
1

1

Introduction to
Computer Programming

The process of programming

2

Parts of the computer

http://depts.washington.edu/sacg/services/
workshops/networking/trouble_mac/img/
motherboard.gif

3

Computer Instructions
  Computer programs are made up of individual

instructions that are stored in RAM in binary
format (machine code)
  e.g. 01001010 00001111

 "add to" "register 15"
  Instructions may also require data to execute

  e.g. Add 100 to register 15
 01001010 00001111
 00000000 01100100 (10010 in binary)

4

Computer Instructions

  Each byte has an associated memory
address.
 Address Contents

 200 01001010
 201 00001111
 202 00000000
 203 01100100
 204 01011011
 205 01100101

one computer instruction

another instruction

5

Executing a Program

  To execute a program, we just have to "tell"
the CPU which address has the first
instruction, and it goes from there.
  The operating system (Windows, MacOS) has an

application called a loader that loads a program into
memory so that the CPU can execute it.

  How do we know what binary values make up
a program we want the computer to execute?
  This is where programming languages like Java come in!

6

Programming Languages

  High-level programming languages allow us
to write programs so that they are readable to
us.

  A compiler is a program that translates our
high-level language program to machine
language for execution on a computer.

  Some high-level languages:
C++ C Fortran Java Ada

2

7

Typical Compilation
z = x + y;

Compiler translates this instruction to the machine code:
10010101 01100001 (load x into reg 1)
10100110 11010001 (add y to reg 1)
10111100 01010001 (store reg 1 into z)

Problem: These machine instructions only work for the
specific CPU for which the compiler is designed.

Assignment statement in a high-level language

8

Java Compilation
z = x + y;

Compiler translates this instruction to a "virtual"
machine code called "byte codes":

0001 1010 (iload_0)
1010 1011 (iload_1)
0110 0000 (iadd)
0011 1101 (istore_2)

9

Java Execution
 The byte codes then can be executed by using a Java
interpreter (JVM - Java virtual machine) that
translates each byte code to the machine code for the
specific CPU on which the program is to be executed.

 Now the Java bytecodes can be run on ANY
computer as long as the computer has an interpreter.

Java
Program

compiler bytecodes interpreter machine
code

10

Goals of the Course

  Learn the syntax of the Java language
  Syntax refers to the rules of the language

(punctuation, naming variables, valid structure of
statements, etc.)

  Learn how to put sequences of instructions
together to form programs that solve useful
problems.
  Also, learn how to "debug" your programs when

they don't do what you thought they would do!

11

Types of Programming Errors

  Syntax errors
  Writing a statement that doesn't follow the rules of

the programming language.
  Example: x + y z =;
  A compiler cannot translate statements with syntax

errors into machine code (or bytecodes).
  Therefore, you cannot run a program with syntax errors

in it.

12

Types of Programming Errors

  Logical Errors
  Writing a statement that follows the rules of the

language but doesn't do what you intend.
  Example: z = x * 2;
(You meant to write z = x + 2;)

  Compiler can translate this instruction into binary,
so program can be executed.
  But z will get the wrong answer during execution.

 ...except when?

3

13

Types of Programming Errors

  Runtime Errors
  Writing a statement that follows the rules of the

language but causes a program failure during
execution.

  Example: z = x / y;
  Compiler can translate this instruction into binary,

so program can be executed.
  But what happens if y stores the value 0 as this

instruction is executed?

14

Your mission, if you choose to accept it...

  Write computer programs that contain none of these
errors!

  Knowing this skill will benefit you, no matter what
discipline you're in!

