
1

1

Object-Oriented
Programming

Interfaces

2

Interfaces

  In object-oriented programs using Java, we use
interfaces to specify a set of behaviors that a
number of object classes should have in common.

  In Java, if class B implements interface A, then B
must provide implementations of all method
signatures given in A.

  Interface A does not contain any instance
variables.

  Interface A only contains signatures of methods
that must be implemented.

3

Example: Comparable

public interface Comparable

{

int compareTo(Object obj);

}

This interface specifies one method
that must be implemented by each
class that implements Comparable.
(All signatures are public.)

4

More about interfaces

  Java uses interfaces to provide a consistent way
of presenting common behavior amongst classes
that are of different types.

  Every class that implements the interface must
allow its users to call the implemented methods in
the same way, regardless of the class.

5

The Comparable interface

int compareTo(Object obj)

  Compares this object with the specified object [given as

the parameter] for order. Returns a negative integer,
zero, or a positive integer as this object is less than,
equal to, or greater than the specified object.

  The String class implements Comparable

  Therefore, it must have a compareTo method with the

signature given above.
  The implementation should also follow the description above, but

the compiler can't check this explicitly.

6

The String class revisited

Look at the Java API for String.
  implements Comparable
  has the following method:
public int compareTo(Object obj)

 Compares this string with the given object (assuming
it is a string) lexicographically.
 Returns 0 if this string is lexicographically equal to the
given string.
 Returns a value less than 0 if this string is
lexicographically less than the given string.
 Otherwise returns a value greater than 0.

2

7

Lexicographical ordering

Similar to alphabetical ordering, except we include
digits and other punctuation.

General lexicographic rule of thumb:
  digits come before uppercase letters
  uppercase letters come before lowercase letters
  Example: Lexicographic ordering

  01234
  012DE
  ABCDE
  ABcDe
  abcde

If strings only have letters
(upper- or lower-case, not both)
and possibly spaces,
lexicographical ordering
reduces to alphabetical ordering.

8

Using compareTo with strings

public String getFirstCity(String[] cityArray)

{

// find first city alphabetically in array

int firstCity = cityArray[0];

for (int i=1; i<cityArray.length; i++) {

if (cityArray[i].compareTo(firstCity) <
0)

 firstCity = cityArray[i];

}

return firstCity;

}

9

Example: Date

  A (calendar) date consists of
  month - an integer between 1 and 12, inclusive
  day - an integer between 1 and 31, inclusive
  year - an integer

  Suppose Date is defined as follows:
public class Date implements Comparable {

...

}

  The compiler will force us to write a compareTo method

to satisfy the interface definition.

10

compareTo for Date

public class Date implements Comparable

{

public int compareTo(Object obj)

{

Date other = (Date) obj;

if (this.year != other.year)

 return this.year - other.year;

else if (this.month != other.month)

 return this.month - other.month;

else

 return this.day - other.day;

}

11

equals for Date

public boolean equals(Object obj)

{

return (this.compareTo(obj) == 0);

}

// other methods not shown

} // end Date class

12

Selection Sort Algorithm

  Traverse the array for the minimum value.
  Swap this value with the value in cell 0.
  Traverse the array again (starting from cell 1) for the

minimum value.
  Swap this value with the value in cell 1.
  Traverse the array again (starting from cell 2) for the

minimum value.
  Swap this value with the value in cell 2.
  Continue this process until the array is completely

sorted.

3

13

Selection Sort Algorithm

23 97 81 62 18 Find min
18 97 81 62 23 Swap
18 97 81 62 23 Find min
18 23 81 62 97 Swap
18 23 81 62 97 Find min
18 23 62 81 97 Swap
18 23 62 81 97 Find min
18 23 62 81 97 Swap

 Done (why?)

14

Selection Sort Algorithm
on an array of int

public static void selectionSort(int[] list) {

int minPos;

int temp;

for (int index = 0; index < list.length-1; index++)

{

minPos = index;

for (int pos = index+1; pos < list.length; pos++)

if (list[pos] < list[minPos])

minPos = pos;

temp = list[minPos];

list[minPos] = list[index];

list[index] = temp;

}

}

15

Selection Sort Algorithm
on an array of String

public static void selectionSort(String[] list) {

int minPos;

String temp;

for (int index = 0; index < list.length-1; index++)

{

minPos = index;

for (int pos = index+1; pos < list.length; pos++)

if (list[pos].compareTo(list[minPos]) < 0)

minPos = pos;

temp = list[minPos];

list[minPos] = list[index];

list[index] = temp;

}

}
 16

Selection Sort Algorithm
on an array of Date

public static void selectionSort(Date[] list) {

int minPos;

Date temp;

for (int index = 0; index < list.length-1; index++)

{

minPos = index;

for (int pos = index+1; pos < list.length; pos++)

if (list[pos].compareTo(list[minPos]) < 0)

minPos = pos;

temp = list[minPos];

list[minPos] = list[index];

list[index] = temp;

}

}

17

Selection Sort Algorithm
on an array of objects that are Comparable

public static void selectionSort(Comparable[] list) {

int minPos;

Comparable temp;

for (int index = 0; index < list.length-1; index++)

{

minPos = index;

for (int pos = index+1; pos < list.length; pos++)

if (list[pos].compareTo(list[minPos]) < 0)

minPos = pos;

temp = list[minPos];

list[minPos] = list[index];

list[index] = temp;

}

}

This is a
polymorphic
reference.

18

Binary Search Algorithm

  Start with an array that is already sorted in non-
decreasing order.

  Start with the middle value.
  If this is the data value we're looking for (known as the

"target"), we're done.
  Otherwise, determine which half of the array the

target could be in.
  Find the middle value of that half.
  Repeat this process until we either find the target or

we end up with no data values left to search.

4

19

Binary Search Algorithm
Searching for 62

18 23 62 81 97 Find middle
18 23 62 81 97 Target found

 at position 2

20

Binary Search Algorithm
Searching for 97

18 23 62 81 97 Find middle
18 23 62 81 97 Not the target
18 23 62 81 97 Find middle
18 23 62 81 97 Not the target
18 23 62 81 97 Find middle
18 23 62 81 97 Target found

 at position 4 When you have an even number of data values,
choose the value just to the left of the "middle".

21

Binary Search Algorithm
Searching for 15

18 23 62 81 97 Find middle
18 23 62 81 97 Not the target
18 23 62 81 97 Find middle
18 23 62 81 97 Not the target

 Target not found

22

Binary Search Algorithm
on a sorted array of int

public static int binarySearch(int[] list, int target)

{

int min = 0, max = list.length-1, mid = 0;

boolean found = false;

while (!found && min <= max) {

mid = (min + max) / 2; // (integer division!)

if (list[mid] == target)

found = true;

else if (target < list[mid])

max = mid-1;

else
min = mid+1;

}

if (found) return mid;

else return -1;

}

23

Binary Search Algorithm
on a sorted array of String

public static int binarySearch(String[] list, String target)

{

int min = 0, max = list.length-1, mid = 0;

boolean found = false;

while (!found && min <= max) {

mid = (min + max) / 2; // (integer division!)

if (target.compareTo(list[mid]) == 0)

found = true;

else if (target.compareTo(list[mid]) < 0)

max = mid-1;

else
min = mid+1;

}

if (found) return mid;

else return -1;

}

can also use
target.equals(list[mid])

24

Binary Search Algorithm
on a sorted array of Date

public static int binarySearch(Date[] list, Date target)

{

int min = 0, max = list.length-1, mid = 0;

boolean found = false;

while (!found && min <= max) {

mid = (min + max) / 2; // (integer division!)

if (target.compareTo(list[mid]) == 0)

found = true;

else if (target.compareTo(list[mid]) < 0)

max = mid-1;

else
min = mid+1;

}

if (found) return mid;

else return -1;

}

5

25

Binary Search Algorithm
on a sorted array of Comparable objects

public static int binarySearch(Comparable[] list,  
Comparable target)

{

int min = 0, max = list.length-1, mid = 0;

boolean found = false;

while (!found && min <= max) {

mid = (min + max) / 2; // (integer division!)

if (target.compareTo(list[mid]) == 0)

found = true;

else if (target.compareTo(list[mid]) < 0)

max = mid-1;

else
min = mid+1;

}

if (found) return mid;

else return -1;

}
 26

Summary

  We can use interfaces to specify common behavior
amongst various classes.
  Example: All classes that implement Comparable must

provide a compareTo method that works in a similar way.
  Interfaces also allow us to write more generic

methods that can work on a whole class of objects.
  Polymorphism is an object-oriented principle where a

single reference variable can refer to different types of
objects at different points in time during the program
execution.

