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Abstract 
Current semi-supervised incremental learning approaches 

select unlabeled examples with predicted high confidence for 
model re-training. We show that for many applications this 
data selection strategy is not correct. This is because the 
confidence score is primarily a metric to measure the 
classification correctness on a particular example, rather 
than one to measure the example’s contribution to the training 
of an improved model, especially in the case that the 
information used in the confidence annotator is correlated 
with that generated by the classifier. To address this problem, 
we propose a performance-driven principle for unlabeled data 
selection in which only the unlabeled examples that help to 
improve classification accuracy are selected for semi-
supervised learning. Encouraging results are presented for a 
variety of public benchmark datasets. 

1. Introduction 
Semi-supervised learning has elicited growing interest in 

various research fields and many novel approaches have been 
proposed that give promising improvements in performance 
[1][2]. However some negative experiments showing that 
unlabeled data can deteriorate performance were also 
reported. The analyses of the possible reasons for the 
degradation point out that the increase of number of unlabeled 
examples can lead to a larger estimation bias when the model 
assumptions are violated [3][4]. This conclusion is quite 
discouraging since the situation it describes is very common in 
real-world applications (e.g., speech recognition, image and 
vision processing, information retrieval, etc.) for which the 
empirical models are only rough approximations to the true 
underlying distribution. 

LS : labeled set. 
US : unlabeled set. 

Repeat until no example left in 
US : 

• Train a model λ  from LS . 
• Classify each example in 

US  with λ  

• V  is the set of examples (with their classified label) 
picked from 

US  according to some selection criterion. 

• VSS LL ∪= . 
• VSS UU −= . 

Table 1: A version of semi-supervised incremental learning  

Evidence suggests that semi-supervised incremental 
learning plus data selection can partially address the 
degradation problem [5][6][7][8]. Table 1 shows such an 
algorithm. Most semi-supervised incremental learning 
approaches share a notable characteristic: they select the 
unlabeled examples with the highest predicted confidence for 

model re-training. A first glance gives us the impression that 
this strategy is reasonable: high confidence scores usually 
imply that the class label assigned to an unlabeled example is 
correct, and expanding the training set with correctly labeled 
examples should be able to improve classification. However, 
there are counter-examples that question this strategy of data 
selection. For example, in continuous speech recognition, [9] 
reports that adding unlabeled data with lower confidence 
scores outperforms adding those with high confidence scores 
in improving recognition accuracy when combined with 
labeled data. 

These contradictory observations suggest a more thorough 
investigation is needed. A brief analysis presented in the next 
section demonstrates that a confidence-based data selection 
strategy can lead to a poor estimate of the underlying 
distribution, especially in the case where the confidence 
annotator is constructed using information from the classifier. 
This paper introduces a solution to this problem: a novel 
performance-driven criterion that builds a bridge between data 
selection and classification accuracy. Specifically, with the 
new criterion, the selection of an unlabeled example for semi-
supervised incremental learning is not based on whether its 
classification by the current model is correct, but rather on its 
potential contribution to the training of subsequent models. 
Confirming results on public benchmark datasets are 
presented. 

2. Analysis on confidence-based data selection in 
semi-supervised learning 

First, let’s consider a question: is the confidence annotation 
model used in semi-supervised incremental learning 
independent of the classification model? One extreme example 
is co-training [5], in which the feature sets can be split into 
two independent and redundant subsets, each of which is 
sufficient for classification. Thus we can use one of them to 
construct a classifier, and the other to construct a confidence 
annotator for measuring the correctness of classification made 
by the former. However, many real-world applications cannot 
offer such a feature division that allows us to construct an 
independent confidence annotator. In these cases the 
confidence annotation is mainly based on the information 
supplied by the classification model. Therefore, the selections 
of unlabeled examples with high confidence score often result 
in only those examples that match well to the current model 
being picked. Re-training with such examples will 
consequently be a process that reinforces what the current 
model already encodes, yet it is unable to reduce the 
estimation bias caused by scarcity of labeled data or an 
inaccurate model assumption.  

As we know, one advantage of semi-supervised learning is 
that the vast amount of unlabeled examples can help to 
generate an accurate estimate to the distribution of )(xP . This 



raises the second question: do the unlabeled examples being 
selected for their high confidence score comply with the true 
distribution of )(xP ? In our preliminary experiments with a 
variety of confidence metrics, we observed that the selected 
unlabeled examples often concentrate on some special regions 
of the input space, i.e. the region far from the class boundary, 
rather than distribute globally across the entire space. As a 
consequence, the )(xP  derived from the selected data will be 
an incorrect one. In addition, we also observed that in some 
applications there is no unlabeled example being selected for 
certain class, due to most of the examples of the class are 
located in a region classified with low confidence. Obviously, 
this will result in a biased estimate of the underlying prior 
probability of class )(cP . Although a biased estimate of )(xP  
or )(cP  doesn’t necessarily lead to the degradation of 
performance, it does make the model training more 
unpredictable especially when we use a generative model, i.e. 
Gaussian Mixtures, that need to learn ),( cxP  for 
classification. 

Generally speaking, the confidence score is a metric that 
measures the classification correctness for a particular 
example, rather than a metric that evaluates the example’s 
potential contribution for training an improved model. As 
suggested above, using high confidence score as the selection 
criterion may generate erroneous estimate of the true 
distribution, and thus may lead to the degradation of 
performance, even though the selected examples are correctly 
classified. We propose a performance-driven principle that 
attempts to address this problem from a new perspective: our 
solution no longer relies on a confidence metric; instead, the 
selection is made by evaluating the candidate’s capability for 
improving classification performance. Specifically, only the 
unlabeled examples that help to increase classification 
accuracy are selected for model re-training. 

1. Initialize each bin with empty set: Φ=nb  (1≤n≤N). 
2. Assign class label to each unlabeled example using 

current classifier λ , and compute confidence score for 
each classification using confidence metric );( xcconf . 

3. Split input space in to K subspaces 
KDDD ,...,, 21

 with 
reasonable clustering algorithm, i.e. K-Means. 

4. For each subspace 
kD  (1≤k≤K): 

• Sort the unlabeled example x  that 
kDx ∈  

according to its confidence score from high to low; 
• Add each unlabeled example x  that 

kDx ∈  to 
one of the N bins in the fashion that 

nb  (1≤n≤N) 
accepts the examples which confidence scores are 
within the range from top %1

N
n −  to %

N
n . 

Table 2: Partition scheme 

3. A performance driven principle for unlabeled 
data selection 

The performance-driven principle is implemented as 
follows. The unlabeled set is first partitioned into a number of 
subsets (referred to as bins in this paper) as the candidates for 

data selection. An objective function is used to measure each 
bin’s capability for improving classification accuracy. The bin 
of unlabeled examples achieving the best performance 
improvement, along with the automatically-assigned example 
labels, is added to the existing training set to train a new 
model. The process repeats until performance starts to 
deteriorate. 

3.1. Partition scheme 
Using the new principle, the unlabeled examples are 

partitioned into a number of equal-sized bins to create the 
candidates for selection. Two requirements are considered in 
our design of the partition scheme: the examples belonging to 
the same bin should contribute similarly to the model training; 
and they should be selected across the entire input space with 
respect to the distribution of )(xP . As the metric that reflects 
the degree to which an example matches the current model, 
we use confidence score to fulfill the first requirement. 
Meantime, a clustering algorithm, i.e. K-Means, is used to 
partition the input space into a number of clusters, so that the 
selection with )(xP  can be simulated by sampling examples 
from each cluster. Table 2 shows the detail of the algorithm. 

3.2. Metric to evaluate model performance 
Our goal is to identify those unlabeled examples that can 

improve system performance. This raises the question: how to 
measure the classification accuracy of a model in terms of 
labeled and unlabeled data. We use a metric that combines 
two aspects of information, pseudo-accuracy and energy 
regularization, in our experiments. Suppose there are l labeled 
examples ),( 11 yx , ),( 22 yx , …, ),( ll yx , where class label 

},...,,{ 21 Mi cccy ∈ , and u unlabeled examples 1+lx , 2+lx , …, 

ulx + .  
Pseudo-accuracy. This item considers the classification 

accuracy of model λ  on labeled and unlabeled sets. The 
calculation of accuracy on a labeled set is trivial. For 
unlabeled set, we assign a pseudo-class, which is the class 
label determined by majority voting among all the existing 
models obtained in iterations of semi-supervised incremental 
learning, to each unlabeled example. To allow more 
optimization methods i.e. gradient descent to be used for 
model training, Pseudo-accuracy is defined in the form of a 
continuous differentiable function. 

We first define a discriminative function measuring 
model λ ’s capability to separate the desired class from other 
competing classes: 

)]),(log([),(log),,(
1

1
1 ∑

≠
−−=
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λλλ
 (1) 

in which 
iy  is the pseudo-class when ulil +≤≤+1 , and η  

is a parameter that controls how the competing classes are 
weighted. The interpretation of ),,( iii yyxdλ  is that, if it is 
negative, a classification error is assessed; otherwise, the 
classification is likely to be correct. ),,( iii yyxdλ  is then 
embedded into  the sigmoid function, a smooth differentiable 
0-1 function, to mimic the classification accuracy, and 
formulated as the metric pseudo-accuracy: 
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where parameters ρ  and θ  control the slope and transition 
point of the sigmoid function. 

Energy regularization. Since the pseudo-class may be 
different from the correct class label, we regularize )(λaccf  
using other metrics. Motivated by the observation that 
examples that are nearby in the input space often have the 
same class label, we add an energy based regularizer to the 
performance evaluation, which is defined as follows [10]: 
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where 
jiw ,
 is the weight of the edge linking example 

ix  and 

jx , which value is inverse to their Euclidean distance. 

)exp(
2

, jiji xxw −−=       (4) 

In our implementation, 
jx  is restricted to the nearest 

neighbors of 
ix . 

The overall metric for evaluating model λ ’s performance 
is the linear combination of these two regularization factors. 

)()()( 21 λαλαλ engacc fff −=     (5) 

where 
1α  and 

2α  are the weights for each regularizer, and set 
to 0.75 and 0.25 respectively in our experiments. Please note 
that in addition to being used in incremental learning, (5) can 
also be applied to general semi-supervised learning as a 
differentiable objective function allowing the use of method i.e. 
gradient descent for model optimization. 

3.3. Performance-driven incremental learning 
The performance-driven incremental learning algorithm is 

illustrated in Table 3. It differs from the traditional 
incremental learning algorithm described in Table 1 in that the 
selection of unlabeled data is based on their contribution to the 
improvement of classification. Specifically, the reason for bin 

*b  being picked for the next iteration is based on the 
classification accuracy that it helps to realize, which is 
measured by objective function )(λf , is the best one among 
other bins, and more important, outperforms the accuracy of 
the current model. Moreover, early-stop criterion is adopted in 
the algorithm so that the training process can stop before the 
performance begins to degrade. Traditional approaches can be 
understood as special cases of this new algorithm, in which 
confidence metric is used as both data partition and selection 
criterion. 

4. Experiments 
To test the effectiveness of the proposed data selection 

approach for semi-supervised incremental learning, we 
performed a series of experiments on 7 benchmark datasets 
taken from the UCI machine learning repository: credit-
screening (crx), glass-identification (glass), image-
segmentation (image), iris-plant (iris), ionosphere, letter-
recognition (letter), and optical-recognition-of-handwritten-
digits (optdigits). These datasets span decision making, image 
recognition and speech recognition. For the two largest 
datasets, letter and optdigits, we adopt the pre-defined 

training/test split provided in their definition files: 
16000/4000 for letter and 3823/1797 for optdigits. For the 
other 5 datasets, we divide the entire dataset into 10 equally-
sized subsets, sequentially choosing one of them as the test set 
and the remaining as the training set (according to a cross-
validation, or jack-knifing, procedure). 

The labeled data are further separated from the training set 
by randomly selecting a certain portion of examples along with 
their labels. Two labeling selection rates are used in our 
investigations, 10% and 20%. To eliminate the uncertainty 
caused by random selection, the experiment is repeated for 
200 times for each labeling rate and training/test split. The 
overall means and standard deviation of test accuracy are 
reported as the final performance. The number of bins is set to 
10 which means 10% unlabeled examples are added to the 
existing training set in each iteration. 

LS : labeled set. US : unlabeled set. 
Initialize: 
1. Train the initial model 0λ  from labeled set LS . Let 

)( 00 λff =  where (.)f  is the metric measuring model 
performance as shown in (5). 

2. Partition the unlabeled set into N equally-sized bins 
},...,,{ 210 NbbbB =  using the scheme illustrated in 

Table 2. 
3. Let LSS =0  and 0=k . 
Repeat if φ≠kB : 
1. For each bin kBb ∈ ,  

• Train a model 
bk ,1+λ  from bSk ∪ , where the class 

label of unlabeled example bx ∈  is assigned by 
the current model kλ . 

• Let )( ,1,1 bkbk ff ++ = λ . 

2. Let }{max ,11 bkBbk ff
k

+∈+ = . 

3. If 
kk ff ≤+1
, break and return kλ  as the training result. 

4. Else, let }{maxarg ,1
*

bk
Bb

fb
k

+
∈

= . 

• *
1 bSS kk ∪=+ . 

• 
*,11 bkk ++ = λλ . 

• *
1 bBB kk −=+ . 

• 1+= kk . 
Table 3: Performance driven incremental learning algorithm 

Our experiments use Gaussian Mixtures Model (GMM) as 
the base classifier, K-Means as the clustering method in 
partition scheme and Negative Entropy [11][12] as the 
confidence metric defined as follows. 
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Table 4 presents the results of four learning approaches: 
(1) supervised learning on the labeled data, (2) semi-
supervised learning using generalized EM [2], (3) traditional 
incremental learning that always selects high confidence data 
(as illustrated in Table 1), and (4) our proposed performance-



driven incremental learning algorithm. The best result for each 
dataset and labeling rate is marked in boldface type.  

We first compare the performances of supervised learning 
and semi-supervised learning with EM. Degradations caused 
by using unlabeled data are observed in some of the datasets. 
These results remind us that regardless of the promising 
perspective of semi-supervised learning, additional 
investigations need to be done to understand the necessary and 
sufficient conditions for such degradations. 

Table 4 shows that incremental learning appears to be an 
alternative option to generalized EM. However, the traditional 
incremental learning algorithm based on the selection of high 
confidence data is far from satisfactory, especially when no 
early-stop criterion is used. In contrast, our performance-
driven incremental learning algorithm works very well, and 
consistently performs as well as or better than the best of the 
other three approaches. Decent improvements of classification 
accuracy are observed in most of the 7 datasets. 

5. Conclusion 
We investigated the data selection criteria used in semi-

supervised incremental learning. We empirically demonstrate 
that the traditional criterion, focusing on unlabeled examples 
with high classification confidence is not necessarily the best 
choice. We introduce a novel performance-driven principle for 
unlabeled data selection: An unlabeled example is selected for 
inclusion based on its capability to improve classification 
accuracy. The effectiveness of this principle is demonstrated in 
a series of experiments on UCI benchmark datasets. 
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Training on labeled set Semi-supervised EM High conf. based inc. 
learning 

Performance-driven 
incremental learning 

Datasets Labeling 
rate (%) 

Accuracy 
Mean ± Dev (%) 

Accuracy 
Mean ± Dev (%) 

Accuracy 
Mean ± Dev (%) 

Accuracy 
Mean ± Dev (%) 

Crx 10 82.26±1.12 82.15±0.81 81.55±1.20 82.69±0.93 
Crx 20 83.23±0.73 82.59±0.67 83.17±0.72 83.54±0.71 
Glass 10 43.21±3.62 40.09±3.86 43.56±3.33 44.52±3.49 
Glass 20 44.67±3.15 40.82±2.63 44.87±3.17 46.49±3.22 
Image 10 82.95±0.76 81.29±0.74 83.23±0.66 84.01±0.62 
Image 20 85.00±0.49 82.94±0.47 85.35±0.54 85.80±0.51 
Iris 10 91.42±1.47 90.27±1.24 91.59±1.47 92.61±1.53 
Iris 20 91.94±1.32 90.80±1.17 91.99±1.23 92.87±1.35 
ionosphere 10 78.74±2.83 80.36±3.07 82.44±2.59 83.59±2.52 
ionosphere 20 79.32±2.29 81.38±2.61 85.86±2.07 86.93±2.04 
Letter 10 73.77±0.80 74.85±0.88 77.38±0.88 78.33±0.67 
Letter 20 78.01±0.73 79.23±0.79 82.64±0.65 82.91±0.62 
optdigits 10 89.55±1.37 90.12±1.33 89.83±1.67 90.95±0.87 
optdigits 20 92.29±0.63 92.60±0.59 93.15±0.82 93.50±0.61 

Table 4: Comparative study of four algorithms 


