Performance of Inverted Indices in Shared-Nothing Distributed

Text Document Information Retrieval Systems
Published in PDIS 93

Anthony Tomasic

Department of Computer Science
Princeton University
Princeton, NJ 08540

tomasic@cs.stanford.edu

Abstract

The performance of distributed tezt document re-
trieval systems is strongly influenced by the organization
of the inverted index. This paper compares the perfor-
mance impact on query processing of various physical
organizations for inverted lists. We present a new prob-
abilistic model of the database and queries. Simulation
erperiments determine which variables most strongly in-
fluence response time and throughput. This leads to a
set of design trade-offs over a range of hardware config-
urations and new parallel query processing strategies.

1 Introduction

Full text databases of newspaper articles, journals,
legal documents etc. are readily available. These
databases are rapidly increasing in size as the cost of
digital storage drops, as more source documents are
available in electronic form, and as optical character
recognition becomes commonplace. At the same time,
there is a rapid increase in the number of users and
queries submitted to such text retrieval systems. One
reason is that more users have computers, modems,
and communication networks available to reach the
databases. Another is that as the volume of electronic
data grows, it becomes more and more important to
have effective search capabilities, as provided by infor-
mation retrieval systems.

As the data volume and query processing loads in-
crease, companies that provide information retrieval
services are turning to distributed and parallel storage
and searching. The goal of this paper is to study parallel
query processing and various distributed index organi-
zations for information retrieval.

To motivate the issues that will be addressed, let
us start with a simple example. The left hand side of
Figure 1 shows four sample documents, D0, D1, D2, D3,
that could be stored in an information retrieval system.

Hector Garcia-Molina

Department of Computer Science
Stanford University
Stanford, CA 94305

hector@cs.stanford.edu

LAN
DO D1
ab a CPU 0 CPU 1
D2 D3 BUS 0 BUS 1
[[
ab ab [| [|
cd dol d1| [d2| [d3

Figure 1: A example set of four documents and an ex-
ample hardware configuration.

Each document contains a set of words (the text), and
each of these words (maybe with a few exceptions) will
be used to index the document. In Figure 1, the words
in our documents are shown within the document box,
e.g., document DO contains words @ and b. (Of course,
in practice documents will be significantly larger and
will contain many more words.)

To find documents quickly, full text retrieval systems
traditionally build inverted lists [9] on disk. For exam-
ple, the inverted list for word b would be b: (D0,1),
(D2,1), (D3,1). Each pair in the list indicates an oc-
currence of the word (document id, position). (Position
can be word position or byte offset.) To find documents
containing word b, the system only needs to retrieve
this list. To find documents containing both a and b,
the system could retrieve the lists for @ and b and inter-
sect them. The position information is used to answer
queries involving distances, e.g., find documents where
a and b occur within so many positions of each other.

Next suppose that we wish to store the inverted lists
on a multiprocessor like the one shown in Figure 1 (on
right). This system has two processors (CPUs), each
with a disk controller and I/O bus. (Each CPU has its

Index Disk Inverted Lists
Disk do a: (D0, 0); b: (DO, 1)
di1 a: (D1, 0)
d2 a: (D2, 0); b: (D2, 1)
ds3 a: (D3, 0); b: (D3, 1);
c: (D3, 2); d: (D3, 3)
Host, I/O bus | 4 0 a: (Do, 0), (D1, 0)
di1 b: (Do, 1)
d2 a: (D2, 0), (D3, 0);
c: (D3, 2)
ds3 b: (D2, 1), (D3, 1);
d: (D3, 3)
System do a: (Do, 0), (D1, 0), (D2, 0),
(D3, 0)

d1 b: (Do, 1), (D2, 1), (D3, 1)
d2 c: (D3, 2)
d3 d: (D3, 3)

Table 1: The various inverted index organizations for
Figure 1. Inverted lists are word: (Document, Offset).

own local memory.) Each bus has two disks on it. The
CPUs are connected by a local area network. Table 1
shows three options for storing the lists.

In the system index organization, the full lists are
spread evenly across all the disks in the system. For
example, the inverted list of word b discussed earlier
happened to be placed on disk d1. With the disk index
organization, the documents are logically partitioned
into four sets, one for each disk. In our example, we
assume document DO is assigned to disk d0, D1 to d1,
and so on. In each partition, we build inverted lists for
the documents that reside there. Notice that to now
answer the query “Find all documents with word b” we
have to retrieve and merge 4 lists, one from each disk.
(Since disk d1 contains no documents with word b, its
b list is empty.)

In the host index organization, documents are par-
titioned into two groups, one for each CPU. Here we
assume that documents D0, D1 are assigned to CPU
0, and D2, D3 to CPU 1. Within each partition we
again build inverted lists. The lists are then uniformly
dispersed among the disk attached to the CPU. For ex-
ample, for CPU 1, the list for @ is on d2, the list for b
is on d3, and so on.

Query processing under each index organization is
different. For example, consider the query “Find docu-
ments with words a, ¢”, and say the query initially ar-
rives at CPU 0. Under the system index organization,
CPU 0 would have to fetch the list for a, while CPU 1
would fetch the ¢ list. CPU 1 would send its list to CPU
0, which would then intersect the lists. With the host
index organization, each CPU would find the matching
documents within its partition. Thus, CPU 0 would get

its a and c lists and intersect them. CPU 1 would do
likewise. CPU 1 would sent its resulting document list
to CPU 0, which would then merge the results. With
the disk index organization, CPU 0 would retrieve the
a and c lists off disk d0, and would also retrieve the a,
¢ lists from disk d1. CPU 0 would obtain two lists of
matching documents (one for each disk), merge them,
and would then merge them with the list from CPU 1.

There are many interesting trade-offs among these
storage organizations. With the system index organi-
zation, there are fewer I/Os: the a list is stored in a
single place on disk. To read it, the CPU can initiate
a single I/0, the disk head moves to the location, and
the list is read in (this may involve the transfer of mul-
tiple blocks). In the disk index organization, however,
the ¢ list is actually stored on four different disks. To
read these list fragments, 4 I/Os must be initiated, four
heads must move, and four transfers take place. How-
ever, each of the transfers is roughly a fourth of the size,
and they may take place in parallel. So, even though
we are consuming more resources (more CPU cycles to
start more I/Os, and more disk seeks), the list may be
read into memory faster.

The system index organization may save disk re-
sources, but it consumes more resources at the network
level. In our example, the entire c list is transferred
from CPU 1 to CPU 0, and we can expect these in-
verted lists to be much longer than the document lists
exchanged under the other schemes. However, the long
inverted list transfers do not occur in all cases. For
example, the query “Find documents with ¢ and b”
(system index organization) does not involve any such
transfers since all lists involved are within one com-
puter. Also, it is possible to reduce the size of the
transmitted inverted lists by moving the shortest list.
In our “Find documents with @ and ¢” example, we can
move the shorter list of @ and ¢ to the other host.

Thus, the performance of each strategy will depend
on many factors, including the expected type of queries,
the optimizations used for each query processing algo-
rithm, whether throughput or response time is the goal,
the resources available (e.g., how fast is the network,
how fast are disk seeks). In this paper we will study
these issues, discussing the options for index organi-
zation and parallel query processing. We also present
results of detailed simulations, and attempt to answer
some of the key performance questions: Under what
conditions are each index organization better? How
does each index organization scale up to large systems
(more documents, more processors)? What is the im-
pact of key parameters? For instance, how would a
system with optical disks function?

In Section 2 we describe our hardware scenario and
query processing algorithms in more detail. To study
performance we need to model various key components
such as the inverted lists, the queries, and the answer
sets. Although there has been a lot of work done on

information retrieval systems, to our knowledge such
models, appropriate for studying parallel query execu-
tion, have not been developed. In Section 3 we define
simple models for these and other critical components.
In Section 4 we describe the simulation, while in Sec-
tion 5 we present our results and comparisons.

2 Definitions and Framework

Documents contain words. The set of all words oc-
curring in the database is the vocabulary. For conve-
nience, we name words by their occurrence rank, e.g.,
word 0 is the most frequently occurring word, word 1
is the next most frequent, and so on. (In the example
of Figure 1, the vocabulary is {a,b,¢,d}; word 0 is q,
word 1 is b, etc.) We use the word and the rank of the
word interchangeably.

A query retrieves documents satisfying a given prop-
erty. In this paper, we concentrate on “boolean and”
queries of the form a AbAc.... Such queries find the
documents containing all the listed words. The words
appearing in a query are termed keywords. Given a
query aAb... the document retrieval system generates
the answer set of the document identifiers of all the doc-
uments which match the query. A matchis a document
which contains the words appearing in the query.

We focus on boolean-and queries because they are
the most primitive ones. For instance, a more com-
plex search property such as (a A b) OR (c A d) can be
modeled as two simple and-queries whose answer sets
are merged. A distance query “Find a and b occurring
within z positions” can be modeled by the query a A b
followed by additional CPU processing that compares
the positions of the occurrences.

2.1 Hardware Configuration

We consider hardware organizations like the one in
Figure 1 but we vary the number of CPUs or hosts, the
number of I/O controllers per host, and the number of
disks per controller. Table 2 lists the parameters that
determine a configuration. The column “Value” in the
table refers to the “base case” used in our simulation
experiments (Section 5). That is, our experiments start
from a representative configuration, and from there, we
explore the impact of changing the values. The base
case does not represent any particular real system; it is
simply a convenient starting place.

2.2 Physical Index Organization

The inverted index can be partitioned and frag-
mented in many ways. We study a single natural di-
vision by hardware. This division does not require
any unusual hardware or operating system features.
The documents reside in a uniformly distributed man-
ner across all disks d in the system (d = Hosts -

Parameter Value Description

Hosts 4 Number of Hosts

I/OBusesPerHost 4 Controllers and
I/O Buses per Host

DisksPerI/OBus 2 Disks per I/O bus

Table 2: Hardware configuration parameter values and
definitions.

I/OBusesPerHost - DisksPerI/OBus). Let the disks
be numbered from 0 to d — 1 as in Figure 1.

The inverted index organization is compared for four
mutually exclusive cases. In the disk index organiza-
tion, an inverted index is constructed for all words in
the documents residing on each disk. Thus, for a given
word, there are d inverted lists containing that word
(if a given word does not appear in any documents on
a disk, then that list is empty). In the I/O bus index
organization, an inverted index is constructed for all
the documents on the disks attached to the same I/O
bus. In the host index organization, an index is con-
structed for all the documents on a single host. Lists
are distributed by host in a similar manner. Finally,
in the system index organization a single index is con-
structed for all documents. Table 1 shown earlier illus-
trated these index organizations, but note that in that
example the I/O bus and host index organizations are
identical because hosts have a single I/O bus. Note that
regardless of the index organizations the same amount
of data is stored in the system and for any query the
same amount of data is read from disk.

In any of the organizations, if an index spans = disks,
we assume the lists are dispersed over the z disks. In
particular, the list for word w is placed on the disk
i+ (w mod), where % is the first disk in the group. For
example, for the host index organization in Table 1, one
of the indices spans disks d0, d1; the second spans d2,
d3. For the second index, the list for a (word 0) goes
to d2, the list for b (word 1) goes to d3, the list for ¢
(word 3) goes to d2, and so on.

2.3 Algorithms

For all configurations except the system one, queries
are processed as follows. The query a A b... is initially
processed at a home site. That site issues subgueries to
all hosts; each subquery contains the same keywords as
the original query. A subquery is processed by a host by
reading into memory all the lists involved, intersecting
them, producing a list of matching documents. The
answer set of a subquery, termed the pariial answer
set, is sent to the home host, which concatenates all the
partial answer sets to produce the answer to the query.

In the system index organization, the subquery sent
to a given host contains only the keywords that are han-

dled by that host. If a host receives a query with a single
keyword, it fetches the corresponding inverted list and
returns it to the home host. If the subquery contains
multiple keywords, the host intersects the correspond-
ing lists, and sends the result as the partial answer set.
The home host intersects (instead of concatenates) the
partial answer sets to obtain the final answer.

As mentioned in Section 1, the algorithm we have
described for the system index organization can be im-
proved. Here we describe three optimizations, called
Prefetch I, IT and III. Note that these are heuristics; in
some cases they may not actually improve performance.

In the Prefetch I algorithm, the home host deter-
mines the query keyword k that has the shortest in-
verted list. (We assume that hosts have information
on keyword frequencies; if not, Prefetch I is not appli-
cable.) In Phase 1, the home host sends a single sub-
query containing k to the host that handles k. When
the home host receives the partial answer set, it starts
phase 2, which is the same as in the un-optimized algo-
rithm, except that the partial answer set is attached to
all subqueries. Before a host returns its partial answer
set, it intersects it with the partial answer set of the
phase 1 subquery. This significantly reduces the size of
all partial answer sets that are returned in phase 2.

The Prefetch II algorithm is similar to Prefetch I,
except that in phase 1 we send out the subquery with
the largest number of keywords. We expect that as the
number of keywords in a subquery increases, its partial
answer set will decrease in size. Thus, the amount of
data returned by the one host that processes the phase
1 subquery should be small. If there is a tie (two or
more subqueries have the same number maximum of
keywords), Prefetch II selects one of them at random.

Prefetch III combines the I and II optimizations.
That is, the first subquery contains the largest num-
ber of keywords, but if there is a tie, the subquery with
the shortest expected inverted lists is selected. Intu-
itively, one would expect Prefetch III to perform the
best. However, we chose to study all three techniques
(Section 5) to understand what each optimization con-
tributes. Keep in mind that Prefetch I and III require
statistical information on inverted list sizes. Our results
will tell us if it is worthwhile keeping such information,
i.e., if the improvement of Prefetch III over II (which
does not require this information) is significant.

To illustrate these optimizations, consider the query
aAbAcAdin the example of Figure 1 (system index or-
ganization). With Prefetch I, the subquery d would be
sent to host CPU 1 in phase 1. (Of the four keywords,
d occurs less frequently in the database, and it is stored
in host CPU 1.) In phase 2, the subquery aAb would be
sent to CPU 0, together with the list for d from phase
1. CPU 1 would receive the query c together with the
d list. With Prefetch II, the first subquery would be
either a A b (to CPU 0) or ¢ Ad (to CPU 1), selected
at random. Prefetch III would select ¢ A d as the first

subquery because it involves shorter lists.
2.4 Related Work

For full text retrieval systems, inverted lists are typ-
ically used. Compression of inverted lists is actively
studied [19, ?]. However, much work has been done on
other alternatives, such as signature schemes [7].

In [2], Burkowski examines the performance prob-
lem of the interaction between query processing and
document retrieval and studies the issue of the physical
organization of documents and indices. His paper sim-
ulates a collection of servers on a local area network,
as we do. Our work is complementary to this paper
in that we concentrate on physical index organization.
In [11], and independently from our work, the issue of
partitioning by document vs. paritioning by keyword is
studied for share-everything multiprocessors. The pa-
per confirms the results presented here.

The work on document retrieval in multiprocessor
systems (e.g. [1, 6, 12]) is also related to this paper in
that physical index organization issues need to be ad-
dressed for those architectures. While some issues for
these systems are not considered here, we believe that
the issue of physical organization is an important one
and that the prefetch algorithms presented in this pa-
per probably perform well on multiprocessor architec-
tures. Finally, in the debate on the relative advantages
of parallel computers [15, 16, 17] and in other articles
[10, 14, 18] various benchmark figures are given. How-
ever no systematic comparison has been done.

3 DModels

There are two choices for representing documents
and queries in a simulation study. One is to use a
real document base and an actual query trace. The
second is to generate synthetic databases and queries,
from probability distributions that are based on actual
statistics. Using a particular database and query trace
is more realistic, but limits one to a particular applica-
tion and domain. Using synthetic data gives one more
flexibility for studying a wide range of scenarios. Here
we follow the synthetic data approach, as we feel it is
more appropriate for a first study that explores options
and tradeoffs, rather than predicts the performance of
a particular document application.

3.1 Document Model

For the model of a document we first define several
parameters in Table 3. The database consists of a col-
lection of D documents. Conceptually, each document
is generated by a sequence of W independent and iden-
tically distributed trials. Each trial produces one word
from the vocabulary V. Each word is uniquely repre-
sented by an integer w in the range 1 < w < T where

le+09

occurrences
linear -——--
quadratic ----

1e+08 o
le+07 Fr
le+06 F
100000
10000 F

1000 g

100 |

number of occurrences of a word

10 El

1
1 10000 100000

10 100 1000
rank of words in order by number of occurrences

Figure 2: Curve fit to vocabulary occurrence data.

Parameter Value Description

D 667260 the number of documents

w 12000 words per document

14 set of words appearing in
documents (the vocabulary)

T 1815322 total wordsin V. |V |=T

Z(4) Z(j) Pr(word = j), a probability

distribution

Table 3: Parameters of the document model.

T =| V |. The probability distribution Z describes the
probability that any word appears. For convenience,
the distribution is arranged in non-increasing order of
probability i.e. Z(w) > Z(w +4), Vi > 0. The “Value”
column in Table 3 again represents our base case sce-
nario. In this case, the values are from a legal document
base described in [3].

To construct a specific probability distribution Z of
Z, a curve is fit to the rank/occurrence distribution of
the vocabulary of the legal documents database [3] and
then normalized to a probability distribution. Figure 2
shows the log/log graph of two curves which have been
fit to some of the 100,000 most frequently occurring
words. The X axis is the distinct words in the database,
ranked by the number of occurrences in non-increasing
order. The Y axis is the number of occurrences of each
word. A diamond symbol marks the number of occur-
rences of a word. The curve labeled “linear” is the
result of fitting a linear equation and the curve labeled
“quadratic” is the fit of a quadratic equation.

Given the quadratic fit curve, the form of the prob-
ability distribution Z is derived in [?] as

'—0.07525281nj—0.150669616.3027

J
8.47291 x 108

Z(j) = (1)

where the denominator is a normalization constant.

Parameter Value Description

K 5 number of words per query

(7) Q(j) Pr(word=j),a
probability distribution

u 1% fraction of T (in rank order
of V') appearing in a query

V' the u fraction of V'

S V'E set of possible queries.

S=V'x...xV'
Table 4: Parameters for the query model.

(Although our distribution is similar to Zipf’s [20], ours
matches the actual distribution better.)

3.2 Query Model

A query is a sequence of words (wsy,..., wg) gen-
erated from K independent and identically distributed
trials from the probability distribution Q(j). Thus, the
occurrence of the words are mutually independent. Ta-
ble 4 is a list of the parameters and base values chosen.

We now construct a specific probability distribution
Q. There is little published data on this distribution,
and there is no agreement on its shape (however, see
[5] for a different model). It does not follow the same
distribution as the vocabulary (Figure 2), as relatively
infrequent words are often used in queries. In light of
this, the uniform distribution was chosen for @, i.e. ev-
ery word appears in a query with equal probability. The
distribution allows easy comprehension of the impact
of the distribution on performance. However, we found
that the uniform distribution across the entire vocabu-
lary gave far too much weight to the most infrequently
occurring words (the tail of Figure 2). For example,
these tail words are often misspellings that only appear
once in the entire database and never appear in queries.
Thus, in the @ distribution we cut off the most infre-
quent words. For this we introduce a parameter u to
determine the range of the uniform distribution, giving
Q@ the equation

1<k<uT
otherwise

As u decreases, the probability of choosing a word of
low rank in a query increases. Words of low rank occur
often in the database. Thus the expected number of
documents to match a query increases since each word
of the query occurs often in the database. Hence, if ©
is too small, queries will probabilistically have answer
sets which are a large fraction of the database. On
the other hand, if u is too large, answer sets will be
unrealistically small. To estimate a good value for w,
in [?] we compute the expected number of documents

which match a query of length K for various values of
u. In Section 5 the response time sensitivity to uT of
the various index organizations is discussed.

3.3 Answer Set Model

At various points in the simulation we will need to
know the expected size of a query answer set or partial
answer set. Consider a particular query (or subquery)
with keywords wy, ..., wg. Say this query is executed
on a body of documents of size Docs. Note that un-
der the system index organization, Docs = D (D is the
total number of documents). However, for the other or-
ganizations, Docs is the number of documents covered
by the index (or indexes) used by the particular sub-
query. Given this, the expected number of documents
which match the query is

Docs -[1 —e WZ(wi)]. .. [1 — e~ WZux)] (2)
(The term [1 — e~ Z#(¥1)] is the probability that a doc-
ument contains keyword wy.)

3.4 Inverted List Model

To access an inverted list for a given vocabulary
word, we assume that a memory resident data struc-
ture is searched. The size of the data structure will
vary with each index organization, but in all cases is
small compared to the size of the inverted lists.

An inverted list contains a sequence of elements each
of which describes a single appearance of the word.
Each element contains a document identifier and a word
offset of the word in the document. Thus, the inverted
index is essentially a one-to-one mapping to the doc-
uments (except for the white space and punctuation
which is ignored when the document is added to the
inverted index).

The expected number of occurrences of a word in a
document is Z(w)-W. The expected number of entries
of the corresponding inverted list is Z(w) - W - Docs
where Z(w) is the value of Equation 1 for the word w,
W is the number of words per document, and Docs is
the number of documents spanned by the index.

4 Simulation

To study the index organizations and query algo-
rithms, we implemented a detailed event-driven sim-
ulation using the DENET [13] simulation environment.
For details of the simulation, see [?].

The parameters controlling the hardware organiza-
tion are listed in Table 5. The values for the disk and
I/O bus portions of this table are from [4].

In our simulation, we do not generate a synthetic
document base a priori. Instead, when we require the
length of the inverted list for a word w, we use the

Parameter Value Description
DiskBandwidth 10.4 Mbits/sec Bandwidth
DiskBuff 32768 Size of a disk buffer
BlockSize 512 Bytes per disk block
SeekTime 6.0 ms of each seek

Buf ferOverhead 4.0 ms to seek one track
I/OBusOverhead 0.0 ms for I/O transfer
I/OBusBandwidth 24.0 Mbits/sec Bandwidth
LANOverhead 0.1 ms for LAN transfer
LAN Bandwidth 10.0 Mbits/sec Bandwidth

Table 5: Hardware parameter values and definitions.

expected length of the list. The length of an inverted list
is a function of the expect number of occurrences of the
word, the bits need for an entry, the compression factor,
and the block size (see Table 6). This model assumes
that the blocks of the inverted list are contiguous [8].

The length of a the answer set, in bytes, is deter-
mined by multiplying Equation 2 by the length of an
element of an inverted lists, Answer Entry.

The relative weight of all CPU parameters is con-
trolled by the single parameter C PU Speed. Thus, the
rate of the CPU can be varied independently of individ-
ual factors contributing to various CPU requests. Each
query consists of query start up, subquery start up, disk
fetches, uncompression and merge of inverted lists, and
the union of the subquery answer sets.

A disk services fetch requests from a CPU and sends
the results to an I/O bus. Since one disk fetch corre-
sponds to the read of one invert list, each fetch request
has a length determined by InvertedList(w). The disk
service time for a request is determined by four factors:
the constant seek time overhead, the track-to-track seek
time and overhead to load the disk buffer, the transfer
time off of the disk, and the I/O bus contention time.
The overlap of the disk loading its track buffer and the
transfer of data to the I/O bus is also simulated.

Subquery requests have a length determined by pa-
rameter SubQueryLength and any additional answer
set appended to the query (as is the case with the
prefetch algorithms). Subquery requests have variable
length and consume a significant fraction of the local
area network bandwidth when partial answer sets are
transmitted. A request with identical source and des-
tination is not transmitted through the local area net-
work. Note that for simplicity, broadcast messages are
not modeled and thus the query algorithms do not use
this feature.

A query, consisting of a set of words, is issued to
a host. The parameter Multiprogram determines the
number of simultaneous queries per host in the simula-
tion. The host processes the query accounting for query
start up, subquery transmission, waiting for subqueries
to finish, and merging the results of subqueries.

Parameter Value Description
CPU Speed 1 Relative speed of CPU
Multiprogram 4 Number simultaneous
queries per Host
QuerylInstr 50000 Query start CPU cost
SubquerylInstr 10000 Subquery CPU cost
SubqueryLength 1024 Base size of subquery
message
FetchInstr 5000 Disk fetch CPU cost
Mergelnstr 10 Merge CPU cost/byte
(decompressed list)
UnionlInstr 1 Concatenation CPU
cost/byte answer set
Decompress 10 Decompression CPU
cost per byte of list
AnswerEntry 4 Bytes per entry
in an answer set
EntrySize 10 Bits per entry of
list on disk
Compress 0.5 Compression Ratio

Table 6: Base case parameter values and definitions.

Subqueries are transmitted to hosts by inserting the
subquery in the LAN queue. When a subquery arrives
at a host, it is processed accounting for the subquery
startup, the fetch requests to disks, waiting for the disks
to finish, the intersection of the fetched inverted lists,
and transmission of the answer set of the subquery back
to the query. The answer is transmitted to the host cpu
by inserting it in the LAN queue.

5 Simulation Results

Table 7 presents the data collected from a simula-
tion run on the base case of values (Tables 2 - 6). The
simulation runs are at a confidence level of 90% at 5%.
The metrics of query processing response time, the er-
ror in response time (90% confidence interval), query
throughput, disk, I/O bus, CPU and LAN utilization
were monitored for every simulation experiment.

The table reveals that the disk, I/O bus, and host in-
dex organizations have comparable performance. Of the
three, the disk organization performs somewhat worse
because it has the highest disk utilization, leading to
longer I/O delays. The I/O bus index organization
has the best response time and throughput in this case.
However, note that the host organization has the most
balanced use of resources, and as we will see, this leads
to better performance under more stressful scenarios.

The system index organization, as well as the
prefetch optimizations, perform poorly in the base case
scenario. The main reason why this index organization
(without prefetch) does so poorly is that it saturates

Index

Disk I/O Host Sys I II 111
(a) | 2.17 1.75 212 8.42 4.99 578 5.83
(b) | .054 .043 .081 .311 .412 .462 477
(¢) | 7.31 9.16 7.48 1.88 3.20 2.63 2.74
(d) | 85.8 73.5 43.0 10.2 22.2 214 217
(e) | 21.0 274 323 23.2 276 28.6 27.3
(f) | 44.2 60.5 495 17.8 33.6 374 38.0
(g) | 23.4 299 245 94.7 29.0 13.8 9.33

Table 7: Results of all metrics for the base case simu-
lation experiment (I is Prefetch I, IT is Prefetch II and
IIT is Prefetch III). Labels are (a) query response time
(sec), (b) response time error (sec), (c) query through-
put (query/sec), (d) disk utilization (%), (e) I/O bus
utilization (%), (f) CPU utilization (%), (g) LAN uti-
lization (%).

12000

X system -
prefetch I -

10000 - 4 1
8000 . x 1

6000 T x 1

4000 [

query response time (ms)

2000 |

L L L L
20000 25000 30000 35000

maximum keyword rank

0 L L
5000 10000 15000 40000

Figure 3: The sensitivity of response time to the maxi-
mum query keyword rank.

the LAN by transmitting many long inverted lists. The
prefetch organizations reduce the amount of data sent
over the LAN (see Section 2.3), and indeed we observe
that the LAN utilization is much lower in these cases
(see Table 7). Thus, the prefetch strategies perform
substantially better than the system index organization.

However, the prefetch strategies still perform sub-
stantially worse than the disk, I/O bus, and host orga-
nizations. The main reason is that there is less paral-
lelism in the prefetch strategies than in the others. The
first phase of the prefetch requires waiting for one part
of the query to be completed. Furthermore, since lists
are not split across disks, it takes longer to read them.
These delays lead to lower throughputs in our closed
system model. That is, in our model, each computer
runs a fixed number of queries. If they take longer to
complete, less work is done overall. The main advan-
tage of the prefetch strategies is that less work is done
per query (i.e., fewer disk seeks, I/O starts). However,

12000

disk =—
1/0 bus -
host

system

prefetch I
prefetch II
prefetch.III

10000

Sk bxod

8000

6000 [

4000

query response time (ms)

2000 -

0 20 40 60
disk seek time (ms)

Figure 4: The sensitivity of response time to seek time.

in this scenario, these resources are not at a premium,
so the advantages of prefetch do not show.

To our surprise, prefetch II and IIT actually preform
worse than prefetch I (see Table 7). In Section 2.3 we
argued that prefetch II and ITI would reduce the amount
of data sent over the LAN. This is true as evidenced
by the LAN utilization. However, with hindsight, we
now see that the additional work done in phase one
of prefetch II and IIT is preformed sequentially with
respect to the rest of the processing of the query, leading
to longer response times. Thus, only in cases where the
LAN is a bottleneck would prefetch IT and III pay off.
In the rest of our graphs this is not the case, so to avoid
clutter we will only show the prefetch I results.

We now study how some of the key parameters af-
fect the relative preformance of the index organizations.
(We only report on the more interesting results; many
more experiments were performed than what can be
reported here.) We start by showing in Figure 3 the
sensitivity of response time to the value of u7. Recall
that T is the size of the vocabulary and u is the fraction
of the vocabulary which can appear in a query. Each
line graphs the behavior of a different index organiza-
tion. The line labeled prefetch is the prefetch I process-
ing algorithm with a system index organization. The
response times for each index organization decrease as
uT increases because the number of word occurrences
in the database for an average query word decreases.
That is, as uT decreases, the inverted lists that have to
be read increase in size. The disk and I/O bus orga-
nizations are relatively insensitive to uT because they
stripe lists across many disks, i.e., the list fragments
that need to be read grow at a slower rate. The system
and prefetch curves are more sensitive to uT because
inverted lists are read whole. The curve for the host or-
ganization is an intermediate case. Although not shown
here, the effect of 4T on throughput is similar.

A graph of the response time of the various config-
urations vs. the seek time of a disk in Figure 4 shows

T
disk ——
20 | 1/0 bus ~+- |
host -8-
system -
prefetch I -

(queries processed/sec)

throughput

&7 x % x * X
b

o
10 15 20 25 30 35
multiprogramming level (per host)

Figure 5: The effect of the load level.

that the disk and I/O bus index organizations are most
sensitive to the seek time of the storage device. This
is because the disk index organization must retrieve for
each query more inverted lists than any other organi-
zation. This same overhead is incurred by the I/O bus
index organization to a lesser extent. The host index
organization is very insensitive to seek time since only
a few inverted lists must be retrieved per query.
Figure 4 indicates some potential for the host and
prefetch index organizations if the storage devices are
relatively slow (e.g. optical disks or a jukebox). It is
important to note that our disk seek time parameter
captures not only the seek time but also other fixed
I/O costs. For example, to get to the head of the in-
verted list, the system may have to go through a B-tree
or other data structure. These additional I/O costs are
modeled in our case by the “seek time.” Furthermore,
we are assuming that inverted lists (or fragments) are
read with a single I/O. For longer lists there may be sev-
eral I/Os in practice, and hence multiple seeks. Thus,
the higher seeks times shown in Figure 4 may occur in
practice even without optical devices. In these cases,
the disk and I/O organizations may not be advisable.
Figure 5 shows the effect of the load level on through-
put for the various index organizations. As the load
level rises, various bottlenecks in each index organiza-
tion occur. Other collected data shows that the disk
index organization has a disk utilization rate of 80.5%
for a multiprogramming level of 1. The I/O bus index
organization has a disk utilization of 58.7% for a multi-
programming level of 1 which rises to 77.5% at a mul-
tiprogramming level of 8. The host index organization
has low disk and CPU utilization at a multiprogram-
ming level of 1 (about 23.0% and 33.0% respectively)
and thus has more spare resources to consume as the
multiprogramming level rises. At a multiprogramming
level of 32 (128 total simultaneous queries since there
are 4 hosts) the disk utilization has risen to over 74.3%
and CPU utilization to over 78.2% for this index organi-

12000

disk o—

1/0 bus —+-
host -@-

system -x

10000 prefetch I -

8000 [~

6000 -

4000 [\

query response time (ms)

2000 [

10 15 20 25 30
number of keywords per query

Figure 6: The sensitivity of response time to the number
of keywords in a query.

zation. (Note that sufficient memory must be available
to prevent excessive page faulting.)

The system organization has a LAN bottleneck even
a low multiprogramming loads (94.7% at a multipro-
gramming level of 4) and thus does not improve as the
load increases. With a multiprogramming load of 32,
additional data shows that the response times for the
disk, I/0O bus, host, system and prefetch I index organi-
zations are 17.9 sec., 12.0 sec., 10.6 sec., 62.6 sec., and
18.2 sec. respectively

The effect of large partial answer sets is shown clearly
in Figure 6 which graphs response time as a function of
the number of keywords. This graph shows a counter-
intuitive result: in some situations, the response time of
a query decreases as the number of keywords in a query
increases. The sharp drop of the disk, I/O bus, and host
lines from one keyword per query to two keywords per
query is due to the reduced size of partial answer sets.
That is, since the base case parameter set has four hosts,
a query containing one keyword under the disk, I/O bus
and host index organizations will transmit 3/4 of the
answer set across the local area network for these three
index organizations. In the case of a two word query,
again 3/4 of the answer set is transmitted. However, the
total answer set size is much smaller since each partial
answer set is the intersection of two inverted lists. This
explains the sharp drop in the response time for these
organizations from 1 to 2 keywords. As the number of
keywords increases beyond 2, the additional work per
keyword needed dominates the response time.

In the system index organization, the size of the par-
tial answer sets transmitted depends on which hosts the
particular words in the query reside. A subquery con-
taining a single word has a large partial answer set. For
2 keywords, the probability of a single word subquery at
some host is high, thus leading to a large response time
due to the transmission of these partial answer sets. At
5 keywords per query, the probability of a large par-

tial answer sets is reduced and thus response time is
comparatively improved. With more than 15 keywords
per query the probability of a large partial answer set
is small and the response time for these queries is large
due to the work required for query processing.

Note that after 15 keywords per query, prefetch I per-
forms worse than the simple system organization. This
is because in the system organization the probability of
a single word answer set being transmitted is very small
anyway. Thus, the additional cost of the prefetch I al-
gorithm is counterproductive. (This discrepancy can be
eliminated by switching from the prefetch I algorithm
to the algorithm when the answer set of a subquery is
expected to be small.) However, for small numbers of
keywords, the prefetch I algorithm performs as expected
and avoids transmitting large partial answers sets char-
acteristic of the system level organization.

So far, the system organization, with or without
prefetch, has generally not performed well. To deter-
mine under what circumstances a prefetch algorithm
performs well, we remove the LAN bandwidth bottle-
neck and increase the number of hosts to 16 while keep-
ing the number of disks and I/O buses constant. We
study the rise in query throughput as the seek time
increases in Figure 7. Again, the disk organization is
sensitive to the increase in seek time for the same rea-
sons as Figure 4. The host and I/O bus index organi-
zations are identical since each host has one I/O bus.
The figure shows that the large number of hosts makes
the these two index organizations sensitive to seek time.
The prefetch I algorithm performs well (with a disk seek
time above 50 ms) because an individual query (with
5 keywords) involves at most 6 hosts which frees the
other hosts to process other subqueries. Given the ar-
guments for considering disk seek time as a model of all
fixed computation which consumes disk resources, 50
ms is not an unreasonable amount of time for a disk to
be busy per inverted list fetch. For a disk seek time of
80 ms in Figure 7, the disk, I/O bus, host, system, and
prefetch I response times are 27.1 sec, 15.0 sec, 15.0 sec,
10.8 sec, and 10.2 sec, respectively.

6 Conclusion

In this paper we have described various options for
physical design of a text document retrieval system. We
have studied the performance of several parallel query
processing strategies, and the impact of the underlying
technology. In particular, the choice of an index organi-
zation depends heavily on the access time of the storage
device and the bandwidth of interprocessor communica-
tion. We also discovered some unexpected results, e.g.,
as the size of a query increases, its response time may
drop; the fancier prefetch optimizations were usually
counterproductive.

In general, our results indicate that the host index
organization is a good choice. It uses system resources

disk =—
20 |- 1/0 bus ~+— |
host -8-
system %
5 prefetch I -4
8
2
o
8
a 15 | B
g N
I .
i .
g .
4 \EZ\\‘
b} 10 F - il
& -
& -
H T
2 i —.
- S b~
£ ~
.
g s —
5 —--g
g
—
. ‘ ‘ ‘ ‘ ‘ ‘
10 20 30 40 50 60 70 80
disk seek time (hosts = 16, I/O buses per host = 1, LAN bandwidth = 90)
Figure 7: A good hardware configuration for the

prefetch algorithm.

effectively and can lead to high query throughputs in
many cases. When it does not perform the best, it is
not very far off from the best strategy.

Our results also indicate that the system organiza-
tion, even with the prefetch organization, is not good
unless disk seeks are high and network bandwidth is
high. We should, however, point out four factors that
may be unfair to this approach: (1) We are not mod-
eling document fetches from disks. If the documents
were stored on the same disks as the indexes, then disk
utilizations would be higher. This would make the sys-
tem organization more attractive since it reduces the
I/O load. (2) We are not modeling pipelining of I/0
and CPU processing within a query. This can reduce
query response time, and would be more beneficial to
the system organization since it deals with longer in-
verted lists. (3) Another reduction in response time is
early termination of the intersection algorithm. That
is, if the inverted lists are in sorted order, the inter-
section algorithm can (in some cases) terminate having
read only a fraction of the inverted lists. (4) We are
using a closed simulation model where larger response

times penalize throughput.

Acknowledgements: to Sam DeFazio, Ben Kao,
Miron Livny, Sergio Plotkin, Mendel Rosenblum, and
the referees for help on aspects of this paper.

References

[1] I.J. Aalbersberg and F. Sijstermans. High-quality and high-
performance full-text document retrieval: the parallel in-
foguide system. In Proceedings of the First International
Conference on Parallel and Distributed Information Sys-
tems, pages 151-158, Miami Beach, Florida, 1991.

[2] F. J. Burkowski. Retrieval performance of a distributed
text database utilizing a parallel processor document server.
In Proceedings of the Second International Symposium on
Databases tn Parallel and Distributed Systems, pages 71—
79, Dublin, Ireland, 1990.

10]

(11]

(12]

(13]

(14]

(19]

(20]

(21]

D. Chapman and S. DeFazio. Statistical characteristics of le-
gal document databases. Technical report, Mead Data Cen-
tral, Miamisburg, Ohio, 1990.

A. L. Chervenak. Performance measurements of the first raid
prototype. Technical Report UCB/UCD 90/574, University
of California, Berkley, May 1990.

S. DeFazio. Document retrieval benchmark. Working Draft
Version 1.2, Sequent Computer Systems, 1992.

S. DeFazio and J. Hull. Toward servicing textual database
transactions on symmetric shared memory multiprocessors.
In Proceedings of the International Workshop on High Per-
formance Transaction Systems, Asilomar, 1991.

ACM Computing

C. Faloutsos. Access methods for text.
Surveys, 17:50-74, 1985.

C. Faloutsos and H. V. Jagadish. On b-tree indices for
skewed distributions. In Proceedings of 18th International
Conference on Very Large Databases, pages 363-374, Van-
couver, British Columbia, Canada, 1992.

J. Fedorowicz. Database performance evaluation in an in-
dexed file environment. ACM Transactions on Database
Systems, 12(1):85-110, 1987.

D. Harman and G. Candela. Retrieving records from a gi-
gabyte of text on a minicomputer using statistical ranking.
Journal of the American Society for Information Science,
41(8):581-589, 1990.

B.-S. Jeong and E. Omiecinski. Inverted file partitioning
schemes for a shared-everything multiprocessor. Techni-
cal Report GIT-CC-92/39, Georgia Institute of Technology,
College of Computing, 1992.

Z. Lin. Cat:
search. In Proceedings of the First International Conference
on Parallel and Distributed Information Systems, pages
151-158, Miami Beach, Florida, 1991.

An execution model for concurrent full text

M. Livny. DENET user’s guide. Technical report, University
of Wisconsin-Madison, 1990.

F. Rabitti and J. Zizka. Evaluation of access methods to
text documents in office systems. In Research and Develop-
ment in Information Retrieval, pages 21-40, King’s college,
Cambridge, 1984.

G. Salton and C. Buckley. Parallel text search meth-
ods. Commaunications of the ACM, 21(2):202-214, February
1988.

C. Stanfill and B. Kahle.
connection machine system. Communications of the ACM,
29:1229-1239, 1986.

Parallel free-text search on the

H. S. Stone. Parallel querying of large databases: A case
study. IEEE Computer, pages 11-21, October 1987.

A. Tomasic and H. Garcia-Molina. Performance of inverted
indices in distributed text document retrieval systems. Tech-
nical Report STAN-CS-92-1434, Stanford University De-
partment of Computer Science, 1992.

E. M. Voorhees. The efficiency of inverted index and clus-
ter searches. In Proceedings of the ACM Conference on
Research and Development in Information Retrieval, pages
164-174, Pisa, Italy, 1986.

P. Weiss. Size Reduction of Inverted Files Using Data Com-
pression and Data Structure Reorganization. PhD thesis,
George Washington University, 1990.

G. K. Zipf. Human Behavior and the Principle of Least
Effort. Addison-Wesley Press, 1949.

[22] J. Zobel, A. Moffat, and R. Sacks-Davis. An efficient index-
ing technique for full-text database systems. In Proceedings
of 18th International Conference on Very Large Databases,
Vancouver, 1992.

