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Introduction 
 The desire to build systems which can operate reliably in natural environments 
motivates several areas of modern robotics research.  Addressing the inherent uncertainty 
that exists in a natural environment is a central issue in this research.  Often, it is possible 
for an autonomous system to learn the state of its environment over time by combining 
the information obtained by several consecutive, noisy, measurements.  We wish to 
design a process analogous to scientific experimentation which will enable a robot to 
learn aspects of its environment which are initially unknown. 
 In particular we are interested not only in the usual uncertainties regarding the 
position of the manipulator, the forces it applies to the object, and the position of the 
object, but also in the shape, mass, and surface properties of the object itself.  We attempt 
to formulate an optimal learning model that will work in the general case where known 
forces are applied to a rigid body.  Once this model is constructed we consider a specific 
algorithm for approximating this optimal learning.  Once a model of learning exists we 
can begin to reason about which experiments should be chosen in order to learn the 
unknown properties of the object in as little time as possible. 
  
Background 
 This work originated with Dave Hershberger’s work on manipulating unknown 
objects with a single point of contact manipulator.  Where he worked with objects 
constrained to a few classes known a-priori (sphere, box, cone) we address arbitrary 
shapes.  Additionally, the surface used in his work was sand, while this work assumes a 
rigid surface.  (Erdmann; 1998) discusses methods for determining pose and motion from 
a known geometry in the planar case.  Lynch and Mason’s work on planar manipulation 
shows that goal directed manipulation is possible in the presence of uncertainty in the 
contact pressure distribution.  (Okamura; 1997) has shown work in exploration of object 
parameters using rolling motions, and motion planning for polyhedra on the plane. 
 
Task 
 Stated formally, the task is to determine the geometry, mass distribution, and 
coefficient of friction of an unknown object as quickly as possible.  We make no initial 
assumptions regarding the mass distribution, coefficient of friction, or geometry of the 
object. 

The system can detect the pose of a single point on the object’s surface, and can 
apply force at any point on the objects surface.  We assume that the object tracking 
sensor has zero mean normally distributed noise in the measurement of each axis.  The 
manipulation is performed by an idealized single point of contact manipulator.  We 
assume that the manipulator tip has a high frictional coefficient, allowing it to apply 
forces to the object so long as the applied force opposes the surface normal at the point of 
contact.  Further, we ignore all issues relating to arm kinematics or measures of 



manipulability and assume that the manipulator position is known to within a normally 
distributed noise term mmmp σ+= p , where mp  is the position of the manipulator’s end 
effector and mσ  is the noise term.  Likewise, the maximum force that the manipulator can 
apply is assumed independent of mp  such that maxff <m .  We assume the arm is 
equipped with a force sensor which makes measurements of the force in each axis at the 
manipulator tip. 
 We assume that the object being manipulated is rigid and that its interaction with 
the work surface can be modeled using coulomb friction with a uniform frictional 
coefficient.  Furthermore, we assume that the work surface is a flat, infinite plane.   
 
Approach 
 
 We learn about the world through experimentation.  Given some uncertainty 
about the state of the world we design an experiment, such that observing the outcome of 
that experiment will reduce that uncertainty.  This suggests a natural decomposition of 
the problem.  First, a description of uncertainty about the world is needed.  Once a 
representation of this uncertainty exists, a method for deciding which experiments should 
be carried out must be developed.  Finally, once experimental results and a representation 
of uncertainty exist, a method for altering that uncertainty in light of the results needs to 
be developed. 

An important first step is to recognize that experimentation does not necessarily 
necessitate intervention.  Ideally, the system would learn as much as possible about the 
world regardless of the forces applied to the object.  The choice of forces could then be 
made a completely separate problem concerned only with maximizing the amount of 
available information.  In other words, a well designed learning subsystem will learn as 
much as possible given its observations regardless of whether the manipulator is actively 
carrying out a learning oriented manipulation, moving the object towards a goal pose, or 
simply watching the object without applying any forces.  For this reason, both in the 
implementation and in the development of our algorithms, there is a distinct separation 
between learning from experiments and choosing what experiments to carry out. 

Initially, a statistical representation for uncertainty was chosen, and the learning 
problem was approached using Bayesian inference.  However, as the physics of the 
problem were explored in greater detail it was discover that the uncertainty in this 
problem cannot be modeled by a single valued probability distribution function.  A new 
model of uncertainty based on finding bounds on a class of possible pdfs was developed 
that accommodates these difficulties in the physical model.  This new model of 
uncertainty changes the approach to choosing experiments as well.  A naïve, brute force 
planner augmented with behavioral heuristics was planned, but the change in uncertainty 
model propagated changes in this planning model as well. 

 
Physics 
 In order to carry out experiment on the object and evaluate their results, a 
description of the physical models describing the behavior of the object is required.  The 
motion of the rigid body is described by the familiar Newton-Euler equations 
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Where a is linear acceleration, m is the mass of the object, f is the force applied to object, 
α is the angular acceleration, I is the inertial tensor, and τ is the applied torque.  From 
this point on, force and torque will be combined into a 6x1 wrench vector as 
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as such, we can rewrite the Newton-Euler equations into the more compact form 
Maw =  

Where a is now a generalized acceleration in pose space.  If we know the wrench applied 
to the object and its acceleration, then the value of the mass matrix, which has six free 
dimensions, is observable.  In the simplest case of a particle floating in space the only 
source of applied wrench would be the manipulator.  If we observe the acceleration and 

know the force on such a particle, then the mass is trivially computed as 
a
f .  This simple 

case will be useful later in motivating the discussion of learning. 
In the actual system there are three possible sources for a wrench applied to the 

object.  These sources are the manipulator, gravity, and the work surface.  As such we 
can expand the description of the physics to 

Mawww gravitysurfacemanip =++  
Since the manipulation and gravity wrenches are easily found, our concern now is to 
investigate the nature of the surfacew  term in greater detail. 
 The wrench applied by the surface is due to both normal forces and friction forces.  
The normal force at any point on the object in contact with the work surface is ẑ)(xp  
where p(x) is the pressure applied to the surface at the point x.  This leaves the frictional 
load to be determined.  From the assumption of Coulomb friction and the maximum 
power law (Mason, 2001) we know that if the object is stationary 

)(xpf load µ≤  
where loadf  is the force applied to the surface by the object at x and µ  is the frictional 
coefficient.  Furthermore, if the object is in motion, then 
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Where v(x) is the velocity of the point x.  This second set of equations derives from the 
maximum power law, which indicates that the projection of the frictional load applied by 
a point onto the velocity of that point is the maximum projection over all possible loads 
described by Coulomb’s law.  Essentially, if we push a point in a particular direction, its 
frictional load is in that direction as well. 
 The problem we now face is that p(x) is indeterminate (Mason, 2001, pg 130).  
We know that the total contact pressure must be equal in magnitude to the normal force, 
and that the pressure at each point must be greater than or equal to zero.  Consider the 
wrench on the object due to contact at a particular point on the surface 
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Where CM is the location of the object’s center of mass.  The total wrench resulting from 
any possible pressure distribution over the contact surface is the convex hull of the 
wrenches resulting from concentrating all pressure at a single point on the contact surface.   
  This convex hull describes the set of possible contact wrenches which can be 
applied to the object and is the extent of the information we can have about the contact 
wrench under our assumed friction model. 
 We find that the structure of this convex hull corresponds to the type of motion 
the object is undergoing.  The easiest case to consider is the case where the object is 
sliding across the surface without rotation.  In this case )(ˆ xv  is constant for all x in the 
contact region.  Thus the force component of the wrench is known.  Since the torque 
resulting from pressure at a given point is the cross product of a constant term with a term 
which varies linearly in the location of that point in the plane, the set of possible torques 
will lie in a two dimensional linear subspace of wrench space.  This follows from the fact 
that 
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where u is a term used to linearly interpolate between q and r. 
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 The convex hull of the torques must therefore also lie in this same subspace.  
Furthermore, we can compute this convex hull directly by computing the torque resulting 
for concentrating pressure at each corner of the contact hull and taking the convex hull of 
those torques.  We know that all torques resulting from concentrating pressure at all 
points lie in this convex hull because of the linearity of the transform between contact 
space and torque space.  This same argument shows that any torque that can be produced 
by a continuous pressure distribution must also lie in this convex hull. 
 It is worth noting at this point that in the special cases where the contact hull is a 
line or point this argument still applies, but that the dimensionality of the torque space 
hull is reduced as well.  That is, if the contact region’s convex hull is a line segment then 
the possible torques lie in a one dimensional subspace, and if the contact with the work 
surface is a single point, then there is only a single possible torque.  More generally, if the 
dimension of the contact area is reduced by n dimensions, then the dimension of the 
wrench hull is reduced by n dimensions as well, regardless of the type of motion the 
object is undergoing. 
 In the case where the object is sliding and rotating at the same time the convex 
hull becomes more complex.  If we substitute )(xv  for )(ˆ xv  then the force becomes 
linear in x and the torque becomes quadratic in x, since x appears as a term on both sides 
of the cross product.  The forces then occupy a two dimensional subspace and the 
wrenches due to extremal pressure must lie on a two dimensional manifold embedded in 



wrench space but not necessarily in any particular lower dimensional subspace.  The 
wrench produced by maximum pressure at a point in the contact hull is 
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Where, for clarity, we have chosen the origin of the work surface to be the instantaneous 
center of rotation.  The convex hull of these wrenches over the contact hull has this 
manifold as an outer surface, since the second partials have constant negative sign.  The 
remaining surfaces of the convex hull could be analytically computed as well. 
 Since we have neglected to scale )(xv  by the inverse of its magnitude we must do 
so before drawing conclusions about the structure of the convex wrench hull for this 
motion case. To simplify this scaling we express the wrench equation with α  given in 
radial coordinates. 
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Note that this equation is linear in r and trigonometric terms of θ .  Despite this, we were 
unable to find the surfaces of the convex hull of these wrenches analytically.  However,  
we can approximate the convex wrench hull by taking linear combinations of the 
wrenches due full pressure at regularly spaced points on the boundary of the contact 
region and at the center of rotation.  The linear combination of these vectors, such that the 
total weighting equals 1 expresses an approximation of the convex hull of the possible 
contact wrenches. 
 The error introduced by this convex hull can be expressed in terms of the sample 

density.  We sample in radial coordinates, such that no sample point is more than 
r
γ2  

radians away from its neighbors, where r is the maximum distance between the center of 
rotation and the convex contact hull.  We sample points along the boundary of the contact 
region and at the center of rotation, if the center is inside the convex hull.  Using Taylor’s 
theorem we know that the approximation error at any point on the manifold the same 
radial distance from the origin as a sample point is less than 
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Any point not at the same radius as a sample point has error linearly proportional to 
points at the same angle that are on a sample radius, since the second partial with respect 
to radius is zero. 
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which can be re-arranged to form 
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We have already established an upper bound on the magnitude of the first term in this 
sum.  We can establish a bound on the second term by taking the partial with respect to θ  
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Therefore, the second term grows at a rate no greater than θr  and, since the theta 

distance between samples is proportional to 
r
1  the second term has a constant upper 

bound in terms of k andγ . 
 We have not, however, established a constant upper bound on the approximation 
error, since the upper bound on the first term goes to infinity as the radius goes to zero.  
To establish the upper bound we must introduce an additional stipulation to the sampling 
scheme.  Specifically, we sample points at 0=r such that the difference in θ  between 
any two points is less than some constant value.  Using the second partial of wrench with 



respect to θ  as computed above we can see that the error in the approximation grows at 
worst linearly in the θ  distance between sample points.  Since we have already 
established that the error in the second term of the approximation goes as θr  we need 
only establish an upper bound on the minimum distance to the first set of samples with 
non-zero radius to establish a constant upper bound on the error for the disk within this 
radius.  If we take this minimum radius to be k, then the global upper bound exists and 
can be expressed in terms of k and γ .  This assures us that a sampling based scheme for 
reconstructing the convex hull of possible wrenches will work well. 

The final, and most complex, case we consider is the case where the object is not 
moving.  In this case the maximum power law only establishes an inequality on the 
magnitude of the frictional load, but tells us nothing about its direction.  Here again 
constructing the convex hull is difficult analytically, and so we resort to an approximation 
scheme.  The sampling method is identical to the scheme used in the general motion case 
above, with an additional degree of freedom to accommodate the indeterminacy in load 
direction.  For each point at which we could choose to concentrate pressure we sample 
several possible values for the direction of the force at that point, maintaining some 
maximum distance between a point and its nearest neighbor in terms ofθ . 

Further investigation of this convex hull will be motivated once we begin to 
investigate the statistical aspects of the problem. 
  
Geometry 
 
 The geometry of the object is related to our description of the object’s motion, as 
the geometry describes the contact area from which we draw possible pressure 
distributions.  However, geometry is also related to the position of the object, in addition 
to its motion.  Specifically, when the manipulator makes contact with the objects surface, 
we know that the point of contact is a point on the surface of the object.  Additionally, the 
object cannot penetrate the work surface, so we know that it always lies in the half space 
above the surface.  Finally we should note that the convex hull of the object’s geometry 
can occupy the same set of poses with respect to the ground plane as the object itself. 
 
Statistical Inference 

 
We learn the properties of the object using Bayesian inference.  If we let b 

represent a distribution over the state space in which the object is defined, then we can 
describe the effect of an observation o on this distribution as )|( obp .  Bayes rule gives  

)(
)()|()|(

op
bpbopobp =  

We note that )(op  is constant over b, and might assume that given our current belief 
state and a method for computing the probability of any observation under that belief 
state we can correctly incorporate new observations into our belief about the parameters 
of the object.  However, as will become clear during the formulation of the particle filter, 
the indeterminacy in the physical model has important ramifications on the learning 
model as well. 



 In the single point of contact manipulation problem the observed values are the 
position of the object and the forces applied to it.  We treat these as independent 
observations and consider the computation of the Bayesian posterior after each type of 
observation. 
  
Representation 
 We represent the physical parameters of the object.  The parameters which we 
store are the location of the center of mass, the coefficient of friction with the work 
surface, the mass, and the inertial tensor.  Together these comprise 11 degrees of freedom. 
 We also represent the position, velocity, and acceleration of the object.  These 
comprise 18 degrees of freedom. 
 The geometry is represented by a set of unit vectors that form at least a basis for 

3R .  Typically, approximately 200 such vectors are used.  For each of these vectors we 
define two planes, one with the vector as its normal and a second with the vector scaled 
by -1 as it’s normal.  The planes are uniquely defined by an offset associated with each 
which represents the minimum distance between the origin and the plane.  We take the 
intersection of the interior half spaces of this set of planes to be the convex hull of the 
object.  As noted earlier, knowing only the convex hull of the object is enough to 
determine the convex hull of the area of the object in contact with the work surface, and 
to describe the set of possible poses for the object. 
 
Kalman Filter 
 The Kalman filter is an attractive first choice for the implementation of Bayesian 
inference.  The Kalman filter takes advantage of the fact that the posterior distribution 
resulting from an observation on a normally distributed belief distribution is another 
normally distributed belief distribution in the case that the observation is linear in state 
space and has error which can be modeled as Gaussian white noise.  This is, in essence, 
the multivariate case of the observation that the convolution of two Gaussians is a 
Gaussian. 
 Initially, when only the translation motion case had been considered, a method for 
using a Kalman filter based on a tensor valued normal distribution was considered.  It 
was hoped that this Kalman filter would be able to represent a distribution on the two 
dimensional wrench subspace and convolute that distribution with an observation.  
Unfortunately, this approach does not scale to the more general motion case, and more 
importantly, it can not represent the bounds on the uncertainty accurately, as it constrains 
only to the entire subspace. 
 Consider any recursive filter with a state space of fixed dimension.  Convoluting a 
continuous distribution on this space with the observed distributions on the convex 
wrench hull introduces two distinct regions in the state space.  Over time, these regions 
can overlap so as to produce an unboundedly large number of distinct regions.  The pdf in 
state space then cannot be represented with a fixed number of parameters, since 
information from every observation may still be extracted.  We must conclude that no 
recursive filter can perfectly represent the posterior distribution under our assumptions.  
 
Particle Filter 



The particle filter is a statistical filtering algorithm that attempts to approximate 
the Bayesian posterior using a finite set of discrete points.  We call each of these points a 
particle, and in a conventional particle filter associates some vector in state space and a 
probability mass with each particle.  Each time an observation occurs, the probability of 
each particle given that observation is computed, and the individual weights are 
renormalized.  Periodically, the particles undergo a resampling procedure which removes 
particles with very low probability and divides particles with higher probability into 
multiple particles.  Finally, in systems where both actions and observations occur, the 
particles are moved after each action according to a model of the uncertainty produced by 
that action. 

The value of a particle filter is that it can approximate arbitrary probability 
distributions.  However, because the filter approximates a continuous distribution with a 
finite set of points, the particles need to be sufficiently dense in order to capture the 
distribution.  Methods for adapting the number of samples over time exist (Fox; 2001), 
but are not addressed in this thesis. 

As mentioned earlier, computing the upper bound after an observation given only 
bounds on the possible forces introduces new, non-trivial elements to the particle filter’s 
update.  Consider the equation describing Bayesian inference 

)(
)()|()|(

op
bpbopobp =  

In a conventional particle filter the denominator on the right, p(o), is constant across 
every particle in the filter.  It’s value is easily computed as 

∑
∈particlesb

bpbop )()|(
1  

since the sum of the resulting probability mass is known to be one.  However, when we 
consider the case of bounded probabilities, this normalization term is not constant across 
all particles.  Furthermore, because the expected wrench is known only to within certain 
bounds, the resulting probability distribution cannot be known exactly either.  Instead we 
must maintain an upper and lower bound on the probability of each particle such that any 
distribution which satisfies these bounds is a possible distribution. 

Bounds on p(o|b) can be found by determining the wrench inside the wrench hull 
that maximizes or minimizes the value of the multivariate normal distribution associated 
with the observed wrench.  In the maximization case this becomes a quadratic 
programming problem where the covariance matrix of the observation’s distribution is 
used as the objective function.  We can use quadratic programming to optimize the non-
linear likelihood function because under the mapping of the covariance matrix there is a 
isotone, bijective mapping between distance and likelihood.  The minimization problem 
is simpler, since the distance is maximized for one of the vertices of the convex hull.  We 
need only test each wrench on a facet of the hull and select the one with maximum 
distance to the expected wrench. 
 In practice the convex hull optimization is made difficult by the fact that the 
wrenches often occupy subspaces of indeterminate dimension.  The implementation must 
first determine this subspace, then find a convex hull within this subspace, optimize 
within the subspace, then map the results back to full wrench space.  Furthermore, for 



reasons that are explained later in this section, the normal force is assumed to be one, so 
the optimization is done on the hull of w’ wrenches. 
 This ability to compute p(o|b), while sufficient in a conventional particle filter is 
not enough to compute new bounds on the probability of a given particle.  We wish to 
determine the upper bound on the probability of the particle under all possible 
distributions which satisfy the bounding condition.  Without loss of generality, we 
consider only the upper bound computation. 
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where both instances of p(o|b) must have the same value.  Furthermore, the value for the 
true normal force must be constant across the computation of the convex wrench hull for 
every particle.  This coupling of the normal force used in calculating the numerator and 
denominator follows from the fact that p(o) reflects the relative value of the observation 
over all possible true states.  The terms which are contained in the particles, like mass, 
are discretized and computed directly by the sum.  However, the normal force is a 
combination of particle and observation terms, and therefore has an associated 
distribution.  This means that a continuum of possible ground truths with differing 
likelihoods exists.  Coupling the normal force allows us to express the maximum 
likeyhood bound over all these possible states. 
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 A more intuitive interpretation of this equation would focus on the idea that the 
likelihood of a particle over all possible distributions is maximized at the point in state 
space where that particle is most likely in relation to every other particle.  That point is 
distinct from the point in state space where the probability observation is maximized 
given that particle. 
 Having established a mathematical definition of the new lower and upper bounds, 
the question of how to efficiently compute these bounds now remains.  As suggested in 
the previous equation, the convex hull optimization decouples from the rest of the bound 
search problem.  For any particular normal force the upper bound is maximized by taking 
the maximum likelihood of b and the minimum likelihood of every other particle.  
Because the normal force scales the wrench hull linearly we can perform the convex hull 
optimization on the fully bounded w’ hull, and then find the optimal value of the normal 
force in a second, decoupled, step.  Performing this convex hull optimization on each 
particle for its particular w’ hull results in a set of wrench vectors with normal forces of 
one. 
 Changing the normal force linearly scales these vectors.  The likelihood of a 
particular particle’s scaled wrench given an observation is expressed using the six 
dimensional multivariate normal distribution associated with that observation.  The 
marginal distribution of any line through this multivariate distribution is a scaled one 
dimensional normal distribution.  This observation allows us to reduce the optimization 



problem to optimizing a single variable in a relatively well structured space composed of 
normal distributions. 
 Specifically, we are trying to optimize the function 
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over all possible values of f.  Taking the derivative of this function we find that is has 
zeros when: 
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We also see that the number of zeros is bounded to twice the number of particles, and that 
only one zero can lie between adjacent means.  Thus, simple root finding applied to each 
interval will find a global maximum value in O(n) time, where n is the number of 
particles. 
 
Planning 
 Given a method for representing the uncertainty about the state of the object, and 
a method for computing a new belief based on a set of observations, the next goal was to 
develop a way to choose which actions to perform in order to learn about the object as 
quickly as possible.  If we had a conventional probability distribution over state space, 
the method we initially developed would be applicable. 
 This method is based on a set of pre-defined behaviors, which the planner selects 
between.  Each behavior has a small number of parameters, so the entire search space is 
composed on less than fifty possible choices for an action.  For each particle in the 
particle filter we could simulate the result of each behavior, collecting aggregate statistics 
for each behavior over the set of all particles.  Then, a planning decision could be made 
based on these statistics.  We considered using the volume of the ellipsoid corresponding 
to one standard deviation in the covariance matrix of the particle filter as a potential 
metric for learning. 
 Introducing the bounded particle filter makes computing these aggregate statistics 
more difficult.  Instead, only bounds on the weight of any simulated results can be found.  
Finding the possible distribution out of the set of possible distribution which maximizes 



or minimizes the expectation of some metric of learning is not difficult in this case.  We 
use an algorithm that assigns as much probability mass as possible to the particle with the 
lowest or highest value for the metric in question, then proceed to the next best particle 
and so on, until all the probability mass has been assigned. 
 This calculation gives bounds on the possible learning that could occur given a 
particular behavior.  It is unclear how the program should choose between possible 
behaviors in cases where the expected value of one behavior is not definitely better than 
the other.  It is temping to assume that the unknown information represented by the 
bounds is roughly uniform and select the action with the higher average or weighted 
average of its bounds.  However, because we have absolutely no information about the 
distribution within those bounds, this is not a justifiable approach and can lead to cases 
where the robot consistently chooses a behavior which learns very slowly because it has a 
particularly high upper bound. 
 This issue also arises in the design of behaviors, where we need to use 
information from the particle filter.  Currently only sliding and rolling behaviors are 
implemented, and these do not depend explicitly on knowledge of the object.  Instead 
they use silhouette images generated by a camera mounted on the simulated manipulator 
to choose rays along which to push the object.  However, it is unclear how more complex 
motion planning could be done.  One approach might be to compute bounds on the 
expectation of the true state of the object using linear programming, then use those 
bounds to generate a plan which produces the desired result for all objects falling within 
those bounds. 
  
Results 
 We have successfully implemented a dynamic simulation environment, the 
algorithm for computing optimal wrenches on w’ hulls, behavior based manipulation, and 
the ability to simulate particles under a given behavior.  We hope to complete work on 
the non-linear optimization step in the particle filter bounds computation shortly and 
show convergence of the particle filter in general cases.  Currently the software can 
accurately determine the geometry of the convex hull of an unknown object and in very 
limited cases the particle filter may begin to converge to approximate dynamics 
parameters.  However, because we currently do not couple the normal force in the bounds 
computation the computed bounds are much too large.  Since our current formulation will 
represent only those distributions which are possible under the observations and none of 
the distributions which are not possible, the results with that filter will indicate whether 
the approach we have taken is feasible. 
 
Conclusions and Future Work 
 The majority of our work is based on the indeterminacy of the contact pressure 
distribution.  While this had yielded interesting mathematical results and uncertainty 
representations, it may not be the correct assumption to build a working system on.  Most 
of our work is been a process of generalizing and refining the bounds that can be placed 
on different representations of the system.  We have believed, and continue to hope, that 
the failure to converge is a result of bounds which are not tight enough, rather than the 
information simply not being available.  Once the non-linear optimization in the particle 
filter is working we believe the only remaining reasons that the particle filter might not 



converge are insufficient sample density or insufficient assumptions in the physical 
model to obtain convergence.  With respect to this latter possibility, we observe that 
when humans manipulate objects they appear to assume that pressure distributions are 
generally uniform, or at least have some heuristic description of the pressure distribution.  
These assumptions are not without justification, since human hands, and to some degree 
most objects and surfaces, are compliant, pressure distributions should tend to be 
somewhat uniform. 
 Perhaps by adding a compliant surface assumption, such as working on a rubber 
mat instead of a rigid floor, better bounds could be obtained.  One easy way to test this 
idea would be to change the convex hull optimization constraints such that the weighting 
of any individual force is limited to some constant and the total weight is the inverse of 
that constant.  Of course, the constant would need to be scaled depending on the sampling 
density, but if behavior and convergence improved with this alteration it would suggest a 
promising avenue for further research.  Another approach to pressure indeterminacy is 
Lynch’s work (Lynch; 1993) on estimating friction is also a potential approach, in that it 
could be applied to each surface, and a model for the pressure distribution on each side of 
the object developed.  Integrating this approach with a changing geometric representation 
would not be a trivial problem. 
 That work does, however, lead to the idea of applying a similar approach to the 
end result of the learning.  Perhaps a second layer of learning applied to the un-modeled 
response of the system within the expectation bounds we compute could help to 
determine behaviors.  It would almost certainly avoid the failure cases where the system 
continually picks a bad behavior because of an attractive upper bound. 

With more analysis of the sampling error it will be possible to apply Rao-
Blackwellization to some of particle filter state space.  Those dimensions which have 
simply defined (like the normal force) or minimal (like total mass) effects on the w’ hull 
would be good candidates for this process.  This will reduce the number of particles 
needed to get a useful sampling density. 
 In the planning stage we need to find a way to select representative samples from 
the distribution rather than sampling every particle.  How to do this in a bounds-based 
particle filter is unclear, but could speed up execution by several orders of magnitude.  
Furthermore, the metric we use to measure learning may be a poor choice when the 
distribution is multimodal.  A more sophisticated metric, perhaps entropy, should be used 
to handle these cases. 
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