dReal: An SMT Solver for Nonlinear Theories over the Reals*

Sicun Gao, Soonho Kong, and Edmund M. Clarke

Carnegie Mellon University, Pittsburgh, PA 15213

Abstract. We describe the open-source tool dReal, an SMT solver for nonlinear formulas over the
reals. The tool can handle various nonlinear real functions such as polynomials, trigonometric functions,
exponential functions, etc. dReal implements the framework of §-complete decision procedures: It returns
either unsat or d-sat on input formulas, where § is a numerical error bound specified by the user.
dReal also produces certificates of correctness for both d-sat (a solution) and unsat answers (a proof of
unsatisfiability).

1 Introduction

SMT formulas over the real numbers can encode a wide range of problems in theorem proving and
formal verification. Such formulas are very hard to solve when nonlinear functions are involved. Our
recent work on d-complete decision procedures provided a new framework for this problem [TO/TT].
We say a decision procedure is §-complete for a set S of SMT formulas, where J is a positive rational
number, if for any ¢ from S, the procedure returns one of the following:

— unsat: ¢ is unsatisfiable.
— J-sat: 9 is satisfiable.

Here, ¥ is a syntactic variant of ¢ that encodes a notion of numerical perturbation on logic for-
mulas [10]. With such relaxation, d-complete decision procedures can fully exploit the power of
scalable numerical algorithms to solve nonlinear problems, and at the same time provide suitable
correctness guarantees for many correctness-critical problems. dReal implements this framework. It
solves SMT problems over the reals with nonlinear functions, such as polynomials, sine, exponen-
tiation, logarithm, etc. The tool is open-sourcd’} built on opensmt [5] for the high-level DPLL(T)
framework, and realpaver [14] for the Interval Constraint Propagation algorithm. It returns unsat
or d-sat on input formulas, and the user can obtain certificates (proof of unsatisfiability or solution)
for the answers.
In this paper we describe the usage, design, and some results of the tool.

Related Work. SMT solving for nonlinear formulas over the reals has gained much attention in
recent years and many tools are now available. The symbolic approaches include Cylindrical De-
composition [6], with significant recent improvement [19/16], and Grébner bases [20]. A drawback
of symbolic algorithms is that it is restricted to arithmetic, namely polynomial constraints, with
the exception of [I]. On the other hand, many practical solvers incorporate scalable numerical
computations. Examples of numerical algorithms that have been exploited include optimization
algorithms [4/18], interval-based algorithms [87/12], Bernstein polynomials [I7], and linearization

* This research was sponsored by the National Science Foundation grants no. DMS1068829, no. CNS0926181 and
no. CNS0931985, the GSRC under contract no. 1041377, the Semiconductor Research Corporation under contract
no. 2005TJ1366, and the Office of Naval Research under award no. N000141010188.

! dReal is available at http://dreal.cs.cmu.edu.

http://dreal.cs.cmu.edu

algorithms [9]. All solvers show promising results on various nonlinear benchmarks. Our goal is to
provide an open-source platform for the rigorous combination of numerical and symbolic algorithms
under the framework of d-complete decision procedures [10].

2 Usage

2.1 Input Format

We accept formulas in the standard SMT-LIB 2.0 format [2] with extensions. In addition to non-
linear arithmetic (polynomials), we allow transcendental functions such as sin, tan, arcsin, arctan,
exp, log, pow, sinh. More nonlinear functions (for instance, solution of differential equations) can
be added when needed, by providing the corresponding numerical evaluation algorithms. Floating-
point numbers are allowed as constants in the formula.

Bound information on variables can be declared using a list of simple atomic formulas. For
instance “(assert (< 0 x))”, which sets x € (0,400) at parsing time. Also, the user can set the
precision by writing “(set-info :precision 0.0001).” The default precision is 1072, and can be
set through command line.

Ezample 2.1. The following is an example input file. It is taken from the Flyspeck project [15].
(Filename flyspeck/172.smt2. Flyspeck ID (6096597438b))

(set-logic QF_NRA)

(set-info :precision 0.001)

(declare-fun x () Real)

(assert (<= 3.0 x))

(assert (<= x 64.0))

(assert (not (> (- (* 2.0 3.14159265) (* 2.0 (* x (arcsin (* (cos
0.797) (sin (/ 3.14159265 x))))))) (+ (- 0.591 (* 0.0331 x))

(+ (x 0.506 (/ (- 1.26 1.0) (- 1.26 1.0))) 1.0)))))

(check-sat)

(exit)

2.2 Command Line Options
After building, dReal can be simply used through:
dReal [--verbose] [--proof] [--precision <double>] <filename>

The default output is unsat or delta-sat. When the flags are enabled, the following output will be
provided.

— If --verbose is set, then the solver will output the detailed decision traces along with the
solving process.
— If —-proof is set, the solver produces an addition file “filename.proof” upon termination, and
provides the following information.
o If the answer is delta-sat, then filename.proof contains a witnessing solution, plugged into
a o-perturbation of the original formula, such that the correctness can be easily checked
externally.

e If the answer is unsat, then filename.proof contains a trace of the solving steps, which can
be verified as a proof tree that establishes the unsatisfiability of the formula.
— The ——precision flag gives the option of overwriting the default precision, and the one set in
the benchmark.

When the --proof flag is set, the solver produces a file that certifies the answer. In the delta-sat
case, the solution is plugged in the formula, and its correctness can be checked externally. For the
unsat cases, we provide a proof checker that verifies the proof. It can be used with the following
command:

proofcheck [--timeout <int>] <filename>

The proof checker will create a new folder called filename.extra, which contains auxiliary files
needed. It is possible for the proof checking procedure to produce a large number of new files, so
setting a timeout is important. By default, the timeout is 30min. The proof checker will return
either “proof verified” or “timeout”.

Example 2.2. With default parameters, dReal solves the formula in Example in 10ms, returning
unsat, on a machine with a 32-core 2.3GHz AMD Opteron Processor and 94GB of RAM. We then
run proofcheck on the same machine. The proof checker returns “proof verified” in 10.08s, after
making 8 branching steps and checking 77 axioms.

3 Design

3.1 The 6-Decision Problem

The standard decision problem is undecidable for SMT formulas over the reals with trigonometric
functions. Instead, we proposed to focus on the so-called d-decision problem, which relaxes the
standard decision problem. Let § be any positive rational number. On a given SMT formula ¢, we
ask for one of the following answers:

— unsat: ¢ is unsatisfiable.
— J-sat: ¢ is satisfiable.

When the two cases overlap, either answer can be returned. Here, ¢ is called the §-perturbation
(or d-weakening) of ¢, which is formally defined as follows.

Definition 3.1 (5-Weakening [10]). Let § € QT U {0} be a constant and ¢ be a X-sentence
in a standard form ¢ = Ha (/\Zil(\/fl:1 fij(x) = 0)). The j-weakening of ¢ defined as: ¢° =

Iz (N2 (V) fig(@)] < 6)).

Solving the d-decision problem is as useful as the standard one for many problems. For instance,
suppose we perform bounded model checking on hybrid systems, and encode safety properties as
an SMT formula . Then following standard model checking techniques, if we decide that ¢ is
unsat, then the system is indeed “safe” with in some bounds; if we decide that ¢ is d-sat, then the
system would become “unsafe” under some J-perturbation on the system. In this way, when ¢ is
reasonably small, we have essentially taken into account the robustness properties of the system,
and can justifiably conclude that the system is unsafe in practice.

3.2 DPLL(ICP)

Interval Constraint Propagation (ICP) [3] is a constraint solving algorithm that finds solutions of
real constraints using a “branch-and-prune” method, combining interval arithmetic and constraint
propagation. The idea is to use interval extensions of functions to “prune” out sets of points that
are not in the solution set, and “branch” on intervals when such pruning can not be done, until a
small enough box that may contain a solution is found. In a DPLL(T) framework, ICP can be used
as the theory solver that checks the consistency of a set of theory atoms. We use opensmt [5] for the
general DPLL(T) framework, and integrate realpaver [I4] which performs ICP. We now describe
the design of the interface. A high-level structure of the theory solver is shown in Algorithm

Algorithm 1: Theory Solving in DPLL(ICP)

input : A conjunction of theory atoms, seen as constraints, ¢i(z1,...,Zn), ..., Cm(Z1, ..., Tn), the initial
interval bounds on all variables B® = I? x --- x I2, box stack S = J, and precision § € Q™.
output: d-sat, or unsat with learned conflict clauses.

1 S.push(Bo);

2 while S # () do

3 B «+ S.pop() ;

4 while 31 < ¢ < m, B # Prune(B,¢;) do

5 ‘ //Pruning without branching, used as the assert() function. B < Prune(B,c;);
6 end

7 //The ¢ below is computed from & and the Lipschitz constants of functions beforehand.
8 if B # () then

9 if 31 < < n,|l;| > ¢ then

10 ‘ {Bi1, B2} < Branch(B,1); //Splitting on the intervals S.push({Bi, B2});

11 else

12 ‘ return J-sat; //Complete check() is successful.

13 end

14 end

15 end

16 return unsat;

Check and Assert. For incomplete checks in the assert function, we use the pruning operator
provided in ICP to contract the interval assignments on all the variables, by eliminating the boxes
in the domain that do not contain any solutions. At complete checks, we perform both pruning and
branching, and look for one interval solution of the system. That is, we prune and branch on the
interval assignment of all variables, and stop when either we have obtained an interval vector that
is smaller than the preset error bound, or when we have traversed all the possible branching on the
interval assignments.

Backtracking and Learning. We maintain a stack of assignments on the variables, which are map-
pings from variables to unions of intervals. When we reach a conflict, we backtrack to the previous
environment in the pushed stack. We also collect all the constraints that have appeared in the prun-
ing process leading to the conflict. We then turn this subset of constraints into a learned clause
and add it to the original formula.

Witness for 0-Satisfiabillity. When the answer is J-sat on ¢(x), we provide a solution a € R",
such that ¢°(a) is a ground formula that can be easily checked to be true. It is important to note
that the solution witnesses d-satisfiability, instead of standard satisfiability of the original formula.
While the latter problem is undecidable, any point in the interval assignment returned by ICP can
witness the satisfiability of ¢® when the intervals are smaller than an appropriate error bound.

Proofs of Unsatisfiability. When the answer is unsat, we produce a proof tree that can be verified to
establish the validity of the negation of the formula, i.e., Vx—p(x). We devised a simple first-order
natural deduction system, and transform the computation trace of the solving process into a proof
tree. We then use interval arithmetic and simple rules to check the correctness of the proof tree.
The proof check procedure recursively divide the problem into subproblems with smaller domains.
More details can be found in [I3].

4 Results

[Problem#]| #OP| Times| Result] Trace Size[[PC[#PA[#SP|Timepc[#D]

506 49(0:00.01|UNSAT 519(| Y |3,108|3,107|190.200| 9
504 48|0:00.01|UNSAT 507(Y |2,322|2,321|172.250| 9
746|| 2,729|0:00.22|UNSAT 20,402(Y | 134] 135]156.940| 99
785 81]0:00.79|UNSAT|| 2,530,262| Y |1,968|1,454|100.620| 5
505 48|0:00.01|UNSAT 477] Y 11,390(1,389| 84.030| 9
814 96/0:00.50|UNSAT|| 1,349,482| Y | 885| 638 79.010| 5
783 832(0:00.06|UNSAT 6,386|| Y | 211| 210| 57.890| 9
815 96|0:00.48|UNSAT|| 1,394,542|| Y | 912| 688| 45.620| 5
760|| 2,792|0:00.22|UNSAT 20,991(| Y 71| 70| 34.470| 9
816 97(0:00.15|UNSAT 423,074|| Y | 335| 254| 30.310| 5
260 90|0:45.10|UNSAT|[306,508,373|| N | —| ——| ——| -
884 9410:25.75|UNSAT||181,766,839|| N | —| ——| ——

461 36(0:25.20|UNSAT||133,865,608| N | —| ——| ——

871|(80,230(0:16.38|UNSAT 610,809|| N | —| —| —| -
525 43|4:38.01| 0-SAT| ——|| - | —|—| —| -

Table 1: Experimental results. #0OP = Number of nonlinear operators in the problem, TIMEg =
Solving time in seconds, TO = Timeout (30min), PC = Proof Checked, #PA = Number of proved
axioms, #SP = Number of subproblems generated by proof checking, TIMEpc = Proof-checking
time in seconds, #D = Number of iteration depth required in proof checking.

Besides solving the standard benchmarks [16] (data shown on the tool website), we managed to
solve many challenging nonlinear benchmarks from the Flyspeck project [I5] for the formal proof
of the Kepler conjecture. The following is a typical formula:

V2 3
¢ (™ —4arctan = 2 VA(x) o7 V2
Vo € [2,2.51)°. (12v3 VA(x) + 3 ;:0 arctan w@) =3 + 4 arctan =)

where a;(x) are quadratic and A(x) is the determinant of a nonlinear matrix. We solved 828 out
of the 916 formulas (returning unsat) with a timeout of 5 minutes and § = 1073, without domain-

specific heuristics. The proof traces of these formulas can be large. In Table [I], we list some of the
representative benchmarks to show scalability. Complete tables are on the tool page.

References

1.

2.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20

B. Akbarpour and L. C. Paulson. Metitarski: An automatic prover for the elementary functions. In
AISC/MKM/Calculemus, pages 217-231, 2008.

C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0. In A. Gupta and D. Kroening,
editors, Proceedings of the 8th International Workshop on Satisfiability Modulo Theories (Edinburgh, UK), 2010.
F. Benhamou and L. Granvilliers. Continuous and interval constraints. In F. Rossi, P. van Beek, and T. Walsh,
editors, Handbook of Constraint Programming, chapter 16. Elsevier, 2006.

C. Borralleras, S. Lucas, R. Navarro-Marset, E. Rodriguez-Carbonell, and A. Rubio. Solving non-linear polyno-
mial arithmetic via sat modulo linear arithmetic. In CADE, pages 294-305, 2009.

R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich. The opensmt solver. In J. Esparza and R. Majumdar,
editors, TACAS, volume 6015 of Lecture Notes in Computer Science, pages 150—153. Springer, 2010.

G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In Automata
Theory and Formal Languages, pages 134-183, 1975.

A. Eggers, M. Franzle, and C. Herde. SAT modulo ODE: A direct SAT approach to hybrid systems. In AT VA,
pages 171-185, 2008.

M. Frénzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert. Efficient solving of large non-linear arithmetic
constraint systems with complex boolean structure. JSAT, 1(3-4):209-236, 2007.

M. K. Ganai and F. Ivanci¢. Efficient decision procedure for non-linear arithmetic constraints using cordic. In
Formal Methods in Computer Aided Design (FMCAD), 2009.

S. Gao, J. Avigad, and E. M. Clarke. Delta-complete decision procedures for satisfiability over the reals. In
IJCAR, pages 286-300, 2012.

S. Gao, J. Avigad, and E. M. Clarke. Delta-decidability over the reals. In LICS, pages 305-314, 2012.

S. Gao, M. Ganai, F. Ivancic, A. Gupta, S. Sankaranarayanan, and E. Clarke. Integrating ICP and LRA solvers
for deciding nonlinear real arithmetic. In FMCAD, 2010.

S. Gao, S. Kong, M. Wang, and E. Clarke. Extracting proofs from a numerically-driven decision procedure, 2013.
CMU SCS Technical Report CMU-CS-13-104.

L. Granvilliers and F. Benhamou. Algorithm 852: Realpaver: an interval solver using constraint satisfaction
techniques. ACM Trans. Math. Softw., 32(1):138-156, 2006.

T. C. Hales. Introduction to the flyspeck project. In T. Coquand, H. Lombardi, and M.-F. Roy, editors,
Mathematics, Algorithms, Proofs, volume 05021 of Dagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum fiir Informatik (IBFI), Schloss Dagstuhl, Germany, 2005.

D. Jovanovic and L. M. de Moura. Solving non-linear arithmetic. In IJCAR, pages 339-354, 2012.

C. Munoz and A. Narkawicz. Formalization of a representation of Bernstein polynomials and applications to
global optimization. Journal of Automated Reasoning, 2012. Accepted for publication.

P. Nuzzo, A. Puggelli, S. A. Seshia, and A. L. Sangiovanni-Vincentelli. Calcs: Smt solving for non-linear convex
constraints. In R. Bloem and N. Sharygina, editors, FMCAD, pages 71-79. IEEE, 2010.

G. O. Passmore and P. B. Jackson. Combined decision techniques for the existential theory of the reals. In
Calculemus/MKM, pages 122-137, 2009.

A. Platzer, J.-D. Quesel, and P. Riimmer. Real world verification. In CADE, pages 485-501, 2009.

	dReal: An SMT Solver for Nonlinear Theories over the Reals

