. Addingvi+1 to V distinguishes the correct equivalence class
(sayq′) from q and redirectsui+1 to the correct equivalence classq′. We call this astate partition(of
q). Rivest and Schapire [33] show thatLearn CE must add at least one state to the new candidate
DFA constructed in the next iteration. Since the number of states in any candidate DFA is bounded
by the number of states in the minimum DFA forLU , generalizedL∗ must eventually terminate
with the minimum DFA.

Learning CFAs with GeneralizedL
∗. L∗ can be directly extended to learn a CFA correspond-

ing to LU over a support variable setX by settingΣ to all total labels onX ∪ X ′ (cf. Section 2).
However,Σ is exponential in the size ofX and will pose a bottleneck forL∗. More precisely, the
loop in the procedureFill All Succs will execute an exponential number of times, leading to
inefficiency.

Figure 4 illustrates the generalizedL∗ algorithm computation for the languageLU =
(a|b|c|d)(a|b)∗ with Σ = {a, b, c, d}. Note that the symbols, e.g.,a,b, etc., actually represent
predicates over program variables, e.g.,a ≡ (x = 0 ∧ x′ = 1). The algorithm begins withU =
V = {ǫ} (top part of the table) andfills the table entry corresponding to row and column elements
ǫ to 0 by asking a membership query. Then, it asks four membership queries for extensions ofǫ
on each symbol in alphabet followed by column elementǫ explicitly (a · ǫ, b · ǫ, etc.) and stores
the result in the table. Note thatT (a) = (1) but T (ǫ) = (0). Therefore,Close Table addsa to
U and then algorithm again asks explicit membership queries to fill the table on extensions ofa,
i.e., a · a, a · b, etc. OnceT is closed,L∗ constructs a hypothesis DFA (seeDFA Construction
above), shown in the figure on left, and makes a candidate query with it. The teacher provides a
counterexamplece = a · d · c. Learn CE analyzesce and adds a distinguishing suffixc to V . Again,

4For tracesw ∈ U ∪ UA, this extension coincides with the earlier definition.
5For example, ifce is rejected inLU , i.e.,.JceK = 0, then each of its prefixesui must fall into an equivalence class

[ui] such that[ui] rejects the corresponding suffixvi, i.e.,J[ui]
r · viK = αi = 0.

11

ǫ
ǫ 0 (q0)
a 1 (q1)

(b|c|d) 1
a · (a|b) 1
a · (c|d) 0

ǫ c
ǫ 0 1 (q0)
a 1 0 (q1)

a · c 0 0 (q2)
(b|c|d) 1 0
a · (a|b) 1 0

a · d 0 0
a · c · (a|b|c|d) 0 0

a,b,c,d

c,d

a,b
q0

q1

a,b,c,d

c,d

a,b

a,b
c,d

q0 q1
q2

(i) (ii)

Figure 4: Illustration of the generalizedL∗ algorithm forLU = (a|b|c|d)(a|b)∗. Rows and columns
represent elements ofU ∪ UA andV respectively. For row elementu and column elementv, the
table entries correspond toJu·vK. Elements inU are labeled with corresponding statesqi. Iterations
(i) and (ii) correspond to the first and second candidates respectively and their observation tables.
The teacher provides a counterexamplea · d · c for the first query;Learn CE addsc to V . Similar
rows are clustered together by overloading the| symbol for compact illustration.
L∗ obtains a closed table and asks a candidate query on the next hypothesis. Since this hypothesis
is correct, the algorithm terminates.

4.2 Lazy l∗ Algorithm

The main bottleneck in generalizedL∗ algorithm is due to alphabet explosion, i.e., it enumerates
and asks membership queries on all extensions of an elementu ∈ U on the (exponential-sized)Σ
explicitly. The lazy approach avoids this as follows. Initially, the follow set for eachu contains a
singleton element, the alphabet clusterTRUE, which requires only a single enumeration step. This
cluster may then be partitioned into smaller clusters in thelater learning iterations, if necessitated
by a counterexample. In essence, the lazy algorithm not onlydetermines the states of the unknown
CFA, but also computes the set of distinct alphabet clusters outgoing from each state lazily.
More formally,l∗ performs queries on trace sets, wherein each transition corresponds to an alpha-
bet cluster. We therefore augment our learning setup to handle sets of traces. Let̂Σ denote the set
2Σ and concatenation operator· be extended to sets of tracesS1 andS2 by concatenating each pair
of elements fromS1 andS2 respectively. The follow function is redefined asfollow : Σ̂∗ → 2Σ̂

whose range now consists of alphabet cluster elements (or alphabet predicates). The observation
tableT is a tuple(U, UA, V, T) whereU ⊆ Σ̂∗ is prefix-closed,V ⊆ Σ̂∗ andUA contains all
extensions of elements inU on elements in their follow sets.T (u, v) is defined on a sets of traces
u andv, so thatT (u, v) = Ju · vK where the membership functionJ·K is extended to a set of traces
as follows: given a trace setS, JSK = 1 iff ∀t ∈ S. JtK = 1. In other words, aJSK = 1 iff S ⊆ LU .
This definition is advantageous in two ways. Firstly, the SAT-based teacher (cf. Section 3.1) can
answer membership queries in the same way as before by converting a single trace set into the
corresponding SAT formula instance. Secondly, in contrastto a more discriminating 3-valued in-

12

Init: ∀u ∈ Σ∗, setfollow(u) = TRUE

Learn CE(ce)
if (JceK = 0)
Learn CE 0(ce)
elseLearn CE 1(ce)

Learn CE 1(ce)
Find i so thatαi = 1 andαi+1 = 0
if vi+1 6∈ V
V := V ∪ {vi+1}
For allu ∈ U ∪ UA: Fill(u, vi+1)
else
Let ce = ui · oi · vi+1

Let q = [ui] andq′ = [ui · oi]
SupposeRC(q, φ, q′) andoi ∈ φ
Partition Table([ui]

r, φ, oi)

Learn CE 0(ce)
Find i so thatαi = 0 andαi+1 = 1
V := V ∪ {vi+1}
For allu ∈ U ∪ UA: Fill(u, vi+1)

Partition Table (ur, φ, a)
φ1 := φ ∧ a, φ2 := φ ∧ ¬a
follow(ur) := follow(ur) ∪ {φ1, φ2} \ {φ}

Let Uext = {u ∈ U | ∃v ∈ Σ̂∗. u = ur · φ · v}
Let UAext= {u · φf | u ∈ Uext ∧ φf ∈ follow(u)}
U := U \ Uext
UA := UA \ UAext
Foru ∈ {ur · φ1, ur · φ2}
UA := UA∪ {u}
For all v ∈ V : Fill (u, v)

Figure 5: Pseudocode for the lazyl∗ algorithm (mainly the procedureLearn CE).

terpretation ofJSK in terms of0, 1 andundefinedvalues, this definition enablesl∗ to be more lazy
with respect to state partitioning.

Figure 5 shows the pseudocode for the procedureLearn CE, which learns from a counterex-
ample ce and improves the current hypothesis CFAC. Learn CE calls theLearn CE 0 and
Learn CE 1 procedures to handle negative and positive counterexamples respectively.Learn CE 0

is the same asLearn CE in generalizedL∗: it finds a split ofce at positioni (say,ce = ui · vi =
ui · oi · vi+1), so thatαi 6= αi+1 and adds a new distinguishing suffixvi+1 (which must exist by
Lemma3 below) toV to partition the state corresponding to[ui · oi]. The procedureLearn CE 1,
in contrast, may either partition a state or partition an alphabet cluster. The case whenvi+1 is not in
V is handled as above and leads to a state partition. Otherwise, if vi+1 is already inV , Learn CE 1

first identifies states in the current hypothesis CFAC corresponding to[ui] and[ui · oi], say,q and
q′ respectively, and the transition predicateφ corresponding to the transtion on symboloi from q
to q′. Let ur = [ui]

r. Note thatφ is also an alphabet cluster infollow(ur) and if oi = (ai, b
′
i), then

φ(ai, b
′
i) holds (cf. Section 2).

The procedurePartition Table is then used to partitionφ usingoi (into φ1 = φ ∧ oi and
φ2 = φ ∧ ¬oi) and update the follow set ofur by removingφ and addingφ1 andφ2. Note thatU
andUA may also contain extensions ofur · φ, given byUext andUAextrespectively. In order to
keepU prefix-closed and have only extensions ofU in UA, the procedure removesUext andUAext
from U andUA respectively. Finally, it adds the extensions ofur on the new follow set elementsφ1

andφ2 to UA and performs the corresponding membership queries. Note that since all the follow
sets are disjoint and complete at each iteration, the hypothesis CFA obtained from a closed table
T is always deterministic and complete (cf. Section 2).

Example.Figure 6 illustrates thel∗ algorithm for the unknown languageLU = (a|b|c|d) · (a|b)∗.

13

ǫ
ǫ 0 (q0)
T 1 (q1)

T· T 0

ǫ
ǫ 0 (q0)
T 1 (q1)

T·a 1
T·b 1

T·(a|b) 0

ǫ c
ǫ 0 1 (q0)
T 1 0 (q1)

T·(a|b) 0 0 (q2)
T·a 1 0
T·b 1 0

T·(a|b)· T 0 0

q0

T

T
q1

T

(a|b)
(a|b)q0

q1 T
(a|b)

(a|b)

Tq0 q1 q2

(i) (ii) (iii)

Figure 6: Illustration of thel∗ algorithm forLU = (a|b|c|d)(a|b)∗. Rows and column represent
elements ofU ∪ UA andV respectively. Alphabets are represented symbolically: T =(a|b|c|d),
(a|b) = (c|d).

Recall that the labelsa, b, c andd are, in fact, valuations of program variables. The algorithm
converges to the final CFA using four candidate queries; the figure shows the hypotheses CFAs for
first, third and last queries. The first three queries are unsuccessful and return counterexamplesa ·a
(positive),a · b (positive),a · d · c (negative). Note that the algorithm avoids explicitly enumerating
the alphabet set for computing extensions of elements inU until required. Also, note that the
algorithm is insensitive to the size of alphabet set to some extent: if LU is of the formΣ · (a|b)∗,
the algorithm always converges in the same number of iterations since only two cluster partitions
from stateq1 need to be made.

The drawback of this lazy approach is that it may require morecandidate queries as compared
to the generalizedL∗ in order to converge. This is because the algorithm is lazy inobtaining infor-
mation on the extensions of elements inU and therefore builds candidates using less information,
e.g., it needs two candidate queries to be able to partition the clusterT on botha andb (note that
the corresponding counterexamplesa · a anda · b differ only in the last transition). We have devel-
oped a SAT-based method(presented below) that accelerateslearning in such cases by generalizing
a counterexamplece to include a set of similar counterexamples (ce′) and then usingce′ to perform
acoarsercluster artition.

Lemma 3 The procedureLearn CE 0 must lead to addition of at least one new state in the next
hypothesis CFA.

Proof. We first show thatvi 6∈ V . Supposevi ∈ V . We know thatαi = J[ui]
r · oi · viK = 0

andαi+1 = J[ui · oi]
r · viK = 1. Also there must existφ ∈ follow([ui]

r) so thatoi ∈ φ and
T ([ui]

r · φ, vi) = T ([ui · oi]
r, vi) = 1. Therefore, by definition,∀a ∈ φ, J[ui]

r · a · viK = 1. But,
oi ∈ φ andJ[ui]

r · oi · viK = 0. Contradiction.

14

Let ua = ([ui]
r ·φ) andu′ = ([[ui]

r ·φ]r). Addingvi to V makesua 6≡ u′ which were equivalent
earlier. Moreover, sinceu′ must be inU already, bothua andu′ must be inequivalent to all other
u ∈ U . Therefore,Close Table must addua to U and thereforeMk DFA will add at least one new
state in the next hypothesis.

Lemma 4 The procedureLearn CE 1 either leads to addition of at least one new state or one
transition in the next hypothesis CFA.

Proof. If vi 6∈ V , we can argue that at least one state will be added in a way similar to the previous
lemma. Ifvi ∈ V , then we know thatJ[ui]

r · oi · viK = 1 and there existsφ ∈ follow([ui]
r) so that

oi ∈ φ andJ[ui]
r · φ · viK = 0. In this case,Learn CE 1 splits the clusterφ into φ1 = φ ∧ oi and

φ2 = φ ∧ ¬oi. It follows from definition ofJ·K that J[ui]
r · φ1 · viK = 1 andJ[ui]

r · φ2 · viK = 0.
Hence,φ1 andφ2 must go to different states, causing addition of at least onetransition.

Remark. AlthoughLearn CE 1 may add a transition, the number of states in the next hypothe-
sis may decrease. This is because partitioning a cluster mayalso cause a state partition causing[ui]

r

to split into two previously existing states, i.e., the new partitioned traces may become equivalent
to some previously existing elements ofU .

Theorem 1 l∗ terminates inO(k · 2n) iterations wherek is the alphabet size andn is the number
of states in the minimum deterministic CFACm corresponding toLU .

Proof. Consider the prefix treePT obtained from the prefix-closed set of elements inU . Note that
each node inPT corresponds to a different state (equivalence class) in a hypothesis CFAC. Also,
consider computation treeCT obtained by unrolling the transition structure ofCm. Note thatPT
of depthd can be embedded intoCT where different nodes inPT at a given depthk (k ≤ d)
correspond to different (possibly overlapping) subset of states inCT at depthk. Learn CE 0

introduces a new node inPT while Learn CE 1 partitions an alphabet cluster outgoing from some
node inPT , so that the size of each of the new clusters is smaller. It is sufficient (with respect
to adding and removing states) to consider anPTf of depthd = 2n since each node inPTf

corresponds to (i) an elementu ∈ U whereT (u) is unique for eachu and also (ii)to a subset of
states reachable at depth|u| in Cm. Note that a node may be removed fromPT only if an outgoing
cluster of one of its ancestor nodes can be partitioned. Now sinceLearn CE 1 always partitions
some cluster in the prefix tree into smaller ones, this can happen onlyk number of times for the
nodes at a given depth inPTf until each transition corresponds to a single alphabet symbol. Using
induction on depth ofPTf , it follows that the clusters at all nodes inPTf will be fully partitioned
in at mostk · 2n iterations. Therefore, the algorithm will make at most(k · 2n) calls toLearn CE

(or candidate queries) before terminating.

4.3 Optimizing l∗

Although the complexity is bad (mainly due to the reason thatl∗ may introduce a state correspond-
ing to each subset of states reachable at a given depth inCm), our experimental results show that
the algorithm is effective in computing small size assumptions on real-life examples. Moreover,
in context of AGR, we seldom need to learnCm completely; often, an approximation obtained at

15

an intermediate learning step is sufficient. We now propose several optimizations to the basicl∗

algorithm outlined above.
Coarser Cluster partitioning using ce generalization. Recall thatce = ui · a · vi+1 where

a is a label onX ∪ X ′. Let ur = [ui]
r. Cluster partitioning occurs in theLearn CE 1 procedure

whereJur · a · viK = 1 andJur · φ · viK = 0. ThePartition Table procedure uses the symbol
a (called therefining predicate) to partition the clusterφ in follow(ur) into φ1 andφ2. Since
a is an alphabet symbol, this leads to a fine-grained partitioning of follow(ur). Moreover, note
that multiplesimilar counterexamples may cause repeated partitioning offollow(ur), which may
lead to explicit enumeration ofΣ in the worst case. For example, there may be several positive
counterexamples of formui · a′ · vi+1 wherea′ ∈ φ anda′ differs from a only in a few variable
assignments. Therefore, we propose a SAT-based technique that performs acoarserpartitioning of
φ by firstenlargingthe refining predicatea to a new predicate, say,A, and then usingA to partition
φ.

Recall that the value ofJur · a · vi+1K is computed using a BMC instance. Given a predicatep
overX ∪ X ′, let E(p) represent the BMC formula corresponding to the evaluatingJur · p · vi+1K.
We know that the formulaE(a) is UNSAT while E(φ) is SAT (cf. Section 3.1). We say that
a predicateA is an enlargement ofa if a ⇒ A. We are interested in computing the maximum
enlargementA of a so thatE(A) is UNSAT. This is equivalent to solving an All-SAT problem [30]
and is computationally expensive with SAT. Instead, we propose a greedy approach to compute a
maximalenlargement ofa by using a variable lifting technique [32] in the following way. Since
a may be viewed as a conjunction of variable assignment constraints, we iteratively remove these
variable assignments to obtain larger enlargementsA as long as the formulaE(A) remains UNSAT.
The procedureEnlarge shows the pseudocode for this technique. It can be implemented efficiently
using an incremental SAT solver and made efficient by observing the UNSAT core obtained at each
iteration [35].

Enlarge (E, a)
A = a
// A is a set of constraints of form (xi = di)
Loop:
Pick anewconstraintxi = di in A; If impossible, returnA
A := A \ {(xi = di)}
if (E(A) is SAT)
A := A ∪ {(xi = di)}

Lemma 5 The procedureEnlarge finds a maximal enlargementAm of a when it terminates. Also,
Am must partition the clusterφ into two disjoint clusters.

Proof. Note thatE(p) can be written asF ∧ p for some formulaF . We know thatE(a) is UNSAT
andE(φ) is SAT.Enlarge must terminate with at least one constraint inA, sinceE(TRUE) is SAT.
(E(TRUE) = F ∧ TRUE = F ∧ (φ ∨ ¬φ) = E(φ) ∨ f ′ for some formulaf ′). It is clear from the
pseudocode thatAm computed on termination is maximal.

Sincea ⇒ φ anda ⇒ Am, soφ ∧ Am 6= FALSE. HenceAm must splitφ into two disjoint
clustersφ1 = φ ∧ Am andφ2 = φ ∧ ¬Am.

16

Follow transfer on partitioning. Recall thatPartition Table procedure partitions the clus-
terφ in follow set ofur into φ1 andφ2 and removes all extensionsUext of ur. However, this may
lead to loss of information about follow sets of elements ofUext which may be useful later. We
therefore copy the follow set information for eachu ∈ Uext (u = ur · φ · v for some v) to the
corresponding partitioned traces,ur · φ1 · v andur · φ2 · v.

Reusingv ∈ V . In theLearn CE 1 algorithm, it is possible thatvi+1 6∈ V . Instead of eagerly
addingvi+1 to setV , we check if somev ∈ V can act as a substitute forvi+1, i.e., αi = 1 and
αi+1 = 0 with v substituted forvi+1. If we find suchv, we use the other case inLearn CE 1 which
performs cluster partitioning. Intuitively, adding an element toV may cause unnecessary state
partitions corresponding to other elements inU , while reusing a previous element inV will lead to
a cluster partition whose effect will be local toui · φ and its successors.

Membership Cache and Counterexample HistoryThe results of all membership queries are
stored in amembership cacheso that multiple queries on the same trace are not brought to the
teacher each time, but instead looked up in the cache. We alsokeep acounterexample history
set, which stores all the counterexamples provided by the teacher. Before making a candidate
query, we check that the new hypothesis agrees with the unknown language on all the previous
counterexamples in the counterexample history set. This isuseful because of the lazy nature of
the algorithm: it may become necessary to learn again from anolder counterexample since the
previous learning step only extracted partial informationfrom it.

Another Lazy learning algorithm: l∗r . We briefly discuss another algorithml∗r that may be
viewed as an extension to a learning algorithm for parameterized systems [9]. Instead of represent-
ing the follow sets for eachu ∈ U with one or more alphabet cluster predicates, we only keep a set
of representative alphabet symbols in the follow set for each u and a functionFu which maps each
representative symbol to an alphabet cluster. As a result, although the observation table only con-
tains a selected set of extensions for eachu ∈ U from the follow set, we can still obtain a complete
CFA using the functionFu for eachu. Also, in contrast tol∗, the table elements correspond to
single traces (as in the originalL∗ algorithm). Moreover, its complexity is the same as that of the
originalL∗ algorithm [33]. In order to perform counterexample analysis, the original algorithm [9]
adds all prefixes of a counterexample toU . Instead, we propose to perform more sophisticated
counterexample analysis in tune withl∗ as follows. In order to learn from a counterexamplece,
two cases need to be differentiated. First case simply adds asuffix to the setV causing a state-
partition; the second case leads to addition of a new representative element in a follow set, which
causes splitting of alphabet cluster in the range set of the functionFu for someu. Like l∗, l∗r does
not need to restart learning after a follow set is updated. Incontrast tol∗r , the elements of the follow
set in l∗ are alphabet clusters, where each alphabet cluster corresponds to a set of representative
elements instead of a single one as inl∗r . We comparel∗ (Lazy-AGR) withl∗r (P-AGR) in the next
section.

5 Implementation and Experiments

We have implemented our SAT-based AGR approach based onNC andC rules in a tool called
SYMODA , written in C++. Thel∗ algorithm is implemented together with related optimizations.

17

The input language of the tool is a simple intermediate language (SIL), which allows specification
of a set of concurrent modules which execute synchronously.Each module may have its internal
variables and communicates with other modules using globalvariables. Variables are of boolean,
enumerated and bit-vector types and sequential logic are specified in terms of control flow based
on guarded commands. Each module may also have a block of combinational logic in terms of
boolean equations. In order to evaluate our approach, we translate both SMV and Verilog programs
into SIL. Translator from Verilog to SIL is implemented using the ICARUS Verilog parser. Trans-
lation from SMV is done using a python script. The encoding ofprograms into formula is done
as follows. We translate enumerated types to integers with bound constraints. Bit-vector variables
are ”bit-blasted” currently. We check the correctness of the translation by monolithic SAT-based
model checking on the translated models. We use the incremental SMT solver YICES [3, 17]
as the main decision procedure. Interpolants are obtained using the library interface to the FOCI
tool [1]. We represent states of a CFA explicitly while BDDs are used to represent transitions
compactly and avoid redundancy.
Experiments. All experiments were performed on a 1.4GHz AMD machine with 3GB of mem-
ory running Linux. Table 1 compares three algorithms for automated AGR: a BDD-based ap-
proach [31, 27] (BDD-AGR), our SAT-based approach usingl∗ (Lazy-AGR) and (P-AGR), which
uses a learning algorithm for parameterized systems [9]. The last algorithm was not presented in
context of AGR earlier; we have implemented it using a SAT-based teacher and other optimizations
for comparison purposes. The BDD-AGR approach automatically partitions the given model be-
fore learning assumptions while we manually assign each top-level module to a different partition.
Benchmarkss1a, s1b, guidance, msiandsyncarbare derived from the NuSMV tool set and used
in the previous BDD-based approach [27] whilepeterson andCC are obtained from the VIS and
Texas97 benchmark sets [2]. All examples exceptguidance andCC can be proved using mono-
lithic SAT-based UMC in small amount of time. Note that in some of these benchmarks, the size
of the assumption alphabet is too large to be even enumeratedin a short amount of time.

The SAT-based Lazy-AGR approach performs better than the BDD-based approach ons1a and
s2a (cf. Table 1); although they are difficult for BDD-based model checking [31], SAT-based UMC
quickly verifies them. On themsi example, the Lazy-AGR approach scales more uniformly com-
pared to BDD-AGR. BDD-AGR is able to compute an assumption with 67 states on thesyncarb
benchmark while our SAT-based approaches with interpolation timeout with assumption sizes of
around 30. The bottleneck is SAT-based UMC in the candidate query checks; thek-induction ap-
proach keeps unfolding transition relations to increasingdepths while the interpolants are either
large or take too much time to compute. On thepeterson benchmark, BDD-AGR finishes earlier
but with larger assumptions of size up to 34 (for two partitions) and 13 (for four partitions). In
contrast, Lazy-AGR computes assumptions of size up to 6 while P-AGR computes assumptions of
size up to 8. This shows that it is possible to generate much smaller assumptions using the lazy ap-
proach as compared to the eager BDD-based approach. Both theguidance andsyncarb examples
require interpolation-based UMC and timeout inside a candidate query with thek-induction based
approach. P-AGR timeouts in many cases where Lazy-AGR finishes since the former performs
state partitions more eagerly and introduces unnecessary states in the assumptions.

18

Example TV GV T/F BDD-AGR P-AGR Lazy-AGR
NC C NC C NC C

#A Time #A Time #A Time #A Time #A Time #A Time
s1a 86 5 T 2 754 2 223 3 3 3 3 3 3.5 3 1.3
s1b 94 5 T 2 TO 2 1527 3 3.3 3 3.3 3 3.9 3 2
guidance 122 22 T 2 196 2 6.6 1 31.5i 5 146i 1 40i 3 55i

msi(3) 57 22 T 2 2.1 2 0.3 1 8 * TO 1 8 3 17
msi(5) 70 25 T 2 1183 2 32 1 16 * TO 1 15 3 43
syncarb 21 15 T - - 67 30 * TOi * TOi * TOi * TOi

peterson 13 7 T - - 34 2 6 53i 8 210i 6 13 6 88i

CC(2a) 78 30 T - - - - 1 8 * TO 1 8 4 26
CC(3a) 115 44 T - - - - 1 8 * TO 1 7 4 20
CC(2b)i 78 30 T - - - - * TO * TO 10 1878 5 87
CC(3b)i 115 44 T - - - - * TO * TO 6 2037 11 2143

Table 1: Comparison of BDD-based and Lazy AGR schemes. P-AGR uses a learning algorithm
for parameterized systems [9] while Lazy-AGR usesl∗. TV and GV represent the number of total
and global boolean variables respectively. All times are inseconds. TO denotes a timeout of 3600
seconds.#A denotes states of the largest assumption. ’-’ denotes that data could not be obtained due
to the lack of tool support (The tool does not support theNC rule or Verilog programs as input).
The superscripti denotes that interpolant-based UMC was used.

Example T/F with CE Gen w/o CE Gen
s1a T 1.3 1.1
s1b T 2 1.87
s2a F 26 TO
s2b T 36 TO
msi(5) T 43 86
guidance T 55 57
Peterson T 13 175
CC(3b) T 2143 TO

Table 2: Effect of the counterexample generalization optimization on thel∗ algorithm.

19

6 Conclusions

We have presented a new SAT-based approach to automated AGR for shared memory systems
based on lazy learning of assumptions: alphabet explosion during learning is avoided by repre-
senting alphabet clusters symbolically and performing on-demand cluster partitioning during learn-
ing. Experimental results demonstrate the effectiveness of our approach on hardware benchmarks.
Since we employ an off-the-shelf SMT solver, we can directlyleverage future improvements in
SAT/SMT technology. We are also investigating techniques to exploit incremental SAT solving
for answering queries for a particular AGR premise, e.g., since we need to checkM ‖ A � P
repeatedly for many different assumptionsA, we could add and remove constraints corresponding
to A at each iteration while retaining the rest of the constraints corresponding toM andP . Fi-
nally, the problem of finding good system decompositions forallowing small assumptions needs
to be investigated. Although presented for the case of finite-state systems, our technique can be
extended to infinite-state systems, where the weakest assumption has a finite bisimulation quotient.
It can also be applied to compositional verification of concurrent software by first obtaining a finite
state abstraction based on a set of predicate variables and then learning assumptions based on these
predicate variables. We also plan to use interpolants to improve coarse cluster partitioning.

Acknowledgements. We would like to thank Flavio Lerda for help wth the translator from
SMV to SIL and the C interface to FOCI and also for numerous helpful discussions. We would
like to thank Constantinos Bartzis and Tamir Heyman for several informative discussions. We
also thank Dilsun Kaynar for carefully reading through a draft of this paper and providing useful
comments.

References

[1] Foci: An interpolating prover.http://www.kenmcmil.com/foci.html .

[2] http://vlsi.coloradu.edu/˜vis/ .

[3] Yices: An smt solver.http://yices.csl.sri.com/ .

[4] Nina Amla, Xiaoqun Du, Andreas Kuehlmann, Robert P. Kurshan, and Kenneth L. McMil-
lan. An analysis of sat-based model checking techniques in an industrial environment. In
CHARME, pages 254–268, 2005.

[5] Dana Angluin. Learning regular sets from queries and counterexamples. InInformation and
Computation, volume 75(2), pages 87–106, November 1987.

[6] Roy Armoni, Limor Fix, Ranan Fraer, Scott Huddleston, Nir Piterman, and Moshe Y. Vardi.
Sat-based induction for temporal safety properties.Electr. Notes Theor. Comput. Sci., 119(2):
3–16, 2005.

[7] Thomas Ball and Sriram K. Rajamani. Generating abstractexplanations of spurious coun-
terexamples in C programs. Technical report MSR-TR-2002-09, Microsoft Research, Red-
mond, Washington, USA, January 2002.

20

[8] H. Barringer, D. Giannakopoulou, and C.S Pasareanu. Proof rules for automated composi-
tional verification. In2nd Workshop on Specification and Verification of Component-Based
Systems, ESEC/FSE 2003.

[9] Therese Berg, Bengt Jonsson, and Harald Raffelt. Regular inference for state machines with
parameters. InFASE, pages 107–121, 2006.

[10] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Y. Zue.Bounded
Model Checking, volume 58 ofAdvances in computers. Academic Press, 2003.

[11] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Anders Franźen, Ziyad Hanna,
Zurab Khasidashvili, Amit Palti, and Roberto Sebastiani. Encoding rtl constructs for mathsat:
a preliminary report.Electr. Notes Theor. Comput. Sci., 144(2):3–14, 2006.

[12] Sagar Chaki and Ofer Strichman. Optimized L* for assume-guarantee reasoning. InTACAS,
2007. To Appear.

[13] Sagar Chaki, Edmund Clarke, Nishant Sinha, and Prasanna Thati. Automated assume-
guarantee reasoning for simulation conformance. InProc. of 17th Int. Conf. on Computer
Aided Verification, 2005.

[14] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, andHelmut Veith.
Counterexample-guided abstraction refinement for symbolicmodel checking.Journal of the
ACM (JACM), 50(5):752–794, September 2003.

[15] Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Pasareanu. Learning as-
sumptions for compositional verification. InTACAS, volume 2619. Springer-Verlag, 2003.

[16] Jamieson M. Cobleigh, George S. Avrunin, and Lori A. Clarke. Breaking up is hard to do:
an investigation of decomposition for assume-guarantee reasoning. InISSTA, pages 97–108,
2006.

[17] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for DPLL(T). In
CAV, pages 81–94, 2006.

[18] Niklas Éen and Niklas S̈orensson. Temporal induction by incremental sat solving.Electr.
Notes Theor. Comput. Sci., 89(4), 2003.

[19] Mihaela Gheorghiu, Dimitra Giannakopoulou, and CorinaS. Pasareanu. Refining interface
alphabets for compositional verification. InTACAS, 2007. To Appear.

[20] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, andGregoire Sutre. Lazy abstraction.
In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Langauges (POPL ’02), volume 37(1) ofSIGPLAN Notices, pages 58–70. ACM Press,
January 2002. ISBN 1-58113-450-9.

21

[21] JE Hopcroft and JD Ullman.Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, Reading, Massachusetts, 1979.

[22] Cliff B. Jones. Tentative steps toward a development method for interfering programs.ACM
Trans. Program. Lang. Syst., 5(4):596–619, 1983.

[23] Robert P. Kurshan.Computer-aided verification of coordinating processes: theautomata-
theoretic approach. Princeton University Press, 1994. ISBN 0-691-03436-2.

[24] Patrick Maier. A set-theoretic framework for assume-guarantee reasoning. InICALP, pages
821–834, 2001.

[25] Kenneth L. McMillan. Interpolation and sat-based model checking. InCAV, pages 1–13,
2003.

[26] Jayadev Misra and K. Mani Chandy. Proofs of networks of processes.IEEE Trans. Software
Eng., 7(4):417–426, 1981.

[27] Wonhong Nam and Rajeev Alur. Learning-based symbolic assume-guarantee reasoning with
automatic decomposition. InATVA, pages 170–185, 2006.

[28] Kedar S. Namjoshi and Richard J. Trefler. On the completeness of compositional reason-
ing. In Proceedings of the 12th Int. Conference on Computer Aided Verification (CAV2000),
number 1855, pages 139–153. Springer-Verlag, 2000.

[29] A. Pnueli. In transition from global to modular temporal reasoning about programs. InLogics
and models of concurrent systems. Springer-Verlag New York, Inc., 1985.

[30] Mukul R. Prasad, Armin Biere, and Aarti Gupta. A survey of recent advances in sat-based
formal verification.STTT, 7(2):156–173, 2005.

[31] W. Nam R. Alur, P. Madhusudan. Symbolic compositional verification by learning assump-
tions. InProc. of 17th Int. Conf. on Computer Aided Verification, 2005.

[32] Kavita Ravi and Fabio Somenzi. Minimal assignments forbounded model checking. In
TACAS, pages 31–45, 2004.

[33] Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using homing se-
quences. InInformation and Computation, volume 103(2), pages 299–347, 1993.

[34] Mary Sheeran, Satnam Singh, and Gunnar Stalmarck. Checking safety properties using in-
duction and a sat-solver. InProceedings of the Third International Conference on Formal
Methods in Computer-Aided Design, pages 108–125, London, UK, 2000. Springer-Verlag.

[35] ShengYu Shen, Ying Qin, and Sikun Li. Minimizing counterexample with unit core extraction
and incremental sat. InVMCAI, pages 298–312, 2005.

[36] C. Tinelli and S. Ranise. SMT-LIB: The Satisfiability Modulo Theories Library.
http://goedel.cs.uiowa.edu/smtlib/ , 2005.

22

Appendix

Given a labela overX andY ⊆ X, we define the label projectiona |Y = a′ wheredom(a′) = Y
anda(y) = a′(y) for eachy ∈ Y .

Definition 4 (Product of CFAs.) Given CFAs C1 = 〈X1, Q1, q01, δ1, F1〉 and C2 =
〈X2, Q2, q02, δ2, F2〉, their productC = C1 × C2 is a tuple〈X,Q, q0, δ, F〉 whereX = X1 ∪ X2,
Q = Q1 × Q2, q0 = (q01, q02), F = F1 × F2 and for a labelc over X ∪ X ′, q1, q

′
1 ∈ Q1 and

q2, q
′
2 ∈ Q2, (q′1, q

′
2) ∈ δ((q1, q2), c) iff q′1 ∈ δ1(q1, c |X1∪X′

1
) andq′2 ∈ δ2(q2, c |X2∪X′

2
).

Lemma 6 For CFAsC1 andC2, L(C1 × C2) = L(C1) ∩ L(C2).

Definition 5 (Support set of a Language)We define the supportSpt(L) of a regular languageL
recursively as follows:

• If L = L(C) for a CFAC with support setX, thenSpt(L) = X.

• If L = L1 ∩ L2 for languagesL1 andL2, thenSpt(L) = Spt(L1) ∪ Spt(L2).

• If L = L1, for a languageL1, thenSpt(L) = Spt(L1).

It follows that forL = L1 ∪ L2 = L1 ∩ L2, Spt(L) = Spt(L1) ∪ Spt(L2).

Lemma 7 A regular language with supportX is accepted by a CFA with supportX.

Proof. We prove by structural induction over the definition ofSpt(L). The base case holds trivially
sinceL = L(C) for aC with support setX. If L = L1∩L2, by inductive hypothesis, there must exist
CFAsC1 andC2 whereL1 = L(C1) andL2 = L(C2), with support setsX1 andX2 respectively,
so thatX = X1 ∪ X2. Let C = C1 × C2. Now, L(C) = L(C1) ∩ L(C2) = L. Therefore,L is
accepted by the CFAC whose support set isX. Again, if L = L1 on support setX, there exist a
CFA C1 on support setX, so thatL(C1) = L1. Let C denote the CFA obtained by determinizing
and complementingC1. Note thatC has supportX andL(C) = L(C1) = L.

In the proof of the following theorems, we use propositionallogic notation for representing
intersection, complementation and union of languages. Letlm1 = L(M1) andlm2 = L(M2) and
lp = L(P). Given an assumption CFAA1 andA2, la1 = L(A1) and la2 = L(A2). The weakest
assumption language islwai = ¬(lmi) ∨ lp (i ∈ {1, 2}).

Theorem 2 RuleNC is sound and complete.

Proof.

• Soundness.We need to show that iflm1 ∧ la1 =⇒ lp and lm2 =⇒ la1 hold, then
lm1∧lm2 =⇒ lp holds. Since,lm2 =⇒ la1, thereforelm1∧lm2 =⇒ lm1∧la1 =⇒ lp.

23

• Completeness.We show that iflm1 ∧ lm2 =⇒ lp, then both the premises ofNC hold for
the weakest assumption. The first premise,lm1 ∧ la1 =⇒ lp holds sincelm1 ∧¬(lm1 ∨ lp)
= lm1 ∧ lp andlm1 ∧ lp =⇒ lp.

Theorem 3 RuleC is sound and complete.

Proof.

• Soundness.We need to show that iflmi ∧ lai =⇒ lp (i ∈ {1, 2}) and¬la1 ∧¬la2 =⇒ lp,
thenlm1 ∧ lm2 =⇒ lp. Given a tracet ∈ lm1 ∧ lm2, we consider three cases:

– t ∈ ¬la1 ∧ ¬la2: It follows from the third premise thatt ∈ lp.

– t ∈ la1: Sincet ∈ lm1, it follows from the first premise thatt ∈ lp.

– t ∈ la2: Sincet ∈ lm2, it follows from the second premise thatt ∈ lp.

• Completeness.Given (i) lm1 ∧ lm2 =⇒ lp, we show that all the three premises hold for
the weakest assumption languageslwa1 andlwa2. The first two premises hold by definition.
Note that fori ∈ {0, 1}, ¬lwai = lmi ∧¬lp. Now,¬lwa1 ∧¬lwa2 = lm1 ∧ lm2 ∧¬lp which
implieslp due to (i).

24

