Seunghak Lee (이승학)
Recently, I moved to Human Longevity, Inc, as a research scientist. Prior to that, I was a project scientist in the Machine Learning Department at Carnegie Mellon University, working with Prof. Eric P. Xing.
I received my Ph.D. in Computer Science Department at Carnegie Mellon University, M.Sc. in Computer Science at the University of Toronto, and B.S. in Chemistry and Computer Science and Engineering at POSTECH.
My research interests include computational biology and machine learning. I am interested in integrative approaches to the analysis of genetic and biomedical datasets, genome-wide association studies, visual analytics, distributed optimization, and large-scale machine learning algorithms and systems.
News
Aug 2015: I joined Human Longevity, Inc as a research scientist.
Mar 2015: I joined Machine Learning Department at CMU as a project scientist.
Feb 2015: I obtained my Ph.D. in Computer Science Department at CMU.
Software
Selected Publication
Conference Papers
J. Kim, Q. Ho, S. Lee, X. Zheng, W. Dai, G. Gibson, E. P. Xing,
STRADS: A Distributed Framework for Scheduled Model Parallel Machine Learning,
To appear in The European Conference on Computer Systems (EuroSys 2016)
E. P. Xing, Q. Ho, W. Dai, J. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar, and Y. Yu,
Petuum: A New Platform for Distributed Machine Learning on Big Data,
The 21th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2015)
H. Cui, J. Cipar, Q. Ho, J. Kim, S. Lee, A. Kumar, J. Wei, W. Dai, G. R. Ganger, P. B. Gibbons, G. A. Gibson, and E. P. Xing,
Exploiting Bounded Staleness to Speed up Big Data Analytics,
in USENIX Annual Technical Conference (ATC 2014)
Q. Ho, J. Cipar, H. Cui, J. Kim, S. Lee, P. B. Gibbons, G. Gibson, G. R. Ganger, and E. P. Xing,
More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server,
Advances in Neural Information Processing Systems 26 (NIPS 2013)
W. Dai, J. Wei, X. Zheng, J. Kim, S. Lee, J. Yin, Q. Ho, and E. P. Xing,
Petuum: A Framework for Iterative-Convergent Distributed ML,
Advances in Neural Information Processing Systems 26, Big Learning Workshop (NIPS 2013 Big Learning Workshop)
Journal Papers
E. P. Xing, Q. Ho, W. Dai, J. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar, Y. Yu,
Petuum: A New Platform for Distributed Machine Learning on Big Data,
IEEE Transactions on Big Data, 2015
S. Lee, A. Lozano, P. Kambadur, and E. P. Xing,
An Efficient Nonlinear Regression Approach for Genome-Wide Detection of Marginal and Interacting Genetic Variations,
Journal of Computational Biology (RECOMB 2015 Special Issue), 2015
E. P. Xing, R. Curtis, G. Schoenherr, S. Lee, J. Yin, K. Puniyani, W. Wu, and P. Kinnaird,
GWAS in a Box: Statistical and Visual Analytics of Structured Associations via GenAMap,
PLoS One, 2014
Books
Selected Manuscripts
|