

 1

1

Text Files

Additional ways to
use Scanner

2

Text Files vs. Binary Files

 Text files store data as a sequence of binary
character codes.
 Text files can be read by standard editors.
 TXT, HTML, PS, JAVA

 Binary files store data in a raw format where the
binary data is not treated as characters.
 Images: GIF, JPG, BMP
 Audio: MP3, WAV
 Video: MOV, AVI
 Documents: DOC, WP, PDF, XLS

3

Text Files in Java

 Reading from a text file is similar to reading
from the keyboard.

Scanner scan =

new Scanner(new File(nameOfFile));
System.out.println("Reading from file...");
String fileInput = scan.nextLine();

4

Text Files in Java

 Writing to a text file is similar to displaying to
the screen.

PrintWriter outfile = new PrintWriter(
new FileWriter(nameOfFile));

System.out.println("Writing to file...");

outfile.print(outputText);
outfile.println(outputText);
outfile.close();

5

IOException

 Opening up a text file for reading can cause
an IOException to be thrown if the file
cannot be found.

 Opening up a text file for writing can cause
an IOException to be thrown if there is a
problem with the file system so a file cannot
be created (out of space, etc.)

 More about exceptions later this semester.

6

Initialization
public static void main(String[] args)
throws IOException {

 Scanner scan = new Scanner(
 new File("data.txt"));
 PrintWriter outfile = new PrintWriter(

 new FileWriter("results.txt");

// YOUR CODE GOES HERE
 }
}

REQUIRED IMPORTS:
import java.util.*;

import java.io.*;

 2

7

Example: Line Numbering

public static void main(String[] args)
throws IOException {

 Scanner scan = new Scanner(
new File("data.txt"));

PrintWriter outfile = new PrintWriter(
new FileWriter("results.txt"));

String fileInput;
int lineNum = 0;

8

Example: Line Numbering
(cont'd)

while (scan.hasNextLine()) {
fileInput = scan.nextLine();
lineNum++;
outfile.println(lineNum + ": " +

 fileInput);
}
outfile.close();

}
}

9

Example:
Initializing an array from a text file

8
19
53
25
77
34
-67
153
2

first entry indicates the number of data values
in the file (not including this value)

data.txt

10

Example:
Initializing an array from a text file

public static void main(String[] args)
throws IOException {

 Scanner scan = new Scanner(
new File("data.txt"));

 int numValues = scan.nextInt();
int[] dataArray = new int[numValues];
for (int i = 0; i < numValues; i++)

dataArray[i] = scan.nextInt();
...

11

Using Scanner in other ways

 Goal: We wish to add up all of the numbers
listed in a file, but the file may have more
than one number per line.
 No arrays are used here.

 We can use one Scanner to read from the
file.

 We can use another Scanner to take each
line we read from the file and extract each
number on that line one by one.

12

Example:
A more complex text file

48 23 53
19 13
53 932 324 53
25 12 -133 4245 472
77
9 156 34

(first entry does NOT indicates the number of
data values in the file!!!)

nums.txt

define one
Scanner
to read

each line
from the file

one at a time

define another
Scanner
to read
each integer
from the line,
one at a time

 3

13

Using Scanner in other ways
public static void main(String[] args)

throws IOException {
 Scanner filescan = new Scanner(new File("nums.txt"));

 int sum = 0;
 while (filescan.hasNextLine()) {

 String line = filescan.nextLine();
 Scanner linescan = new Scanner(line);
 while (linescan.hasNextInt()) {

 sum += linescan.nextInt();
 }
 }
 System.out.println("Total = " + sum);
}

