
Performance of Inverted Indices in Shared�Nothing Distributed

Text Document Information Retrieval Systems
Published in PDIS ���

Anthony Tomasic Hector Garcia�Molina

Department of Computer Science Department of Computer Science

Princeton University Stanford University

Princeton� NJ ����� Stanford� CA �����

tomasic�cs	stanford	edu hector�cs	stanford	edu

Abstract

The performance of distributed text document re�
trieval systems is strongly in�uenced by the organization
of the inverted index� This paper compares the perfor�
mance impact on query processing of various physical
organizations for inverted lists� We present a new prob�
abilistic model of the database and queries� Simulation
experiments determine which variables most strongly in�
�uence response time and throughput� This leads to a
set of design trade�o�s over a range of hardware con�g�
urations and new parallel query processing strategies�

� Introduction

Full text databases of newspaper articles� journals�
legal documents etc� are readily available� These
databases are rapidly increasing in size as the cost of
digital storage drops� as more source documents are
available in electronic form� and as optical character
recognition becomes commonplace� At the same time�
there is a rapid increase in the number of users and
queries submitted to such text retrieval systems� One
reason is that more users have computers� modems�
and communication networks available to reach the
databases� Another is that as the volume of electronic
data grows� it becomes more and more important to
have e�ective search capabilities� as provided by infor�
mation retrieval systems�

As the data volume and query processing loads in�
crease� companies that provide information retrieval
services are turning to distributed and parallel storage
and searching� The goal of this paper is to study parallel
query processing and various distributed index organi�
zations for information retrieval�

To motivate the issues that will be addressed� let
us start with a simple example� The left hand side of
Figure � shows four sample documents� D�� D�� D�� D��
that could be stored in an information retrieval system�

d � d 


BUS �

CPU �

d � d �

BUS 


CPU �

LAN

a b

a b a

a b
c d

D� D


D� D�

Figure �� A example set of four documents and an ex�
ample hardware con	guration�

Each document contains a set of words 
the text�� and
each of these words 
maybe with a few exceptions� will
be used to index the document� In Figure �� the words
in our documents are shown within the document box�
e�g�� document D� contains words a and b� 
Of course�
in practice documents will be signi	cantly larger and
will contain many more words��

To 	nd documents quickly� full text retrieval systems
traditionally build inverted lists �
� on disk� For exam�
ple� the inverted list for word b would be b� 
D�����

D����� 
D����� Each pair in the list indicates an oc�
currence of the word 
document id� position�� 
Position
can be word position or byte o�set�� To 	nd documents
containing word b� the system only needs to retrieve
this list� To 	nd documents containing both a and b�
the system could retrieve the lists for a and b and inter�
sect them� The position information is used to answer
queries involving distances� e�g�� 	nd documents where
a and b occur within so many positions of each other�

Next suppose that we wish to store the inverted lists
on a multiprocessor like the one shown in Figure � 
on
right�� This system has two processors 
CPUs�� each
with a disk controller and I�O bus� 
Each CPU has its



Index Disk Inverted Lists

Disk d � a� �D�� ��� b� �D�� 	�
d 	 a� �D	� ��
d 
 a� �D
� ��� b� �D
� 	�
d � a� �D�� ��� b� �D�� 	��

c� �D�� 
�� d� �D�� ��

Host� I�O bus d � a� �D�� ��� �D	� ��
d 	 b� �D�� 	�
d 
 a� �D
� ��� �D�� ���

c� �D�� 
�
d � b� �D
� 	�� �D�� 	��

d� �D�� ��
System d � a� �D�� ��� �D	� ��� �D
� ���

�D�� ��
d 	 b� �D�� 	�� �D
� 	�� �D�� 	�
d 
 c� �D�� 
�
d � d� �D�� ��

Table �� The various inverted index organizations for
Figure �� Inverted lists are word� �Document� O�set��

own local memory�� Each bus has two disks on it� The
CPUs are connected by a local area network� Table �
shows three options for storing the lists�

In the system index organization� the full lists are
spread evenly across all the disks in the system� For
example� the inverted list of word b discussed earlier
happened to be placed on disk d�� With the disk index
organization� the documents are logically partitioned
into four sets� one for each disk� In our example� we
assume document D� is assigned to disk d�� D� to d��
and so on� In each partition� we build inverted lists for
the documents that reside there� Notice that to now
answer the query �Find all documents with word b� we
have to retrieve and merge � lists� one from each disk�

Since disk d� contains no documents with word b� its
b list is empty��

In the host index organization� documents are par�
titioned into two groups� one for each CPU� Here we
assume that documents D�� D� are assigned to CPU
�� and D�� D� to CPU �� Within each partition we
again build inverted lists� The lists are then uniformly
dispersed among the disk attached to the CPU� For ex�
ample� for CPU �� the list for a is on d�� the list for b
is on d�� and so on�

Query processing under each index organization is
di�erent� For example� consider the query �Find docu�
ments with words a� c�� and say the query initially ar�
rives at CPU �� Under the system index organization�
CPU � would have to fetch the list for a� while CPU �
would fetch the c list� CPU � would send its list to CPU
�� which would then intersect the lists� With the host
index organization� each CPU would 	nd the matching
documents within its partition� Thus� CPU � would get

its a and c lists and intersect them� CPU � would do
likewise� CPU � would sent its resulting document list
to CPU �� which would then merge the results� With
the disk index organization� CPU � would retrieve the
a and c lists o� disk d�� and would also retrieve the a�
c lists from disk d�� CPU � would obtain two lists of
matching documents 
one for each disk�� merge them�
and would then merge them with the list from CPU ��

There are many interesting trade�o�s among these
storage organizations� With the system index organi�
zation� there are fewer I�Os� the a list is stored in a
single place on disk� To read it� the CPU can initiate
a single I�O� the disk head moves to the location� and
the list is read in 
this may involve the transfer of mul�
tiple blocks�� In the disk index organization� however�
the a list is actually stored on four di�erent disks� To
read these list fragments� � I�Os must be initiated� four
heads must move� and four transfers take place� How�
ever� each of the transfers is roughly a fourth of the size�
and they may take place in parallel� So� even though
we are consuming more resources 
more CPU cycles to
start more I�Os� and more disk seeks�� the list may be
read into memory faster�

The system index organization may save disk re�
sources� but it consumes more resources at the network
level� In our example� the entire c list is transferred
from CPU � to CPU �� and we can expect these in�
verted lists to be much longer than the document lists
exchanged under the other schemes� However� the long
inverted list transfers do not occur in all cases� For
example� the query �Find documents with a and b�

system index organization� does not involve any such
transfers since all lists involved are within one com�
puter� Also� it is possible to reduce the size of the
transmitted inverted lists by moving the shortest list�
In our �Find documents with a and c� example� we can
move the shorter list of a and c to the other host�

Thus� the performance of each strategy will depend
on many factors� including the expected type of queries�
the optimizations used for each query processing algo�
rithm� whether throughput or response time is the goal�
the resources available 
e�g�� how fast is the network�
how fast are disk seeks�� In this paper we will study
these issues� discussing the options for index organi�
zation and parallel query processing� We also present
results of detailed simulations� and attempt to answer
some of the key performance questions� Under what
conditions are each index organization better� How
does each index organization scale up to large systems

more documents� more processors�� What is the im�
pact of key parameters� For instance� how would a
system with optical disks function�

In Section � we describe our hardware scenario and
query processing algorithms in more detail� To study
performance we need to model various key components
such as the inverted lists� the queries� and the answer
sets� Although there has been a lot of work done on



information retrieval systems� to our knowledge such
models� appropriate for studying parallel query execu�
tion� have not been developed� In Section � we de	ne
simple models for these and other critical components�
In Section � we describe the simulation� while in Sec�
tion � we present our results and comparisons�

� De�nitions and Framework

Documents contain words� The set of all words oc�
curring in the database is the vocabulary� For conve�
nience� we name words by their occurrence rank� e�g��
word � is the most frequently occurring word� word �
is the next most frequent� and so on� 
In the example
of Figure �� the vocabulary is fa� b� c� dg� word � is a�
word � is b� etc�� We use the word and the rank of the
word interchangeably�

A query retrieves documents satisfying a given prop�
erty� In this paper� we concentrate on �boolean and�
queries of the form a � b � c � � �� Such queries 	nd the
documents containing all the listed words� The words
appearing in a query are termed keywords� Given a
query a� b � � � the document retrieval system generates
the answer set of the document identi	ers of all the doc�
uments which match the query� A match is a document
which contains the words appearing in the query�

We focus on boolean�and queries because they are
the most primitive ones� For instance� a more com�
plex search property such as 
a � b� OR 
c � d� can be
modeled as two simple and�queries whose answer sets
are merged� A distance query �Find a and b occurring
within x positions� can be modeled by the query a � b
followed by additional CPU processing that compares
the positions of the occurrences�

��� Hardware Con�guration

We consider hardware organizations like the one in
Figure � but we vary the number of CPUs or hosts� the
number of I�O controllers per host� and the number of
disks per controller� Table � lists the parameters that
determine a con	guration� The column �Value� in the
table refers to the �base case� used in our simulation
experiments 
Section ��� That is� our experiments start
from a representative con	guration� and from there� we
explore the impact of changing the values� The base
case does not represent any particular real system� it is
simply a convenient starting place�

��� Physical Index Organization

The inverted index can be partitioned and frag�
mented in many ways� We study a single natural di�
vision by hardware� This division does not require
any unusual hardware or operating system features�
The documents reside in a uniformly distributed man�
ner across all disks d in the system 
d � Hosts �

Parameter Value Description

Hosts � Number of Hosts
I�OBusesPerHost � Controllers and

I�O Buses per Host
DisksPerI�OBus 
 Disks per I�O bus

Table �� Hardware con	guration parameter values and
de	nitions�

I�OBusesPerHost �DisksPerI�OBus�� Let the disks
be numbered from � to d� � as in Figure ��

The inverted index organization is compared for four
mutually exclusive cases� In the disk index organiza�
tion� an inverted index is constructed for all words in
the documents residing on each disk� Thus� for a given
word� there are d inverted lists containing that word

if a given word does not appear in any documents on
a disk� then that list is empty�� In the I	O bus index
organization� an inverted index is constructed for all
the documents on the disks attached to the same I�O
bus� In the host index organization� an index is con�
structed for all the documents on a single host� Lists
are distributed by host in a similar manner� Finally�
in the system index organization a single index is con�
structed for all documents� Table � shown earlier illus�
trated these index organizations� but note that in that
example the I�O bus and host index organizations are
identical because hosts have a single I�O bus� Note that
regardless of the index organizations the same amount
of data is stored in the system and for any query the
same amount of data is read from disk�

In any of the organizations� if an index spans x disks�
we assume the lists are dispersed over the x disks� In
particular� the list for word w is placed on the disk
i�
w mod x�� where i is the 	rst disk in the group� For
example� for the host index organization in Table �� one
of the indices spans disks d�� d�� the second spans d��
d�� For the second index� the list for a 
word �� goes
to d�� the list for b 
word �� goes to d�� the list for c

word �� goes to d�� and so on�

��� Algorithms

For all con	gurations except the system one� queries
are processed as follows� The query a � b��� is initially
processed at a home site� That site issues subqueries to
all hosts� each subquery contains the same keywords as
the original query� A subquery is processed by a host by
reading into memory all the lists involved� intersecting
them� producing a list of matching documents� The
answer set of a subquery� termed the partial answer
set� is sent to the home host� which concatenates all the
partial answer sets to produce the answer to the query�

In the system index organization� the subquery sent
to a given host contains only the keywords that are han�



dled by that host� If a host receives a query with a single
keyword� it fetches the corresponding inverted list and
returns it to the home host� If the subquery contains
multiple keywords� the host intersects the correspond�
ing lists� and sends the result as the partial answer set�
The home host intersects 
instead of concatenates� the
partial answer sets to obtain the 	nal answer�

As mentioned in Section �� the algorithm we have
described for the system index organization can be im�
proved� Here we describe three optimizations� called
Prefetch I� II and III� Note that these are heuristics� in
some cases they may not actually improve performance�

In the Prefetch I algorithm� the home host deter�
mines the query keyword k that has the shortest in�
verted list� 
We assume that hosts have information
on keyword frequencies� if not� Prefetch I is not appli�
cable�� In Phase �� the home host sends a single sub�
query containing k to the host that handles k� When
the home host receives the partial answer set� it starts
phase �� which is the same as in the un�optimized algo�
rithm� except that the partial answer set is attached to
all subqueries� Before a host returns its partial answer
set� it intersects it with the partial answer set of the
phase � subquery� This signi	cantly reduces the size of
all partial answer sets that are returned in phase ��

The Prefetch II algorithm is similar to Prefetch I�
except that in phase � we send out the subquery with
the largest number of keywords� We expect that as the
number of keywords in a subquery increases� its partial
answer set will decrease in size� Thus� the amount of
data returned by the one host that processes the phase
� subquery should be small� If there is a tie 
two or
more subqueries have the same number maximum of
keywords�� Prefetch II selects one of them at random�

Prefetch III combines the I and II optimizations�
That is� the 	rst subquery contains the largest num�
ber of keywords� but if there is a tie� the subquery with
the shortest expected inverted lists is selected� Intu�
itively� one would expect Prefetch III to perform the
best� However� we chose to study all three techniques

Section �� to understand what each optimization con�
tributes� Keep in mind that Prefetch I and III require
statistical information on inverted list sizes� Our results
will tell us if it is worthwhile keeping such information�
i�e�� if the improvement of Prefetch III over II 
which
does not require this information� is signi	cant�

To illustrate these optimizations� consider the query
a�b�c�d in the example of Figure � 
system index or�
ganization�� With Prefetch I� the subquery d would be
sent to host CPU � in phase �� 
Of the four keywords�
d occurs less frequently in the database� and it is stored
in host CPU ��� In phase �� the subquery a�b would be
sent to CPU �� together with the list for d from phase
�� CPU � would receive the query c together with the
d list� With Prefetch II� the 	rst subquery would be
either a � b 
to CPU �� or c � d 
to CPU ��� selected
at random� Prefetch III would select c � d as the 	rst

subquery because it involves shorter lists�

��� Related Work

For full text retrieval systems� inverted lists are typ�
ically used� Compression of inverted lists is actively
studied ��
� ��� However� much work has been done on
other alternatives� such as signature schemes ����

In ���� Burkowski examines the performance prob�
lem of the interaction between query processing and
document retrieval and studies the issue of the physical
organization of documents and indices� His paper sim�
ulates a collection of servers on a local area network�
as we do� Our work is complementary to this paper
in that we concentrate on physical index organization�
In ����� and independently from our work� the issue of
partitioning by document vs� paritioning by keyword is
studied for share�everything multiprocessors� The pa�
per con	rms the results presented here�

The work on document retrieval in multiprocessor
systems 
e�g� ��� �� ���� is also related to this paper in
that physical index organization issues need to be ad�
dressed for those architectures� While some issues for
these systems are not considered here� we believe that
the issue of physical organization is an important one
and that the prefetch algorithms presented in this pa�
per probably perform well on multiprocessor architec�
tures� Finally� in the debate on the relative advantages
of parallel computers ���� ��� ��� and in other articles
���� ��� ��� various benchmark 	gures are given� How�
ever no systematic comparison has been done�

� Models

There are two choices for representing documents
and queries in a simulation study� One is to use a
real document base and an actual query trace� The
second is to generate synthetic databases and queries�
from probability distributions that are based on actual
statistics� Using a particular database and query trace
is more realistic� but limits one to a particular applica�
tion and domain� Using synthetic data gives one more
�exibility for studying a wide range of scenarios� Here
we follow the synthetic data approach� as we feel it is
more appropriate for a 	rst study that explores options
and tradeo�s� rather than predicts the performance of
a particular document application�

��� Document Model

For the model of a document we 	rst de	ne several
parameters in Table �� The database consists of a col�
lection of D documents� Conceptually� each document
is generated by a sequence of W independent and iden�
tically distributed trials� Each trial produces one word
from the vocabulary V � Each word is uniquely repre�
sented by an integer w in the range � � w � T where



1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1 10 100 1000 10000 100000

n
u
m
b
e
r
 
o
f
 
o
c
c
u
r
r
e
n
c
e
s
 
o
f
 
a
 
w
o
r
d

rank of words in order by number of occurrences

occurrences
linear

quadratic

Figure �� Curve 	t to vocabulary occurrence data�

Parameter Value Description
D 

�

� the number of documents
W 	
��� words per document
V set of words appearing in

documents �the vocabulary�
T 	�	��

 total words in V� j V j� T
Z�j� Z�j� Pr�word � j�� a probability

distribution

Table �� Parameters of the document model�

T �j V j� The probability distribution Z describes the
probability that any word appears� For convenience�
the distribution is arranged in non�increasing order of
probability i�e� Z
w� � Z
w � i�� �i � �� The �Value�
column in Table � again represents our base case sce�
nario� In this case� the values are from a legal document
base described in ����

To construct a speci	c probability distribution Z of
Z� a curve is 	t to the rank�occurrence distribution of
the vocabulary of the legal documents database ��� and
then normalized to a probability distribution� Figure �
shows the log�log graph of two curves which have been
	t to some of the ���� ��� most frequently occurring
words� The X axis is the distinct words in the database�
ranked by the number of occurrences in non�increasing
order� The Y axis is the number of occurrences of each
word� A diamond symbol marks the number of occur�
rences of a word� The curve labeled �linear� is the
result of 	tting a linear equation and the curve labeled
�quadratic� is the 	t of a quadratic equation�

Given the quadratic 	t curve� the form of the prob�
ability distribution Z is derived in ��� as

Z
j� �
j����������ln j���������e�������

�����
�� ���

��

where the denominator is a normalization constant�

Parameter Value Description

K � number of words per query
Q�j� Q�j� Pr�word � j�� a

probability distribution
u 	� fraction of T �in rank order

of V � appearing in a query
V � the u fraction of V

S V �K set of possible queries�
S � V � � � � � � V �

Table �� Parameters for the query model�


Although our distribution is similar to Zipf�s ����� ours
matches the actual distribution better��

��� Query Model

A query is a sequence of words 
w�� � � � � wK� gen�
erated from K independent and identically distributed
trials from the probability distribution Q
j�� Thus� the
occurrence of the words are mutually independent� Ta�
ble � is a list of the parameters and base values chosen�

We now construct a speci	c probability distribution
Q� There is little published data on this distribution�
and there is no agreement on its shape 
however� see
��� for a di�erent model�� It does not follow the same
distribution as the vocabulary 
Figure ��� as relatively
infrequent words are often used in queries� In light of
this� the uniform distribution was chosen for Q� i�e� ev�
ery word appears in a query with equal probability� The
distribution allows easy comprehension of the impact
of the distribution on performance� However� we found
that the uniform distribution across the entire vocabu�
lary gave far too much weight to the most infrequently
occurring words 
the tail of Figure ��� For example�
these tail words are often misspellings that only appear
once in the entire database and never appear in queries�
Thus� in the Q distribution we cut o� the most infre�
quent words� For this we introduce a parameter u to
determine the range of the uniform distribution� giving
Q the equation

Q
k� �

�
�
uT

� � k � uT
� otherwise

As u decreases� the probability of choosing a word of
low rank in a query increases� Words of low rank occur
often in the database� Thus the expected number of
documents to match a query increases since each word
of the query occurs often in the database� Hence� if u
is too small� queries will probabilistically have answer
sets which are a large fraction of the database� On
the other hand� if u is too large� answer sets will be
unrealistically small� To estimate a good value for u�
in ��� we compute the expected number of documents



which match a query of length K for various values of
u� In Section � the response time sensitivity to uT of
the various index organizations is discussed�

��� Answer Set Model

At various points in the simulation we will need to
know the expected size of a query answer set or partial
answer set� Consider a particular query 
or subquery�
with keywords w�� � � � � wK � Say this query is executed
on a body of documents of size Docs� Note that un�
der the system index organization� Docs � D 
D is the
total number of documents�� However� for the other or�
ganizations� Docs is the number of documents covered
by the index 
or indexes� used by the particular sub�
query� Given this� the expected number of documents
which match the query is

Docs � ��� e�WZ	w�
� � � � ��� e�WZ	wK 
�� 
��


The term ��� e�WZ	w�
� is the probability that a doc�
ument contains keyword w���

��� Inverted List Model

To access an inverted list for a given vocabulary
word� we assume that a memory resident data struc�
ture is searched� The size of the data structure will
vary with each index organization� but in all cases is
small compared to the size of the inverted lists�

An inverted list contains a sequence of elements each
of which describes a single appearance of the word�
Each element contains a document identi	er and a word
o�set of the word in the document� Thus� the inverted
index is essentially a one�to�one mapping to the doc�
uments 
except for the white space and punctuation
which is ignored when the document is added to the
inverted index��

The expected number of occurrences of a word in a
document is Z
w� �W � The expected number of entries
of the corresponding inverted list is Z
w� � W � Docs
where Z
w� is the value of Equation � for the word w�
W is the number of words per document� and Docs is
the number of documents spanned by the index�

� Simulation

To study the index organizations and query algo�
rithms� we implemented a detailed event�driven sim�
ulation using the DeNet ���� simulation environment�
For details of the simulation� see ����

The parameters controlling the hardware organiza�
tion are listed in Table �� The values for the disk and
I�O bus portions of this table are from ����

In our simulation� we do not generate a synthetic
document base a priori� Instead� when we require the
length of the inverted list for a word w� we use the

Parameter Value Description

DiskBandwidth 	��� Mbits�sec Bandwidth
DiskBuff �
�
� Size of a disk bu�er
BlockSize �	
 Bytes per disk block
SeekTime 
�� ms of each seek
BufferOverhead ��� ms to seek one track
I�OBusOverhead ��� ms for I�O transfer
I�OBusBandwidth 
��� Mbits�sec Bandwidth
LANOverhead ��	 ms for LAN transfer
LANBandwidth 	��� Mbits�sec Bandwidth

Table �� Hardware parameter values and de	nitions�

expected length of the list� The length of an inverted list
is a function of the expect number of occurrences of the
word� the bits need for an entry� the compression factor�
and the block size 
see Table ��� This model assumes
that the blocks of the inverted list are contiguous ����

The length of a the answer set� in bytes� is deter�
mined by multiplying Equation � by the length of an
element of an inverted lists� AnswerEntry�

The relative weight of all CPU parameters is con�
trolled by the single parameter CPUSpeed� Thus� the
rate of the CPU can be varied independently of individ�
ual factors contributing to various CPU requests� Each
query consists of query start up� subquery start up� disk
fetches� uncompression and merge of inverted lists� and
the union of the subquery answer sets�

A disk services fetch requests from a CPU and sends
the results to an I�O bus� Since one disk fetch corre�
sponds to the read of one invert list� each fetch request
has a length determined by InvertedList
w�� The disk
service time for a request is determined by four factors�
the constant seek time overhead� the track�to�track seek
time and overhead to load the disk bu�er� the transfer
time o� of the disk� and the I�O bus contention time�
The overlap of the disk loading its track bu�er and the
transfer of data to the I�O bus is also simulated�

Subquery requests have a length determined by pa�
rameter SubQueryLength and any additional answer
set appended to the query 
as is the case with the
prefetch algorithms�� Subquery requests have variable
length and consume a signi	cant fraction of the local
area network bandwidth when partial answer sets are
transmitted� A request with identical source and des�
tination is not transmitted through the local area net�
work� Note that for simplicity� broadcast messages are
not modeled and thus the query algorithms do not use
this feature�

A query� consisting of a set of words� is issued to
a host� The parameter Multiprogram determines the
number of simultaneous queries per host in the simula�
tion� The host processes the query accounting for query
start up� subquery transmission� waiting for subqueries
to 	nish� and merging the results of subqueries�



Parameter Value Description

CPUSpeed 	 Relative speed of CPU
Multiprogram � Number simultaneous

queries per Host
QueryInstr ����� Query start CPU cost
SubqueryInstr 	���� Subquery CPU cost
SubqueryLength 	�
� Base size of subquery

message
FetchInstr ���� Disk fetch CPU cost
MergeInstr 	� Merge CPU cost�byte

�decompressed list�
UnionInstr 	 Concatenation CPU

cost�byte answer set
Decompress 	� Decompression CPU

cost per byte of list
AnswerEntry � Bytes per entry

in an answer set
EntrySize 	� Bits per entry of

list on disk
Compress ��� Compression Ratio

Table �� Base case parameter values and de	nitions�

Subqueries are transmitted to hosts by inserting the
subquery in the LAN queue� When a subquery arrives
at a host� it is processed accounting for the subquery
startup� the fetch requests to disks� waiting for the disks
to 	nish� the intersection of the fetched inverted lists�
and transmission of the answer set of the subquery back
to the query� The answer is transmitted to the host cpu
by inserting it in the LAN queue�

� Simulation Results

Table � presents the data collected from a simula�
tion run on the base case of values 
Tables � � ��� The
simulation runs are at a con	dence level of 
�� at ���
The metrics of query processing response time� the er�
ror in response time 

�� con	dence interval�� query
throughput� disk� I�O bus� CPU and LAN utilization
were monitored for every simulation experiment�

The table reveals that the disk� I�O bus� and host in�
dex organizations have comparable performance� Of the
three� the disk organization performs somewhat worse
because it has the highest disk utilization� leading to
longer I�O delays� The I�O bus index organization
has the best response time and throughput in this case�
However� note that the host organization has the most
balanced use of resources� and as we will see� this leads
to better performance under more stressful scenarios�

The system index organization� as well as the
prefetch optimizations� perform poorly in the base case
scenario� The main reason why this index organization

without prefetch� does so poorly is that it saturates

Index
Disk I�O Host Sys I II III


a� ���� ���� ���� ���� ��

 ���� ����

b� ���� ���� ���� ���� ���� ���� ����

c� ���� 
��� ���� ���� ���� ���� ����

d� ���� ���� ���� ���� ���� ���� ����

e� ���� ���� ���� ���� ���� ���� ����

f� ���� ���� �
�� ���� ���� ���� ����

g� ���� �
�
 ���� 
��� �
�� ���� 
���

Table �� Results of all metrics for the base case simu�
lation experiment 
I is Prefetch I� II is Prefetch II and
III is Prefetch III�� Labels are 
a� query response time

sec�� 
b� response time error 
sec�� 
c� query through�
put 
query�sec�� 
d� disk utilization 
��� 
e� I�O bus
utilization 
��� 
f� CPU utilization 
��� 
g� LAN uti�
lization 
���

0

2000

4000

6000

8000

10000

12000

5000 10000 15000 20000 25000 30000 35000 40000

q
u
e
r
y
 
r
e
s
p
o
n
s
e
 
t
i
m
e
 
(
m
s
)

maximum keyword rank

disk
I/O bus

host
system

prefetch I

Figure �� The sensitivity of response time to the maxi�
mum query keyword rank�

the LAN by transmitting many long inverted lists� The
prefetch organizations reduce the amount of data sent
over the LAN 
see Section ����� and indeed we observe
that the LAN utilization is much lower in these cases

see Table ��� Thus� the prefetch strategies perform
substantially better than the system index organization�

However� the prefetch strategies still perform sub�
stantially worse than the disk� I�O bus� and host orga�
nizations� The main reason is that there is less paral�
lelism in the prefetch strategies than in the others� The
	rst phase of the prefetch requires waiting for one part
of the query to be completed� Furthermore� since lists
are not split across disks� it takes longer to read them�
These delays lead to lower throughputs in our closed
system model� That is� in our model� each computer
runs a 	xed number of queries� If they take longer to
complete� less work is done overall� The main advan�
tage of the prefetch strategies is that less work is done
per query 
i�e�� fewer disk seeks� I�O starts�� However�



0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100

q
u
e
r
y
 
r
e
s
p
o
n
s
e
 
t
i
m
e
 
(
m
s
)

disk seek time (ms)

disk
I/O bus

host
system

prefetch I
prefetch II
prefetch III

Figure �� The sensitivity of response time to seek time�

in this scenario� these resources are not at a premium�
so the advantages of prefetch do not show�

To our surprise� prefetch II and III actually preform
worse than prefetch I 
see Table ��� In Section ��� we
argued that prefetch II and III would reduce the amount
of data sent over the LAN� This is true as evidenced
by the LAN utilization� However� with hindsight� we
now see that the additional work done in phase one
of prefetch II and III is preformed sequentially with
respect to the rest of the processing of the query� leading
to longer response times� Thus� only in cases where the
LAN is a bottleneck would prefetch II and III pay o��
In the rest of our graphs this is not the case� so to avoid
clutter we will only show the prefetch I results�

We now study how some of the key parameters af�
fect the relative preformance of the index organizations�

We only report on the more interesting results� many
more experiments were performed than what can be
reported here�� We start by showing in Figure � the
sensitivity of response time to the value of uT � Recall
that T is the size of the vocabulary and u is the fraction
of the vocabulary which can appear in a query� Each
line graphs the behavior of a di�erent index organiza�
tion� The line labeled prefetch is the prefetch I process�
ing algorithm with a system index organization� The
response times for each index organization decrease as
uT increases because the number of word occurrences
in the database for an average query word decreases�
That is� as uT decreases� the inverted lists that have to
be read increase in size� The disk and I�O bus orga�
nizations are relatively insensitive to uT because they
stripe lists across many disks� i�e�� the list fragments
that need to be read grow at a slower rate� The system
and prefetch curves are more sensitive to uT because
inverted lists are read whole� The curve for the host or�
ganization is an intermediate case� Although not shown
here� the e�ect of uT on throughput is similar�

A graph of the response time of the various con	g�
urations vs� the seek time of a disk in Figure � shows

0

5

10

15

20

0 5 10 15 20 25 30 35

t
h
r
o
u
g
h
p
u
t
 
(
q
u
e
r
i
e
s
 
p
r
o
c
e
s
s
e
d
/
s
e
c
)

multiprogramming level (per host)

disk
I/O bus

host
system

prefetch I

Figure �� The e�ect of the load level�

that the disk and I�O bus index organizations are most
sensitive to the seek time of the storage device� This
is because the disk index organization must retrieve for
each query more inverted lists than any other organi�
zation� This same overhead is incurred by the I�O bus
index organization to a lesser extent� The host index
organization is very insensitive to seek time since only
a few inverted lists must be retrieved per query�

Figure � indicates some potential for the host and
prefetch index organizations if the storage devices are
relatively slow 
e�g� optical disks or a jukebox�� It is
important to note that our disk seek time parameter
captures not only the seek time but also other 	xed
I�O costs� For example� to get to the head of the in�
verted list� the system may have to go through a B�tree
or other data structure� These additional I�O costs are
modeled in our case by the �seek time�� Furthermore�
we are assuming that inverted lists 
or fragments� are
read with a single I�O� For longer lists there may be sev�
eral I�Os in practice� and hence multiple seeks� Thus�
the higher seeks times shown in Figure � may occur in
practice even without optical devices� In these cases�
the disk and I�O organizations may not be advisable�

Figure � shows the e�ect of the load level on through�
put for the various index organizations� As the load
level rises� various bottlenecks in each index organiza�
tion occur� Other collected data shows that the disk
index organization has a disk utilization rate of �����
for a multiprogramming level of �� The I�O bus index
organization has a disk utilization of ����� for a multi�
programming level of � which rises to ����� at a mul�
tiprogramming level of �� The host index organization
has low disk and CPU utilization at a multiprogram�
ming level of � 
about ����� and ����� respectively�
and thus has more spare resources to consume as the
multiprogramming level rises� At a multiprogramming
level of �� 
��� total simultaneous queries since there
are � hosts� the disk utilization has risen to over �����
and CPU utilization to over ����� for this index organi�



0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30

q
u
e
r
y
 
r
e
s
p
o
n
s
e
 
t
i
m
e
 
(
m
s
)

number of keywords per query

disk
I/O bus

host
system

prefetch I

Figure �� The sensitivity of response time to the number
of keywords in a query�

zation� 
Note that su�cient memory must be available
to prevent excessive page faulting��

The system organization has a LAN bottleneck even
a low multiprogramming loads 

���� at a multipro�
gramming level of �� and thus does not improve as the
load increases� With a multiprogramming load of ���
additional data shows that the response times for the
disk� I�O bus� host� system and prefetch I index organi�
zations are ���
 sec�� ���� sec�� ���� sec�� ���� sec�� and
���� sec� respectively

The e�ect of large partial answer sets is shown clearly
in Figure � which graphs response time as a function of
the number of keywords� This graph shows a counter�
intuitive result� in some situations� the response time of
a query decreases as the number of keywords in a query
increases� The sharp drop of the disk� I�O bus� and host
lines from one keyword per query to two keywords per
query is due to the reduced size of partial answer sets�
That is� since the base case parameter set has four hosts�
a query containing one keyword under the disk� I�O bus
and host index organizations will transmit ��� of the
answer set across the local area network for these three
index organizations� In the case of a two word query�
again ��� of the answer set is transmitted� However� the
total answer set size is much smaller since each partial
answer set is the intersection of two inverted lists� This
explains the sharp drop in the response time for these
organizations from � to � keywords� As the number of
keywords increases beyond �� the additional work per
keyword needed dominates the response time�

In the system index organization� the size of the par�
tial answer sets transmitted depends on which hosts the
particular words in the query reside� A subquery con�
taining a single word has a large partial answer set� For
� keywords� the probability of a single word subquery at
some host is high� thus leading to a large response time
due to the transmission of these partial answer sets� At
� keywords per query� the probability of a large par�

tial answer sets is reduced and thus response time is
comparatively improved� With more than �� keywords
per query the probability of a large partial answer set
is small and the response time for these queries is large
due to the work required for query processing�

Note that after �� keywords per query� prefetch I per�
forms worse than the simple system organization� This
is because in the system organization the probability of
a single word answer set being transmitted is very small
anyway� Thus� the additional cost of the prefetch I al�
gorithm is counterproductive� 
This discrepancy can be
eliminated by switching from the prefetch I algorithm
to the algorithm when the answer set of a subquery is
expected to be small�� However� for small numbers of
keywords� the prefetch I algorithm performs as expected
and avoids transmitting large partial answers sets char�
acteristic of the system level organization�

So far� the system organization� with or without
prefetch� has generally not performed well� To deter�
mine under what circumstances a prefetch algorithm
performs well� we remove the LAN bandwidth bottle�
neck and increase the number of hosts to �� while keep�
ing the number of disks and I�O buses constant� We
study the rise in query throughput as the seek time
increases in Figure �� Again� the disk organization is
sensitive to the increase in seek time for the same rea�
sons as Figure �� The host and I�O bus index organi�
zations are identical since each host has one I�O bus�
The 	gure shows that the large number of hosts makes
the these two index organizations sensitive to seek time�
The prefetch I algorithm performs well 
with a disk seek
time above �� ms� because an individual query 
with
� keywords� involves at most � hosts which frees the
other hosts to process other subqueries� Given the ar�
guments for considering disk seek time as a model of all
	xed computation which consumes disk resources� ��
ms is not an unreasonable amount of time for a disk to
be busy per inverted list fetch� For a disk seek time of
�� ms in Figure �� the disk� I�O bus� host� system� and
prefetch I response times are ���� sec� ���� sec� ���� sec�
���� sec� and ���� sec� respectively�

� Conclusion

In this paper we have described various options for
physical design of a text document retrieval system� We
have studied the performance of several parallel query
processing strategies� and the impact of the underlying
technology� In particular� the choice of an index organi�
zation depends heavily on the access time of the storage
device and the bandwidth of interprocessor communica�
tion� We also discovered some unexpected results� e�g��
as the size of a query increases� its response time may
drop� the fancier prefetch optimizations were usually
counterproductive�

In general� our results indicate that the host index
organization is a good choice� It uses system resources



0

5

10

15

20

10 20 30 40 50 60 70 80

t
h
r
o
u
g
h
p
u
t
 
(
q
u
e
r
i
e
s
 
p
r
o
c
e
s
s
e
d
/
s
e
c
)

disk seek time (hosts = 16, I/O buses per host = 1, LAN bandwidth = 90)

disk
I/O bus

host
system

prefetch I

Figure �� A good hardware con	guration for the
prefetch algorithm�

e�ectively and can lead to high query throughputs in
many cases� When it does not perform the best� it is
not very far o� from the best strategy�

Our results also indicate that the system organiza�
tion� even with the prefetch organization� is not good
unless disk seeks are high and network bandwidth is
high� We should� however� point out four factors that
may be unfair to this approach� 
�� We are not mod�
eling document fetches from disks� If the documents
were stored on the same disks as the indexes� then disk
utilizations would be higher� This would make the sys�
tem organization more attractive since it reduces the
I�O load� 
�� We are not modeling pipelining of I�O
and CPU processing within a query� This can reduce
query response time� and would be more bene	cial to
the system organization since it deals with longer in�
verted lists� 
�� Another reduction in response time is
early termination of the intersection algorithm� That
is� if the inverted lists are in sorted order� the inter�
section algorithm can 
in some cases� terminate having
read only a fraction of the inverted lists� 
�� We are
using a closed simulation model where larger response
times penalize throughput�

Acknowledgements� to Sam DeFazio� Ben Kao�
Miron Livny� Sergio Plotkin� Mendel Rosenblum� and
the referees for help on aspects of this paper�

References

��� I� J� Aalbersberg and F� Sijstermans� High�quality and high�
performance full�text document retrieval� the parallel in�
foguide system� In Proceedings of the First International

Conference on Parallel and Distributed Information Sys�

tems� pages ������	� Miami Beach� Florida� �

��

��� F� J� Burkowski� Retrieval performance of a distributed
text database utilizing a parallel processor document server�
In Proceedings of the Second International Symposium on

Databases in Parallel and Distributed Systems� pages ���
�
� Dublin� Ireland� �


�

��� D� Chapman and S� DeFazio� Statistical characteristics of le�
gal document databases� Technical report� Mead Data Cen�
tral� Miamisburg� Ohio� �


�

��� A� L� Chervenak� Performancemeasurements of the �rst raid
prototype� Technical Report UCB�UCD 

����� University
of California� Berkley� May �


�

��� S� DeFazio� Document retrieval benchmark� Working Draft
Version ���� Sequent Computer Systems� �

��

��� S� DeFazio and J� Hull� Toward servicing textual database
transactions on symmetric shared memory multiprocessors�
In Proceedings of the International Workshop on High Per�

formance Transaction Systems� Asilomar� �

��

��� C� Faloutsos� Access methods for text� ACM Computing

Surveys� ����
���� �
	��

�	� C� Faloutsos and H� V� Jagadish� On b�tree indices for
skewed distributions� In Proceedings of ��th International

Conference on Very Large Databases� pages �������� Van�
couver� British Columbia� Canada� �

��

�
� J� Fedorowicz� Database performance evaluation in an in�
dexed �le environment� ACM Transactions on Database

Systems� ������	����
� �
	��

��
� D� Harman and G� Candela� Retrieving records from a gi�
gabyte of text on a minicomputer using statistical ranking�
Journal of the American Society for Information Science�
���	���	���	
� �


�

���� B��S� Jeong and E� Omiecinski� Inverted �le partitioning
schemes for a shared�everything multiprocessor� Techni�
cal Report GIT�CC�
���
� Georgia Institute of Technology�
College of Computing� �

��

���� Z� Lin� Cat� An execution model for concurrent full text
search� In Proceedings of the First International Conference

on Parallel and Distributed Information Systems� pages
������	� Miami Beach� Florida� �

��

���� M� Livny� DeNet user�s guide� Technical report� University
of Wisconsin�Madison� �


�

���� F� Rabitti and J� Zizka� Evaluation of access methods to
text documents in o�ce systems� In Research and Develop�

ment in Information Retrieval� pages ����
� King�s college�
Cambridge� �
	��

���� G� Salton and C� Buckley� Parallel text search meth�
ods� Communications of the ACM� �������
������ February
�
		�

���� C� Stan�ll and B� Kahle� Parallel free�text search on the
connection machine system� Communications of the ACM�
�
����
����
� �
	��

���� H� S� Stone� Parallel querying of large databases� A case
study� IEEE Computer� pages ������ October �
	��

��	� A� Tomasic and H� Garcia�Molina� Performance of inverted
indices in distributed text document retrieval systems� Tech�
nical Report STAN�CS�
������� Stanford University De�
partment of Computer Science� �

��

��
� E� M� Voorhees� The e�ciency of inverted index and clus�
ter searches� In Proceedings of the ACM Conference on

Research and Development in Information Retrieval� pages
�������� Pisa� Italy� �
	��

��
� P� Weiss� Size Reduction of Inverted Files Using Data Com�

pression and Data Structure Reorganization� PhD thesis�
George Washington University� �


�

���� G� K� Zipf� Human Behavior and the Principle of Least

E�ort� Addison�Wesley Press� �
�
�



���� J� Zobel� A� Mo�at� and R� Sacks�Davis� An e�cient index�
ing technique for full�text database systems� In Proceedings

of ��th International Conference on Very Large Databases�
Vancouver� �

��


