
1

1

Object-Oriented
Programming

Inheritance

2

Inheritance

  In object-oriented programs, we use
inheritance as one way to reuse program
code.

  In Java, if class B extends class A, then B
inherits (receives) all methods and fields
from A.
  Class B does not have to redefine these fields or

methods.
  Class A is called the superclass (or parent class).
  Class B is called the subclass (or child class).

3

Example

Which class is the superclass and
which class is the subclass?

Vehicle Car

Apple Fruit

Square Rectangle

4

Inheritance (cont'd)
class B extends class A
  If the inherited variables or methods of A

are public, these are accessible by
instances of B (or users of these
instances).

  If the inherited variables or methods of A
are private, these are not directly
accessible by instances of B (or users of
these instances).

5

Inheritance (cont'd)

  In addition to the methods inherited by the
superclass, the subclass can define its own
fields and methods.

  These fields and methods are defined for
the subclass but not for the superclass.

6

All classes are related

  Every class in Java inherits from another class, either
explicitly (using extends) or implicitly.

  Example:
 public class Taxi extends Car { ... }

  Classes that do not explicitly inherit from another
class inherit from the Java class Object.

  Example:
public class Car extends Object { ... }

2

7

Object

  Object is the direct or indirect superclass of all
classes in Java
  except which one?

  Two methods inherited from Object:
  public boolean equals(Object obj)
  public String toString()

  Even if you don't write an equals or toString
method for your class, your class has these
methods since they are inherited from Object.

8

Inheriting from Object

  public boolean equals(Object obj)
  Returns true if this object and the object in the

parameter reference the same single object in
computer memory.

  public String toString()
  Returns a string that contains the name of the

class followed by an @ symbol followed by the
hexadecimal representation of the hash code
of the object.

DO WE REALLY WANT TO INHERIT THESE?

9

Overriding methods

  A subclass can redefine inherited methods if the
inherited method doesn't do exactly what the
subclass needs.

  To override an inherited method, the subclass'
method must use the exact same signature as the
inherited method that is being overridden.

  If an inherited method is overridden, the user of
the subclass cannot access the overridden
method any longer.

Don't confuse overriding with overloading!
10

Object (superclass)
public String toString()
{ 

}

Overriding toString

Car (subclass)
public String toString()
{
return "Make = " + make + ", Mileage = " +
mileage;

}

A program that creates a Car instance cannot access
Object's toString method directly if Car overrides it.

11

What's wrong?

public String tostring()
{
return "Make = " + make +  

", Mileage = " + mileage;
}

12

Writing equals (the old way)

  Two cars are equal if and only if they have the same
mileage and the same make.

public boolean equals(Car otherCar)
{
return
 this.mileage == otherCar.mileage
 && this.make.equals(otherCar.make);
} But this method doesn't override the inherited equals

method from Object (not the same signature)!

3

13

Overriding equals (correctly)

  Override by using the same signature as in Object.

public boolean equals(Object obj)
{
Car otherCar = (Car)obj;
return (this.mileage == otherCar.mileage
 && this.make.equals(otherCar.make);
} Use typecasting to tell the compiler

that the object really is a Car.

equals method in Object
requires an Object parameter

14

Overriding equals (incorrectly)

public boolean equals(Object obj)
{
return (this.mileage == obj.mileage

 && this.make.equals(obj.make);
}

The Object class does not have
a mileage or a make field.

15

Inheritance in the Java API

  Look at the Java API for the class Vector.

16

What's an abstract class?
  An abstract class cannot be instantiated

(constructed using a constructor).
  It usually contains one or more abstract methods (methods

that have a signature but no implementation).
  Subclasses of abstract classes must provide an

implementation for all inherited abstract methods by
overriding the abstract methods.

  Example: Suppose an abstract class named
Vehicle has Car, Truck, and Motorcycle as
subclasses.
  By defining the drive method as abstract, we leave it to

the subclasses to define it, but all three classes must use the
same signature (so all 3 vehicles drive "the same way").

17

Summary

  All classes in Java are related through
inheritance.
  We explicitly inherit from another class by using

 the keyword extends when we define the class.
  We implicitly inherit from the class Object if we do not

explicitly indicate a superclass.
  Although a class inherits from another class, we

cannot access private variables or methods
directly from the subclass.

  We can use the principle of overriding to redefine
inherited methods.

