

 1

1

Methods

Creating Computational
Abstractions

2

How methods work

 A method is a block of program code that can be
called from other parts of your program.

 Methods may require arguments when they are
executed to provide data for the method to use.

 Methods may return a computed result back to the
program statement that calls the method.

 Example method signatures from the String API:
 int length()
 char charAt(int position)
 String substring(int beginIndex, int endIndex)

3

About methods

 Every Java program starts execution with the main
method.

 The main method can call other methods to do part
of the work of the program.
 These methods can be part of other classes.
and
 These methods can be part of the class containing main.

 Static vs. non-static methods
 Methods called on objects are non-static.
 Methods called directly without creating objects are static.

4

Writing static methods

public static return-type method-name (parameter-list)

parameter-list
 A list of variables (and their data types) to hold data

that is passed to the method when it is called.
 This list can be empty.
return-type

 A data type indicating the type of the data that is
returned back to the instruction that calls this method.

 If no data is returned back, use void.

5

Example

public static void displayQuestion()
{
System.out.println

("What food does Homer like?");
}

6

Another Example

public static void displayScores
(int score1, int score2)

{
System.out.println("***************");
System.out.println("Player 1: "+ score1);
System.out.println("Player 2 :"+ score2);
System.out.println("***************");

}

 2

7

Calling These Methods

public static void main(String[] args) {
// examples
displayQuestion();
System.out.println("DONUTS!");
displayScores(10, 3);
int value = 12;
displayScores(value, value+4);

}
8

return statement

return value ;
 Returns the indicated value to the instruction that

called this method.
 The value can be a variable or an expression.
 The data type of the indicated value must match the

return type indicated in the signature of the method.
 If a return statement is executed, control passes

back to the calling method immediately. (Any
remaining instructions in this method are not
executed.)

9

Example

public static int computeSum(int n) {
// computes and returns the sum of
// 1 + 2 + ... + n assuming n > 0
int sum = n * (n+1) / 2;
return sum;

}

parameter

a variable declared
in a method is
called a local
variable
(its scope is only
the method where
it is declared)

10

Calling computeSum

public static void main(String[] args) {
System.out.println("1+2+3+4+5+6+7 = ");
System.out.println(computeSum(7));

}

argument
static method computeSum
goes here, after main

11

How it works

7 n

main
System.out.println(
 computeSum(7))

computeSum
public static int
 computeSum(int n)

7

return sum1+2+...+7 =
28

12

Another example

public static double computeAvgGrade
(int total, int numGrades)

{
if (numGrades <= 0)

return -1.0;
return (double)total/numGrades;

}

parameters

 3

13

Calling computeAvgGrade
(from another method in the same class, like main)

System.out.println(
"Input sum of all scores: ");

int sum = scan.nextInt();
System.out.println(
"Input number of scores: ");

int count = scan.nextInt();
double average =

computeAvgGrade(sum, count);
System.out.println(average);

arguments

14

How it works

15100sum

200count

75.5average

200

total

numGrades

main
average =
computeAvgGrade(sum,count)

computeAvgGrade
public static double
 computeAvgGrade(int total,
 int numGrades)

15100

return
(double)total/numGrades

15

Exercise 1

public static int findMax(int x, int y) {
// returns the maximum of x and y

}
16

Exercise 2

Write a code fragment that asks the user for two integers and
outputs the maximum of the two integers using the method
you just wrote in the previous exercise.

Scanner scan = new Scanner(System.in);
System.out.println("Input first number");
int num1 = scan.nextInt();
System.out.println("Input second number");
int num2 = scan.nextInt();
System.out.println("The maximum is " +

______________________________________);

17

Calling non-void methods

 If you call a method that has a non-void return type,
you should indicate in your instruction what you will
do with the returned data.
 Print it out.

System.out.println(computeSum(n));

 Store the result in a variable for later use.
average =
 computeAvgGrade(total, numGrades);

18

Calling void methods

 If you call a method that has a void return type, you
must call this method by itself as an instruction - not
embedded in another operation.
 Correct:

displayQuestion();
displayScores(15, 100);

 Incorrect:
System.out.print(displayQuestion());
total = displayScores(15, 100);

 4

19

Overloading

 Methods can have the same name but
different parameter lists (number of
parameters, types of parameters)

 The compiler can figure out which method
you are calling based on how many and the
types of the arguments that you supply when
you call the overloaded method.

 Example: substring in String

20

Overloading Example

public static int computeSum(int x, int y)
{
// returns x+(x+1)+...+y assuming y > x
// and x > 0 and y > 0
int sum1 = y * (y+1) / 2; // 1+...+y
int sum2 = (x-1) * x / 2; // 1+...+(x-1)
return sum1 - sum2 ;

}

21

Another Way

public static int computeSum(int x, int y)
{
// returns x+(x+1)+...+y assuming y > x
// and x > 0 and y > 0
int sum1 = computeSum(y); // 1+...+y
int sum2 = computeSum(x-1);// 1+...+(x-1)
return sum1 - sum2 ;

}

22

Calling computeSum

public static void main(String[] args)
{
System.out.println("1+2+3+4+5+6+7 = ");
System.out.println(computeSum(7));
System.out.println("5+6+7+8+9+10 = ");
System.out.println(computeSum(5,10));

}

23

Overloading ambiguity

public static int compute(int x, int y)
{
....

}
public static int compute(int a, int b)
{
....

}

compiler sees these as the
same parameter list (2 ints)
- SYNTAX ERROR

