
1

1

Arrays Revisited

Arrays of object references

2

Arrays of Objects

  We can use arrays to hold a collection of
references to objects of the same type.
  Technically in Java, the types of the objects do not

have to be exactly the same, but for now, we'll
assume they are.

  Initially, when we declare an array of object
references, all cells of the array contain the
value null.

  Example:
 String[] month = new String[13];

3

Arrays of Objects

  Each cell of an array of object references can hold
one reference to an object.

  Example:
 month[1] = new String("January");
 month[2] = "February";

0 1 2 3 4 5 6 7 8 9 10 11 12
null null null null null null null null null null null

month

"January" "February"
We're not using cell 0

for convenience

4

Arrays of Objects

  Using the array name and subscript, we obtain a
reference. If the reference is not null, we can call a
method on the object that is referenced.

  Example:
 int j = month[1].length();
 char letter = month[2].charAt(0);

0 1 2 3 4 5 6 7 8 9 10 11 12
null null null null null null null null null null null

month

"January" "February"

5

NullPointerException

  Using the array name and subscript, we obtain a
reference. If the reference is null, we cannot call a
method on the object that is referenced.

  Example:
 System.out.println(month[0].charAt(3));

0 1 2 3 4 5 6 7 8 9 10 11 12
null null null null null null null null null null null

month

"January" "February"
month[0] is null here, so we
can't call a method if there is

no object referenced
6

Example

  Assume that all 12 month names are referenced
from our array month.
  Remember: we're not using cell 0 this time.

  To print out all of the month names in the format:
 Jan 
Feb 
Mar 
...etc... 

 for (int i = 1; i <= 12; i++)
System.out.println( 

 month[i].substring(0,3));

2

7

Jai Alai

8

Official Jai Alai Rules

  Usually 8 teams participate. Teams line up in
order 1,2,3,4,5,6,7,8.

  Team 1 plays team 2. The winner earns 1 point
and stays on the court to play the next team in
line; the loser goes to the end of the line.

  After all teams have played once, point values
double for each match.

  The first team to reach 7 points (sometimes 9) is
the winner of the game.

9

A class to model a Jai Alai Team

public class Team {
private int teamNumber;
private int teamScore;
public Team(int number) {
teamNumber = number;
teamScore = 0;
}
public int getTeamNumber() {
return teamNumber;
}
public int getTeamScore() {
return teamScore;
}

10

A class to model a Jai Alai Team
(cont'd)

public void addPoints(int numPoints) {
if (numPoints >= 1) {
 teamScore += numPoints;
}
}
public String toString() {
return ("Team " + teamNumber + ": "  

 + teamScore);
}

}

11

Jai Alai:
Initializing the array

final int NUM_TEAMS = 6;
Team[] teamList  

 = new Team[NUM_TEAMS+1];

for (int position = 1;  
position <= NUM_TEAMS; position++)

{
teamList[position] = new Team(position);
}

create a new Team with a number
equal to its position in the array

We're not using cell 0
for convenience again

We'll use just 6 teams
here for now.

12

Jai Alai:
Initializing the array

0 1 2 3 4 5 6
null

teamList

teamNumber 1
teamScore 0

2
0

3
0

4
0

5
0

6
0

3

13

Jai Alai:
Playing a match

  The teams in the first two positions (positions 1 & 2) play
each other.
  Note: This isn't necessarily Teams 1 & 2, except at the beginning

of the Jai Alai game.

  We wish to store the winner of the match in position 1
and the loser in position 2 of the array.

14

Jai Alai:
Moving the winner into position 1

  If the winner was the team in position 1, we have no
work to do.

  If the winner is the team in position 2:

 Team temp = teamList[2];
 teamList[2] = teamList[1];
 teamList[1] = temp;

This is called
a SWAP.

15

Jai Alai:
Swapping two teams

0 1 2 3 4 5 6
null

teamList

teamNumber 1
teamScore 0

2
0

3
0

4
0

5
0

6
0

Team temp = teamList[2];
temp

16

Jai Alai:
Swapping two teams

0 1 2 3 4 5 6
null

teamList

teamNumber 1
teamScore 0

2
0

3
0

4
0

5
0

6
0

teamList[2] = teamList[1];
temp

17

Jai Alai:
Swapping two teams

0 1 2 3 4 5 6
null

teamList

teamNumber 1
teamScore 0

2
0

3
0

4
0

5
0

6
0

teamList[1] = temp;
temp

18

Jai Alai:
Swapping two teams

0 1 2 3 4 5 6
null

teamList

teamNumber 1
teamScore 0

2
0

3
0

4
0

5
0

6
0

Actually, the objects never move;
it's the references that change...

4

19

Jai Alai:
Swapping two teams

0 1 2 3 4 5 6
null

teamList

teamNumber 2
teamScore 0

1
0

3
0

4
0

5
0

6
0

...but we can untwist
the references to

make it easier to see.

20

Jai Alai:
Moving the loser to the end

  The loser (who must be in position 2 now) must move to
the end of the line.

  We must shift all other teams "forward" one position
(toward the "beginning" of the array) and then reinsert
the loser in the last cell of the array.

21

Jai Alai:
Moving the loser to the end

loser = teamList[2];
// shift waiting teams to the left one position 

for (int position = 3;  
position <= NUM_TEAMS; position++)

{
teamList[position-1] = teamList[position];

}

// insert loser of match at end of waiting line
teamList[NUM_TEAMS] = loser;

22

Jai Alai:
Moving the loser to the end

loser = teamList[2];

0 1 2 3 4 5 6
null

teamList

teamNumber 1
teamScore 1

2
0

3
0

4
0

5
0

6
0

loser

We'll assume
team 1 was
the winner

of the match.

23

Jai Alai:
Moving the loser to the end

for (int position = 3; position <= NUM_TEAMS; position++)
 teamList[position-1] = teamList[position];

0 1 2 3 4 5 6
null

teamList

teamNumber 1
teamScore 1

2
0

3
0

4
0

5
0

6
0

loser position = 3

24

Jai Alai:
Moving the loser to the end

for (int position = 3; position <= NUM_TEAMS; position++)
 teamList[position-1] = teamList[position];

0 1 2 3 4 5 6
null

teamList

teamNumber 1
teamScore 1

2
0

3
0

4
0

5
0

6
0

loser position = 4

5

25

Jai Alai:
Moving the loser to the end

for (int position = 3; position <= NUM_TEAMS; position++)
 teamList[position-1] = teamList[position];

0 1 2 3 4 5 6
null

teamList

teamNumber 1
teamScore 1

2
0

3
0

4
0

5
0

6
0

loser position = 5

26

Jai Alai:
Moving the loser to the end

for (int position = 3; position <= NUM_TEAMS; position++)
 teamList[position-1] = teamList[position];

0 1 2 3 4 5 6
null

teamList

teamNumber 1
teamScore 1

2
0

3
0

4
0

5
0

6
0

loser position = 6

27

Jai Alai:
Moving the loser to the end

teamList[NUM_TEAMS] = loser;

0 1 2 3 4 5 6
null

teamList

teamNumber 1
teamScore 1

2
0

3
0

4
0

5
0

6
0

loser

28

Jai Alai:
Moving the loser to the end

OR (untwist the references):

0 1 2 3 4 5 6
null

teamList

teamNumber 1
teamScore 1

2
0

3
0

4
0

5
0

6
0

Although the references appeared to be moving right,
we're actually shifting objects to the left (with respect to the array).

29

Shifting data in an array

  If you want to shift data values to the "left" one position
(toward the beginning of the array):
  Work from left to right.
  Copy from each position to position-1.

for (int position = 3; position <= 6; position++)
 teamList[position-1] = teamList[position];

  Question: What should you do if you want to shift data to
the "right" one position (toward the end of the array)?

from to

30

What's next...

  Given an array of references to objects:

  Insert a new object reference into the array at various positions
based on some criteria.

  Remove the reference of an object from the array given some
criteria.

  Count the number of objects referenced in the array that match
some criteria.

  Create a new array with object references from the original array
with only those objects that meet some criteria.

