

 1

1

Additional
Programming Concepts

Exceptions

2

Exceptions

 When an error occurs during runtime that
occurs due to some exceptional event, an
exception occurs.

 In Java, an exception is an object that
contains information about the runtime
condition that has occurred.

 Normally, exceptions will cause your
program to terminate unless they are caught
and handled with special code.

3

Exceptions we've seen

ArithmeticException
NumberFormatException
StringIndexOutOfBoundsException
ArrayIndexOutOfBoundsException
NullPointerException
IOException

4

Handling exceptions

 Exceptions don't have to crash our
programs!

 We can do two things when an exception
is caught:
 Catch the exception and run a sequence of

instructions to "handle" the error in some way.
 Throw the exception back to the method that

called this method and let it deal with the
exception.

5

Catching an exception

 To catch an exception, we determine which
instruction(s) can cause an exception.

 We then enclose the instruction(s) in a try block.
 The try block is followed immediately by a
catch block with code to execute if the exception
occurs.

 If the exception occurs during execution of the
try block, control moves immediately to the
catch block for that exception.

 If the exception does not occur, the catch block
is not executed.

6

Example
do {

System.out.println("Please input your age:");
userInput = scan.nextLine();
age = Integer.parseInt(userInput);
if (age < 0)

System.out.println("ERROR: Invalid input.");
} while (age < 0);

If the user inputs anything other than a valid int,
Integer.parseInt will throw the
NumberFormatException and the program
will crash.

assume userInput
is a String variable

 2

7

Example Revised
do {

System.out.println("Please input your age:");
userInput = scan.nextLine();
try {

age = Integer.parseInt(userInput);
}
catch (NumberFormatException e) {

age = -1;
}
if (age < 0)

System.out.println("ERROR: Invalid input.");
} while (age < 0);

e is a reference to the exception;
we could call methods on e to
find out more about the exception

8

Another Example
public static double findAverageMileage(Car[][] lot)
{

 int sum = 0;
 int numCars = 0;
 for (int row = 0; row < lot.length; row++)
 for (int col = 0; col < lot[row].length; col++)

 if (lot[row][col] != null) {
 sum += lot[row][col].getMileage();

numCars++;
 }

 double result = (double)sum/numCars;
 return answer;

}

this statement
can throw an
exception

9

Using try/catch
public static double findAverageMileage(Car[][] lot)
{
 // calculation of sum and numCars not shown here
 ...
 double result;

try {
 result = (double)sum/numCars;

 }
 catch (ArithmeticException e) {
 result = 0.0;

}
return result;

}

replacement
for statement
from previous
example

10

A better way
public static double findAverageMileage(Car[][] lot)
{
 // calculation of sum and numCars not shown
 double result;

if (numCars != 0)
result = (double)sum/numCars;

else
result = 0.0;

return result;
}

Use exception handling only
for those runtime cases that
you can't correct yourself
without the program crashing.

11

Throwing an exception back

public static int countLines
(String filename) throws IOException

{
Scanner fileScan = new Scanner(

new File(fileName));
...

If the input file is not found, an IOException
is thrown by the File constructor. Instead of
catching the exception, this method throws
it back to whatever method called it. The calling
method must either catch the exception or
throw the exception as well toits caller, etc.

12

Using throws vs. try/catch

 An exception may occur in some method due to
illegal data passed to it by its caller.

 So this method won't catch the exception itself.
 Instead, it will use throws to throw it back to the

caller to catch it.
 Example: When parseInt detects an error, it doesn't

deal with it itself; it throws the exception back to us.
 Determining which method is responsible for

dealing with an exception is part of software
design and engineering.

 3

13

Different kinds of exceptions

 In Java there are two kinds of exceptions:
 Checked - these exceptions must either be caught or

thrown to a calling method
 Examples: IOException

InterruptedException
 Unchecked - these exceptions are not required to be

caught or thrown to a calling method
 Examples: NullPointerException

ArrayIndexOutOfBoundsException
NumberFormatException

14

Exceptions and the Java API

 In order to determine if you must explicitly catch an
exception/throw it to your method's caller or not, you can
look at the Java API.

 If you call a method that can throw an exception, and this
exception is not RunTimeException nor one of its
subclasses, then you must either catch this checked
exception or throw it to your method's caller.

 If you call a method that can throw an unchecked
exception, it is up to you whether you will deal with it or
not. (e.g. Integer.parseInt does not require an
explicity try/catch or throws statement)

