
Query Processing and Inverted Indices in Shared�Nothing Text

Document Information Retrieval Systems
Appears in The VLDB Journal ��� �� pp� ������	�

Anthony Tomasic and Hector Garcia�Molina

January ��� ����

Abstract

The performance of distributed text document retrieval systems is strongly in
uenced by
the organization of the inverted index� This paper compares the performance impact on query
processing of various physical organizations for inverted lists� We present a new probabilistic
model of the database and queries� Simulation experiments determine those variables that most
strongly in
uence response time and throughput� This leads to a set of design trade�o�s over a
wide range of hardware con�gurations and new parallel query processing strategies�

Key Words� Performance� �le organization� query processing� inverted �le� inverted index�
striping� shared�nothing� full text information retrieval�

� Introduction

Full text document databases of newspaper articles� journals� legal documents etc� are readily
available� These databases are rapidly increasing in size as the cost of digital storage drops�
as more source documents are available in electronic form� and as optical character recognition
becomes commonplace� At the same time� there is a rapid increase in the number of users and
queries submitted to such text retrieval systems� One reason is that more users have computers�
modems� and communication networks available to reach the databases� Another is that as the
volume of electronic data grows� it becomes more and more important to have e�ective search
capabilities� as provided by information retrieval systems�

As the data volume and query processing loads increase� companies that provide information
retrieval services are turning to distributed and parallel storage and searching� The goal of this pa�
per is to study parallel query processing and various distributed index organizations for information
retrieval�

To motivate the issues that will be addressed� let us start with a simple example� The left
hand side of Figure � shows four sample documents� D�� D�� D�� D�� that could be stored in an
information retrieval system� Each document contains a set of words �the text	� and each of these
words �maybe with a few exceptions	 will be used to index the document� In Figure �� the words
in our documents are shown within the document box� e�g�� document D� contains words a and b�
�Of course� in practice documents will be signi
cantly larger and will contain many more words�	

Anthony Tomasic� M�A�� is Ph�D� Candidate� Department of Computer Science� Princeton University� Princeton�
NJ ������ Hector Garcia�Molina� Ph�D�� is Professor� Department of Computer Science� Stanford University� Stan�
ford� CA ������ 	Reprint requests to Anthony Tomasic� Dept� of Computer Science� Margaret Jacks Hall� Stanford
University� Stanford� CA ������ USA�
 e�mail� tomasic�cs�stanford�edu� hector�cs�stanford�edu� This research
was partially supported by the Defense Advanced Research Projects Agency of the Department of Defense under
Contract No� DABT����
�C������

�



D�

d � d � d � d �

D�

D� D�

a b a b

a a b
c d

BUS � BUS �

CPU � CPU �

LAN

Figure �� A example set of four documents and an example hardware con
guration�

Index Disk Inverted Lists in word� �Document� O�set� form

Disk d � a� �D�� �	� b� �D�� �	
d � a� �D�� �	
d � a� �D�� �	� b� �D�� �	
d � a� �D�� �	� b� �D�� �	� c� �D�� �	� d� �D�� �	

Host� I
O bus d � a� �D�� �	� �D�� �	
d � b� �D�� �	
d � a� �D�� �	� �D�� �	� c� �D�� �	
d � b� �D�� �	� �D�� �	� d� �D�� �	

System d � a� �D�� �	� �D�� �	� �D�� �	� �D�� �	
d � b� �D�� �	� �D�� �	� �D�� �	
d � c� �D�� �	
d � d� �D�� �	

Table �� The various inverted index organizations for Figure �� The host and I
O bus organizations
are identical in this example because each CPU has only one I
O bus�

To 
nd documents quickly� full text document retrieval systems traditionally build inverted
lists ��� on disk� For example� the inverted list for word b would be b� �D���	� �D���	� �D���	� Each
pair in the list indicates an occurrence of the word �document id� position	� �Position can be word
position or byte o�set�	 To 
nd documents containing word b� the system only needs to retrieve
this list� To 
nd documents containing both a and b� the system could retrieve the lists for a
and b and intersect them� The position information in the list is used to answer queries involving
distances� e�g�� 
nd documents where a and b occur within so many positions of each other�

Next suppose that we wish to store the inverted lists on a multiprocessor like the one shown
in Figure � �on right	� This system has two processors �CPUs	� each with a disk controller and
I
O bus� �Each CPU has its own local memory�	 Each bus has two disks on it� The CPUs are
connected by a local area network� Table � shows four options for storing the lists�

��� System index organization

In the system index organization� the full lists are spread evenly across all the disks in the system�
For example� the inverted list of word b discussed earlier happened to be placed on disk d��

�



��� Disk index organization

With the disk index organization� the documents are logically partitioned into four sets� one for
each disk� In our example� we assume document D� is assigned to disk d�� D� to d�� and so on�
In each partition� we build inverted lists for the documents that reside there� Notice that to now
answer the query �Find all documents with word b� we have to retrieve and merge � lists� one from
each disk� �Since disk d� contains no documents with word b� its b list is empty�	

��� Host index organization

In the host index organization� documents are partitioned into two groups� one for each CPU�
Here we assume that documents D�� D� are assigned to CPU �� and D�� D� to CPU �� Within
each partition we again build inverted lists� The lists are then uniformly dispersed among the disk
attached to the CPU� For example� for CPU �� the list for a is on d�� the list for b is on d�� and so
on�

��� I�O bus index organization

The I�O bus index organization follows the same partitioning principal as the other index organi�
zations� except at the I
O bus level� Documents are partitioned into two groups� one for each I
O
bus� Within each partition inverted lists are build and then uniformly dispered among the disks
attached to the I
O bus� In our example� this results in the same organization as the host index
organization since each host has exactly one I
O bus� If a host has more than one I
O bus� then
the host index organizations and I
O bus index organizations would di�er�

��� Query processing

Query processing under each index organization is quite di�erent� For example� consider the query
�Find documents with words a� c�� and say the query initially arrives at CPU �� Under the system
index organization� CPU � would have to fetch the list for a� while CPU � would fetch the c list�
CPU � would send its list to CPU �� which would then intersect the lists� With the host index
organization� each CPU would 
nd the matching documents within its partition� Thus� CPU �
would get its a and c lists and intersect them� CPU � would do likewise� CPU � would sent
its resulting document list to CPU �� which would then merge the results� With the disk index
organization� CPU � would retrieve the a and c lists o� disk d�� and would also retrieve the a� c
lists from disk d�� CPU � would obtain two lists of matching documents �one for each disk	� would
merge them� and would then merge them with the list from CPU ��

There are many interesting trade�o�s among these storage organizations� With the system
index organization� there are fewer I
Os� That is� the a list is stored in a single place on disk�
To read it� the CPU can initiate a single I
O� the disk head moves to the location� and the list
is read in �this may involve the transfer of multiple blocks	� In the disk index organization� on
the other hand� the a list is actually stored on four di�erent disks� To read these list fragments�
� I
Os must be initiated� four heads must move� and four transfers take place� However� each of
the transfers is roughly a fourth of the size� and they may take place in parallel� So� even though
we are consuming more resources �more CPU cycles to start more I
Os� and more disk seeks	� the
list may be read into memory faster�

The system index organization may save disk resources� but it consumes more resources at the
network level� Notice that in our example� the entire c list is transferred from CPU � to CPU ��
and we can expect these inverted lists to be much longer than the document lists exchanged under
the other schemes� However� the long inverted list transfers do not occur in all cases� For example�

�



the query �Find documents with a and b� �system index organization	 does not involve any such
transfers since all lists involved are within one computer� Also� it is possible to reduce the size of
the transmitted inverted lists by moving the shortest list� For example� in our �Find documents
with a and c�� we can move the shorter list of a and c to the other computer�

Thus� the performance of each strategy will depend on many factors� including the expected
type of queries� the optimizations used for each query processing algorithm� whether throughput
or response time is the goal� the resources available �e�g�� how fast is the network� how fast are disk
seeks	� In this paper we will study these issues� discussing the options for index organization and
parallel query processing� We also present results of detailed simulations� and attempt to answer
some of the key performance questions� Under what conditions are each index organization better�
How does each index organization scale up to large systems �more documents� more processors	�
What is the impact of key parameters� For instance� how would a system with optical disks
function�

In Section � we describe our hardware scenario� query processing algorithms� physical index
organization� and related work in more detail� To study performance we need to model various key
components such as the inverted lists� the queries� and the answer sets� Although there has been a
lot of work done on information retrieval systems� to our knowledge such models� appropriate for
studying parallel query execution� have not been developed� In Section � we de
ne simple models
for these and other critical components� In Section � we describe the simulation� while in Section �
we present our results and comparisons�

� De�nitions and Framework

Documents contain words� The set of all words occurring in the database is the vocabulary� For
convenience� we name words by their occurrence rank� e�g�� word � is the most frequently occurring
word� word � is the next most frequent� and so on� �In the example of Figure �� the vocabulary is
fa� b� c� dg� word � is a� word � is b� etc�	 We use the word and the rank of the word interchangeably�

A query retrieves documents satisfying a given property� In this paper� we concentrate on
�boolean and� queries of the form a� b� c � � �� Such queries 
nd the documents containing all the
listed words� The words appearing in a query are termed keywords� Given a query a � b � � � the
document retrieval system generates the answer set of the document identi
ers of all the documents
that match the query� A match is a document that contains the words appearing in the query�

We focus on boolean�and queries because they are the most primitive ones� For instance� a
more complex search property such as �a�b	 OR �c�d	 can be modeled as two simple and�queries
whose answer sets are merged� A distance query �Find a and b occurring within x positions� can
be modeled by the query a� b followed by additional CPU processing that compares the positions
of the occurrences�

��� Hardware Con�guration

We consider hardware organizations like the one in Figure � but we vary the number of CPUs or
hosts� the number of I
O controllers per host� and the number of disks per controller� Table �
lists the parameters that determine a con
guration� The column �Value� in the table refers to the
�base case� used in our simulation experiments �Section �	� That is� our experiments start from
a representative con
guration� and from there� we explore the impact of changing the values� The
base case does not represent any particular real system� it is simply a convenient starting place�

�



Parameter Value Description

Hosts � Number of Hosts
I�OBusesPerHost � Number of Controllers and I
O Buses per Host
DisksPerI�OBus � Number of Disks for each I
O bus

Table �� Hardware con
guration parameter values and de
nitions�

��� Physical Index Organization

The inverted index can be partitioned and fragmented in many ways� We study a single natural
division by hardware� This division does not require any unusual hardware or operating system
features� The documents reside in a uniformly distributed manner across all disks d in the system
�d � Hosts � I�OBusesPerHost �DisksPerI�OBus	� Let the disks be numbered from � to d� �
as in Figure ��

The inverted index organization is compared for four mutually exclusive cases� In the disk index
organization� an inverted index is constructed for all words in the documents residing on each disk�
Thus� for a given word� there are d inverted lists containing that word �if a given word does not
appear in any documents on a disk� then that list is empty	� In the I�O bus index organization� an
inverted index is constructed for all the documents on the disks attached to the same I
O bus� In
the host index organization� an index is constructed for all the documents on a single host� Lists
are distributed by host in a similar manner� Finally� in the system index organization a single
index is constructed for all documents� Table � shown earlier illustrated these index organizations�
but note that in that example the I
O bus and host index organizations are identical because hosts
have a single I
O bus� Note that regardless of the index organizations the same amount of data is
stored in the system and for any query the same amount of data is read from disk�

In any of the organizations� if an index spans x disks� we assume the lists are dispersed over
the x disks� In particular� the list for word w is placed on the disk i� �w mod x	� where i is the

rst disk in the group� For example� for the host index organization in Table �� one of the indices
spans disks d�� d�� the second spans d�� d�� For the second index� the list for a �word �	 goes to
d�� the list for b �word �	 goes to d�� the list for c �word �	 goes to d�� and so on�

��� Algorithms

For all con
gurations except the system one� queries are processed as follows� The query a� b��� is
initially processed at a home site� That site issues subqueries to all hosts� each subquery contains
the same keywords as the original query� A subquery is processed by a host by reading into memory
all the lists involved� intersecting them� producing a list of matching documents� The answer set
of a subquery� termed the partial answer set� is sent to the home host� which concatenates all the
partial answer sets to produce the answer to the query�

In the system index organization� the subquery sent to a given host contains only the keywords
that are handled by that host� If a host receives a query with a single keyword� it fetches the
corresponding inverted list and returns it to the home host� If the subquery contains multiple
keywords� the host intersects the corresponding lists� and sends the result as the partial answer
set� The home host intersects �instead of concatenates	 the partial answer sets to obtain the 
nal
answer�

As mentioned in Section �� the algorithm we have described for the system index organization
can be improved� Here we describe three optimizations� called Prefetch I� II and III� Note that

�



these are heuristics� in some cases they may not actually improve performance�
In the Prefetch I algorithm� the home host determines the query keyword k that has the shortest

inverted list� �We assume that hosts have information on keyword frequencies� if not� Prefetch I is
not applicable�	 In Phase �� the home host sends a single subquery containing k to the host that
handles k� When the home host receives the partial answer set� it starts phase �� which is the same
as in the un�optimized algorithm� except that the partial answer set is attached to all subqueries�
Before a host returns its partial answer set� it intersects it with the partial answer set of the phase
� subquery� This signi
cantly reduces the size of all partial answer sets that are returned in phase
��

The Prefetch II algorithm is similar to Prefetch I� except that in phase � we send out the
subquery with the largest number of keywords� We expect that as the number of keywords in a
subquery increases� its partial answer set will decrease in size� Thus� the amount of data returned
by the one host that processes the phase � subquery should be small� If there is a tie �two or
more subqueries have the same number maximum of keywords	� Prefetch II selects one of them at
random�

Prefetch III combines the I and II optimizations� That is� the 
rst subquery contains the largest
number of keywords� but if there is a tie� the subquery with the shortest expected inverted lists
is selected� Intuitively� one would expect Prefetch III to perform the best� However� we chose
to study all three techniques �Section �	 to understand what each optimization contributes� In
particular� keep in mind that Prefetch I and III require statistical information on inverted list
sizes� Our results will tell us if it is worthwhile keeping such information� i�e�� if the improvement
of Prefetch III over II �which does not require this information	 is signi
cant�

To illustrate these optimizations� consider the query a � b � c � d in the example of Figure �
�system index organization	� With Prefetch I� the subquery d would be sent to host CPU � in
phase �� �Of the four keywords� d occurs less frequently in the database� and it is stored in host
CPU ��	 In phase �� the subquery a � b would be sent to CPU �� together with the list for d from
phase �� CPU � would receive the query c together with the d list� With Prefetch II� the 
rst
subquery would be either a � b �to CPU �	 or c � d �to CPU �	� selected at random� Prefetch III
would select c � d as the 
rst subquery because it involves shorter lists�

��� Striping

Striping ���� is a method to decrease the response time and increase the throughput to read an
inverted list by �a	 allocating the blocks of an inverted list horizontally across several disks �by
using modular arithmetic	 and �b	 reading the blocks in parallel� For example� suppose we have
four blocks b�� b�� b�� b� which store an inverted list for a word z which is located on the disk d� of
three disks d�� d�� d�� In the normal case� all four blocks would be vertically allocated and would
reside on disk d�� Striping word z across these three disk results in block b� residing on disk d�
�the 
rst block does not change its location	� block b� on disk d� �since the blocks are allocated
horizontally	� block b� on disk d� �by using modular arithmetic	 and block b� resides on disk d��
Thus� disk d� and d� have one block of the inverted list for word z and disk d� has two blocks�

We can stripe an inverted list under any index organization� In the host index organization�
the inverted list would be striped across all the disks on the host� In Table � suppose the inverted
list for word a was striped with one entry per block� �This assumption simpli
es the example� in
practice� many entries are stored per block�	 For CPU �� the entry �D���	 would be on disk d��
the entry �D���	 would be on disks d�� Similarly for CPU �� the �D���	 entry would be on disks
d� and the �D���	 entry would be on disk d��

In the I
O bus index organization� the inverted list would be striped across all the disks on the
I
O bus� In the disk index organization� striping has �essentially	 no e�ect� since there is only one

�



disk for each index so vertical and horizontal block allocation result in the same phyical allocation
for any inverted list�

In the system index organization� the natural approach would be to stripe across all the disks
in the system� However� this greatly complicates query processing� requiring for instance that the
blocks of an inverted list be fetched from multiple hosts and assembled at some particular host
before processing on that list can continue� Thus� we choose to stripe a system index organization
inverted list only across the disks on the host that the inverted list resides� In Table �� the inverted
list for word a in the system index organization would be striped across all the disks on CPU ��
Thus� disk d� would have the list �D���	�D���	 and disk d� would have the list �D���	�D���	� This
method avoids the complication of striping across the system� but still provides the advantage that
the inverted list for a word is located in only one host in the system�

Striping does not always improve response time for reading an inverted list� To understand the
circumstances in which striping is an advantage� suppose s is the disk overhead time for a read
and l is the time needed for the read of an inverted list� Then the response time to read a list
from disk is s� l� If the list is striped over k disks� the response time ranges roughly from s� l�k
best case �ignoring any queuing delays or contention	 to sk � l worst case when the reads are
processed sequentially� Thus� under best case conditions� striping should improve response time
when s� l�k � s� l� Note that the additional work required for a striped read is s�k� �	 and this
quantity must be kept small to minimize the impact of striping on throughput� Given the range of
values for these variables in our model� short inverted lists generally do not bene
t from striping�
Section � reports the e�ect of striping the longer inverted lists for all the index organizations� This
is studied by varying the fraction of the vocabulary that have striped inverted lists�

The attentive reader may wonder about the exact di�erence between the disk index organization
for an inverted list and the striped host index organization for the same list� Suppose we added
������� documents to Figure �� First� in the disk organization� the lengths of the inverted list for
a word a would vary slightly from disk to disk� due to the variation in the number of times that
the word occurs in the documents for each disk� �This variation is ignored in this study�	 Second�
internal fragmentation occurs for each inverted list for the word a on each disk� In the host index
organization� all the inverted lists on that host for the word a are collected together and striped
across the disk� Thus internal fragmentation occurs only at the end of that single inverted list�

The additional internal fragmentation that appears in the disk organization has a small impact
on response time and throughput� Thus� controlling the number of striped inverted lists is very sim�
ilar to controlling the number of inverted lists that have a disk index organization� We expect that
as the number of words with striped inverted lists approachs the entire vocabulary� performance
for any index organization should approach the performance of the disk index organization�

��� Related Work

For an introduction to full text document retrieval� the reader is referred to ����� In the design of
full text document retrieval systems� there is a basic trade�o� between the time taken to process the
document database and the time taken to process queries ���� In this paper we assume that queries
can be answered without examining the text any documents� �The opposite approach� the direct
scanning of documents �usually in combination with some indexing	 is also possible �����	 For full
text retrieval systems� inverted lists are typically used� Compression of inverted lists is actively
studied ���� ����� The probabilistic construction of inverted lists by assuming the independence
of word occurrences also appears in ��� and the work presents an interesting variation on inverted
lists� In addition� much work has been done on other data structures� such as signature schemes
����

In ���� Burkowski examines the performance problem of the interaction between query process�

�



Parameter Value Description

D ������ the number of documents
W ����� words per document
V the set of words appearing in documents�

the vocabulary
T ������� total words in V i�e� j V j� T
Z�j	 Z�j	 Pr�word � j	� a probability distribution

Table �� Parameters of the document model�

ing and document retrieval and studies the issue of the physical organization of documents and
indices� His paper simulates a collection of servers on a local area network� as we do� Our work is
complementary to this paper in that we concentrate on physical index organization� This article
extends previous work ���� in describing the simulation fully� describing the mathematical basis
of the work� and modeling striping� We include some performance comparisons for striping in
Section �� In ����� and independently from our work� the issue of partitioning by document vs�
partitioning by keyword is studied for share�everything multiprocessors� The paper con
rms the
results presented here�

The work on document retrieval in multiprocessor systems �e�g� ��� ��� ���� ���� ����	 is also
related to this paper in that physical index organization issues need to be addressed for those
architectures� While some issues for these systems are not considered here� we believe that the
issue of physical organization is an important one and that the prefetch algorithms presented in
this paper probably perform well on multiprocessor architectures� Inverted 
les are also used in
some parallel computers ���� and this paper also assigns keywords to processors� Finally� in some
articles on information retrieval ���� ���� ���� various benchmark 
gures are given�

� Models

There are two choices for representing documents and queries in a simulation study� One is to use
a real document base and an actual query trace� The second is to generate synthetic databases
and queries� from probability distributions that are based on actual statistics� Using a particular
database and query trace is more realistic� but limits one to a particular application and domain�
Using synthetic data gives one more �exibility for studying a wide range of scenarios� Here we
follow the synthetic data approach� as we feel it is more appropriate for a 
rst study that explores
options and tradeo�s� rather than predict the performance of a particular document application�

��� Document Model

For the model of a document we 
rst de
ne several parameters in Table �� The database consists
of a collection of D documents� Conceptually� each document is generated by a sequence of W
independent and identically distributed trials� Each trial produces one word from the vocabulary
V � Each word is uniquely represented by an integer w in the range � � w � T where T �j V j�
The probability distribution Z describes the probability that any word appears� For convenience�
the distribution is arranged in non�increasing order of probability i�e� Z�w	 � Z�w � i	� �i � ��
The �Value� column in Table � again represents our base case scenario� In this case� the values
are from a legal document base described in ����

To construct a speci
c probability distribution Z of Z � a curve is 
t to the rank
occurrence

�



1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1 10 100 1000 10000 100000

n
u
m
b
e
r
 
o
f
 
o
c
c
u
r
r
e
n
c
e
s
 
o
f
 
a
 
w
o
r
d

rank of words in order by number of occurrences

occurrences
linear

quadratic

Figure �� Curve 
t to vocabulary occurrence data�

distribution of the vocabulary of the legal documents database ��� and then normalized to a proba�
bility distribution� Figure � shows the log
log graph of two curves that have been 
t to some of the
���� ��� most frequently occurring words� The X axis is the distinct words in the database� ranked
by the number of occurrences in non�increasing order� The Y axis is the number of occurrences
of each word� A diamond symbol marks the number of occurrences of a word� The curve labeled
�linear� is the result of 
tting a linear equation and the curve labeled �quadratic� is the 
t of a
quadratic equation� �We used ���� for curve 
tting�	

Given the quadratic 
t curve� the form of the probability distributionZ is derived in Appendix A
as

Z�j	 �
j����������ln j���������e�������

�������� ���
��	

where the denominator is a normalization constant� �Although our distribution is similar to Zipf�s
����� ours matches the actual distribution better� See Appendix A�	

��� Query Model

A query is a sequence of words �w�� � � � � wK	 generated from K independent and identically dis�
tributed trials from the probability distribution Q�j	� Thus� the occurrence of the words are
mutually independent� See Table � for a list of the parameters and base values chosen�

We now construct a speci
c probability distribution Q� There is little published data on this
distribution� and there is no agreement on its shape �however� see ��� for a di�erent model	� It
does not follow the same distribution as the vocabulary �Figure �	� as relatively infrequent words
are often used in queries� In light of this� the uniform distribution was chosen for Q� i�e� every
word appears in a query with equal probability� The distribution allows easy comprehension of
the impact of the distribution on performance� However� we found that the uniform distribution
across the entire vocabulary gave far too much weight to the most infrequently occurring words
�the tail of Figure �	� For example� these tail words are often misspellings that only appear once

�



Parameter Value Description

K � number of keywords in a query
Q�j	 Q�j	 Pr�word � j	� a probability distribution
u �� fraction of T �in rank order of V 	 appearing

in a query
V � the u fraction of V

S V �K set of possible queries� S � V � � � � � � V �

Table �� Parameters for the query model�

in the entire database and never appear in queries� Thus� in the Q distribution we cut o� the
most infrequent words� For this we introduce a parameter u to determine the range of the uniform
distribution� giving Q the equation

Q�k	 �

�
�
uT

� � k � uT
� otherwise

As u decreases� the probability of choosing a word of low rank in a query increases� Words
of low rank occur often in the database� Thus the expected number of documents to match a
query increases since each word of the query occurs often in the database� Hence� if u is too small�
queries will probabilistically have answer sets that are a large fraction of the database� On the
other hand� if u is too large� answer sets will be unrealistically small� To estimate a good value for
u� in Appendix B we compute the expected number of documents that match a query of length
K for various values of u� Note that the Q distribution has two other advantages� Since the
distribution is simple� the impact of the distribution and consequently the impact of the work load
on the system can be readily understood� �In Section �� for example� we vary u and show the
impact on performance�	 Secondly� this distribution may favor very long inverted lists since very
common words �such as �for�	 are part of the distribution� Thus� we consider this simulation to
be a worst�case scenerio�

Using the parameter values in Table � and Equation �� we graph the function Z for the various
values of K and u in Figure �� In the base case the number of keywords in a query is �� so we
examine the graph at the X axis value of �� The value of u � ���� was chosen as the base value
since it indicates about ��� documents on the average are found per query� Note that in this case
the fraction uT of the vocabulary includes ����� of the cumulative keyword occurrences in ��� thus
covering all but ���� of the words in the database� In Section � the response time sensitivity to
uT of the various index organizations is discussed�

��� Answer Set Model

At various points in the simulation we will need to know the expected size of a query answer set
or partial answer set� Consider a particular query �or subquery	 with keywords w�� � � � � wK � Say
this query is executed on a body of documents of size Documents� Note that under the system
index organization�Documents � D �D is the total number of documents	� However� for the other
organizations� Documents is the number of documents covered by the index �or indexes	 used by
the particular subquery� Given this� the expected number of documents that match the query is

Documents � ��� e�WZ	w�
� � � � ��� e�WZ	wK
�� ��	

��



1

10

100

1000

10000

100000

1e+06

2 4 6 8 10 12 14 16 18 20

e
x
p
e
c
t
e
d
 
n
u
m
b
e
r
 
o
f
 
d
o
c
u
m
e
n
t
s
 
i
n
 
t
h
e
 
a
n
s
w
e
r
 
s
e
t

number of keywords in a query

u = 0.050
u = 0.010
u = 0.007
u = 0.004

Figure �� The Expected Number of Documents in an Answer Set for any Query�

�The term �� � e�WZ	w�
� is the probability that a document contains keyword w��	 Equation �
is similar to Equation � in Appendix B� except that here we are looking at a speci
c query� as
opposed to averaging over all possible queries�

��� Inverted List Model

The inverted list contains a sequence of elements each of which describes a single appearance of the
word� Each element contains a document identi
er and a word o�set of the word in the document�
Thus� the inverted index is essentially a one�to�one mapping to the documents �except for the white
space� punctuation� and a small number of common words that are ignored when the document is
added to the inverted index	�

The expected number of occurrences of a word in a document is Z�w	 �W � Thus� the expected
number of entries of the corresponding inverted list is

Z�w	 �W �Documents ��	

where Z�w	 is the value of Equation � for the word w� W is the number of words per document�
and Documents is� as before� the number of documents spanned by the index�

� Simulation

To study the index organizations and query algorithms� we implemented a detailed event�driven
simulation using the DeNet ���� simulation environment� In this section we describe important
aspects of the simulation� Tables � and � describe the base parameters used�

��



Parameter Value Description

DiskBandwidth ���� Mbits
sec Bandwidth of the disk
DiskBuff ����� Size of a disk bu�er in bytes
BlockSize ��� Number of bytes per disk block
SeekTime ��� Disk seek time in ms
BufferOverhead ��� Cost to seek one track in ms
I�OBusOverhead ��� Cost of each I
O bus transfer in ms
I�OBusBandwidth ���� Mbits
sec Bandwidth of the I
O bus
LANOverhead ��� Cost of each LAN transfer in ms
LANBandwidth ���� Mbits
sec Bandwidth of the LAN

Table �� Hardware parameter values and de
nitions�

��� Hardware

The system model consists of several hosts with a CPU and memory� several I
O buses per host
and several disks per I
O bus� The hosts are connected by a local area network� See Table � for the
parameters and base values that describe the the hardware con
guration� The values for the disk
and I
O bus portions of this table are from ���� The hosts have parameter values that correspond
to a typical workstation� See Figure � for an example hardware con
guration�

��� Inverted Lists and Answer Sets

In our simulation� we do not generate a synthetic document base a priori� Instead� when we require
the length of the inverted list for a word w� we use the expected length of the list� Thus� the length
in disk blocks of an inverted list is modeled by the equation

InvertedList�w	 � d
�Z�w	 �W �Documents �EntrySize � Compress����	

BlockSize
e

where Z�w	 �W �Documents is from Equation �� EntrySize is the average number of bits used to
represent an entry in the inverted list� ��� converts from bits to bytes� BlockSize is a parameter
representing the size of a block on disk and Compress models the e�ciency of the inverted list
compression scheme� This compression scheme model assumes a linear reduction in the size of the
inverted list� One simple way to accomplish an approximently linear reduction is to represent the
inverted lists in sorted order and then store �packed	 the di�erence between an two consecutive
entries �known as the delta encoding	� More sophisticated compression schemes ���� result in better�
nonlinear� compression ratios� The BlockSize parameter permits studying the e�ect of internal
fragmentation�

To determine if the inverted list for a word is striped� the predicate

w � Stripe � u � T

is true for striped inverted lists� Thus� if Stripe � ��� then no words have striped inverted lists
and if Stripe � ��� all words �which can appear in a query	 have striped inverted lists�

To fetch the inverted list for a word w in the unstriped case� one disk fetch corresponds to the
read of one invert list and each fetch request has a length determined by InvertedList�w	� In the
striped case� the total length is the same� but one fetch is issued for each disk that contains part

��



Parameter Value Description

CPUSpeed � Relative speed of each CPU
Multiprogram � Multiprogramming level per Host
QueryInstr ����� Query start up CPU cost
SubqueryInstr ����� Subquery start up CPU cost
SubqueryLength ���� Base size of subquery message
FetchInstr ���� Disk fetch start up CPU cost
MergeInstr �� Merge CPU cost per byte of a

decompressed inverted list
UnionInstr � Concatenation CPU cost per byte of

an answer set
Decompress �� Decompression CPU cost per byte of

inverted list on disk
AnswerEntry � Bytes to represent an entry in an

answer set
EntrySize �� Bits to represent an inverted list

entry on disk
Compress ��� Compression Ratio
Stripe ��� Fraction of query words that have a

striped inverted list

Table �� Base case parameter values and de
nitions�

of the striped inverted list� In both cases� processing for the query waits until all the fetches have
completed for all the words appearing in the subquery on a host�

The length of an answer set� in bytes� is determined by multiplying Equation � by the length
of an element of an inverted lists� AnswerEntry �see Table �	�

��� CPU simulation

The relative weight of all CPU parameters is controlled by the single parameter CPUSpeed� Thus�
the rate of the CPU can be varied independently of individual factors contributing to the length of
various CPU requests� The CPU is simulated by a FCFS in
nite length queue server� The number
of CPU instructions needed by each request is determined by the type of request�

�� query start up �determined by parameter QueryInstr	�

�� subquery start up �determined by parameter SubqueryInstr	�

�� disk fetch �determined by parameter FetchInstr	�

�� uncompression and merge of inverted lists determined by the equation

MergeInstr �
X
w

InvertedList�w	

�� the union of subquery answer sets� determined by the equation

UnionInstr �AnswerList�w�� � � � � wk	�

��



The amount of CPU time required by each request is scaled by CPUSpeed�

��� Disk and I�O bus Simulation

A disk services fetch requests from a CPU and sends the results to an I
O bus� The disk is a FCFS
in
nite length queue� An I
O bus is simulated by a FCFS in
nite length queue which services
request from disks� The disk service time for a request is determined by four factors� the constant
seek time overhead� the track�to�track seek time and overhead to load the disk bu�er� the transfer
time o� of the disk� and the time needed to gain access to the I
O bus� The seek time overhead for
the read is determined by the parameters SeekTime and implicitly includes the average rotational
delay� Every read has a 
xed overhead determined by the the initial seek and the track to track
seeks and overheads� This is modeled by

SeekTime� �InvertedList�w	�DiskBuff	�BufferOverhead

After the simulation of the seek and the seeks between bu�er loads� the disk negotiates access to
the bus by sending a BUS REQUEST message to the I
O bus node� The function transmit�x� y	
gives the time �in ms	 required to transmit y at bandwidth x� Let

a � transmit�DiskBandwidth� InvertedList�w		

b � transmit�I�OBusBandwidth� InvertedList�w			 � I�OBusOverhead	

then the BUS REQUEST messages is sent after max����� a� b	 units of time� This simulates
the overlap of the disk loading its track bu�er and the transfer of data to the I
O bus� The disk
then waits until a BUS GRANTED message is received� Then both the disk and the I
O bus are
busy for b units of time� The disk and I
O bus are then both freed to service the next request in
each respective queue�

Since an I
O bus services requests one at a time in the order of their arrival� all the disks
attached to an I
O bus compete for access to the I
O bus� In the case of a striped inverted list�
the blocks of the inverted list which reside on disks of an I
O bus are read in parallel but must be
transmitted through the I
O bus sequentially� However� if the inverted list spans more than one
I
O bus� some of the blocks are transmitted to the host entirely in parallel� since the operations of
the I
O buses are independent of each other�

��� LAN simulation

The system contains a single LAN that is simulated by a single FCFS in
nite length queue which
services subquery requests and answers that are transmitted between hosts� Subquery requests
have a length determined by parameter SubQueryLength and any additional answer set appended
to the query �as is the case with the prefetch algorithms	� Answer sets lengths are described in
Section ���� The service time for a request is determined by the equation

transmit�LanBandwidth� RequestLength	 � LANOverhead

where LanBandwidth is a parameter� Note that subquery start up requests contend with answer
set transmission� whereas disk fetch requests do not contend with fetch answers in I
O bus� This is
because disk fetch requests are of a short� constant length and consume an insigni
cant fraction of
the I
O bus bandwidth� However� subquery requests have variable length and consume a signi
cant
fraction of the local area network bandwidth when partial answer sets are transmitted� A request

��



Parameter Value Description

SimulateT ime ������ Maximum time of an experiment
ConfidenceInter �� The size of the con
dence interval
ConfidenceLevel ��� The con
dence level used with the

t statistic
BatchSize ��� The batch size of response time values

Table �� Simulation parameter values and de
nitions�

with identical source and destination hosts is not transmitted through the local area network�
Note that for simplicity� broadcast messages are not modeled and thus the query algorithms do
not use this feature� In an implementation� broadcast messages could be used to reduce the cost
of transmission of subqueries by a factor of the number of hosts because the transmission of the
prefetch subquery to each individual host would be replaced by a single broadcast transmission�

��� Query Simulation

A query� consisting of a set of words� is issued to a host� The parameterMultiprogram determines
the number of simultaneous queries per host in the simulation� The host processes the query with
the following steps

�� a CPU burst representing query parsing and start�up�

�� subquery transmission to some or all hosts in the system�

�� block and wait for the subqueries to 
nish�

�� a CPU burst to merge the results of the subqueries�

Subqueries are transmitted to hosts by inserting the subquery in the LAN queue� When a
subquery arrives at a host� it is processed by the following steps

�� a CPU burst representing subquery parsing and start�up�

�� a fetch request for an inverted list to one or more disks for each word appearing in the
subquery�

�� a block and wait for the fetches to 
nish�

�� a CPU burst representing the computation of the intersection of the fetched inverted lists�
and

�� the transmission of the answer set of the subquery back to the query�

The answer is transmitted to the host cpu by inserting it in the LAN queue�

��



Index Organization
Metric Disk I
O bus Host System P I P II P III

query response time �sec	 ���� ���� ���� ���� ���� ���� ����
response time error �sec	 ����� ����� ����� ����� ����� ����� �����

query throughput �query
sec	 ���� ���� ���� ���� ���� ���� ����
disk utilization ��	 ���� ���� ���� ���� ���� ���� ����

I
O bus utilization ��	 ���� ���� ���� ���� ���� ���� ����
CPU utilization ��	 ���� ���� ���� ���� ���� ���� ����
LAN utilization ��	 ���� ���� ���� ���� ���� ���� ����

Table �� Results of all metrics for the base case simulation experiment �P I is Prefetch I� P II is
Prefetch II and P III is Prefetch III	�

��	 Simulation

As mentioned earlier� the simulation is written inDeNet ����� The simulation tracks the system
response time and when the con
dence interval is less than ConfidenceInterval for a con
dence
level of ConfidenceLevel of this value over batches of size BatchSize� the simulation terminates
early� The values of these variables are shown in Table �� These features are provided by the
simulation programming language�

� Simulation Results

Table � presents the data collected from a simulation run on the base case of values �Tables � � �	�
The metrics of query processing response time� the error in response time ���� con
dence interval	�
query throughput� disk� I
O bus� CPU and LAN utilization were monitored for every simulation
experiment� The amount of error in the response time was controlled to prevent misinterpretation
of results� To avoid clutter� we have chosen not to add error bars to the graphs�

The table reveals that the disk� I
O bus� and host index organizations have comparable per�
formance� Of the three� the disk organization performs somewhat worse because it has the highest
disk utilization� leading to longer I
O delays� The I
O bus index organization has the best response
time and throughput in this case� However� note that the host organization has the most balanced
use of resources� and as we will see� this leads to better performance under more stressful scenarios�

The system index organization� as well as the prefetch optimizations� perform poorly in the
base case scenario� The main reason why this index organization �without prefetch	 does so poorly
is that it saturates the LAN by transmitting many long inverted lists� The prefetch organizations
reduce the amount of data sent over the LAN �see Section ���	� and indeed we observe that the
LAN utilization is much lower in these cases �see Table �	� Thus� the prefetch strategies perform
substantially better than the simple system index organization� �Note that the saturation of the
LAN depends heavily on the ratio of the bandwidth of the LAN to the average length of an inverted
list� In other work ���� we describe scenerios where the prefetch index organizations perform better
than the disk� I
O bus� or host index organizations�	

However� the prefetch strategies still perform substantially worse than the disk� I
O bus� and
host organizations� The main reason is that there is less parallelism in the prefetch strategies than
in the others� The 
rst phase of the prefetch requires waiting for one part of the query to be
completed� Furthermore� since lists are not split across disks� it takes longer to read them� These
delays lead to lower throughputs in our closed system model� That is� in our model� each computer

��



0

2000

4000

6000

8000

10000

12000

5000 10000 15000 20000 25000 30000 35000 40000

q
u
e
r
y
 
r
e
s
p
o
n
s
e
 
t
i
m
e
 
(
m
s
)

maximum keyword rank

disk
I/O bus

host
system

prefetch I

Figure �� The sensitivity of response time to the maximum query keyword rank�

runs a 
xed number of queries� If they take longer to complete� less work is done overall� The
main advantage of the prefetch strategies is that less work is done per query �i�e�� fewer disk seeks�
I
O starts	� However� in this scenario� these resources are not at a premium� so the advantages of
prefetch do not show�

To our surprise� prefetch II and III actually preform essentially the same as prefetch I �see
Table �	� In Section ��� we argued that prefetch II and III would reduce the amount of data sent
over the LAN� This is true as evidenced by the LAN utilization� However� with hindsight� we now
see that the additional work done in phase one of prefetch II and III is preformed sequentially with
respect to the rest of the processing of the query� leading to longer response times� Thus� only in
cases where the LAN is a bottleneck would prefetch II and III pay o�� So to avoid clutter we will
only show the prefetch I results�

We now study how some of the key parameters a�ect the relative preformance of the index
organizations� �We only report on the more interesting results� many more experiments were
performed than what can be reported here�	 We start by showing in Figure � the sensitivity of
response time to the value of uT � Recall that T is the size of the vocabulary and u is the fraction
of the vocabulary that can appear in a query� Each line graphs the behavior of a di�erent index
organization� The line labeled prefetch is the prefetch I processing algorithm with a system index
organization� The response times for each index organization decrease as uT increases because
the number of word occurrences in the database for an average query word decreases� That is�
as uT decreases� the inverted lists that have to be read increase in size� The disk and I
O bus
organizations are relatively insensitive to uT because they distribute lists across many disks� i�e��
the list fragments that need to be read grow at a slower rate� The system and prefetch curves are
more sensitive to uT because inverted lists are read whole� The curve for the host organization is
an intermediate case� Although not shown here� the e�ect of uT on throughput is similar�

A graph of the response time of the various con
gurations vs� the seek time of a disk in Figure �
shows that the disk and I
O bus index organizations are most sensitive to the seek time of the

��



0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100

q
u
e
r
y
 
r
e
s
p
o
n
s
e
 
t
i
m
e
 
(
m
s
)

disk seek time (ms)

disk
I/O bus

host
system

prefetch I

Figure �� The sensitivity of response time to seek time�

storage device� This is because the disk index organization must retrieve for each query more
inverted lists than any other organization� This same overhead is incurred by the I
O bus index
organization to a lesser extent� The host index organization is very insensitive to seek time since
only a few inverted lists must be retrieved per query�

Figure � indicates some potential for the host and prefetch index organizations if the storage
devices are relatively slow �e�g� optical disks or a jukebox	� It is important to note that our disk
seek time parameter captures not only the seek time but also other 
xed I
O costs� For example�
to get to the head of the inverted list� the system may have to go through a B�tree or other data
structure� These additional I
O costs are modeled in our case by the �seek time�� Furthermore�
we are assuming that inverted lists �or fragments	 are read with a single I
O� For longer lists there
may be several I
Os in practice� and hence multiple seeks� Thus� the higher seeks times shown
in Figure � may occur in practice even without optical devices� In these cases� the disk and I
O
organizations may not be advisable�

Figure � shows the e�ect of the load level on throughput for the various index organizations�
As the load level rises� various bottlenecks in each index organization occur� Other collected data
shows that the disk index organization has a disk utilization rate of ����� for a multiprogramming
level of �� The I
O bus index organization has a disk utilization of ����� for a multiprogramming
level of � that rises to ����� at a multiprogramming level of �� The host index organization
has low disk and CPU utilization at a multiprogramming level of � �about ����� and �����
respectively	 and thus has more spare resources to consume as the multiprogramming level rises�
At a multiprogramming level of �� ���� total simultaneous queries since there are � hosts	 the disk
utilization has risen to over ����� and CPU utilization to over ����� for this index organization�

The system organization has a LAN bottleneck even a low multiprogramming loads ������
at a multiprogramming level of �	 and thus does not improve as the load increases� With a
multiprogramming load of ��� additional data shows that the response times for the disk� I
O bus�
host� system and prefetch I index organizations are ���� sec�� ���� sec�� ���� sec�� ���� sec�� and

��



0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35

t
h
r
o
u
g
h
p
u
t
 
(
q
u
e
r
i
e
s
 
p
r
o
c
e
s
s
e
d
/
s
e
c
)

multiprogramming level (per host)

disk
I/O bus

host
system

prefetch I

Figure �� The e�ect of the load level�

���� sec� respectively
Figure � shows the e�ect of striping on throughput� The horizontal axis� the variable Stripe�

is the fraction of words that have striped inverted lists� �The number of words that have striped
inverted lists is Stripe � u � T �	 On the left�hand side of the graph� we see that striping �� of the
query words has a dramatic e�ect on the host index organization� giving a roughly ��� increase
in throughput �with a similar decrease in response time	� The system index organization shows
no improvement due to the LAN bottleneck� however other collected data shows that with a ���
Mb
sec LAN the system index organizations shows an approximately ��� increase in throughput�
Notice that the disk index organization curve is �at indicating that this organization is independent
of striping� Other collected data shows that if the horizontal axis is extended� the host and I
O
bus index organizations approach the throughput of the disk index organization as the fraction
of striped query words approaches �� This con
rms the explanation of the e�ect of striping in
Section ����

The e�ect of large partial answer sets is shown clearly in Figure � which graphs response
time as a function of the number of keywords� This graph shows a counter�intuitive result� in
some situations� the response time of a query decreases as the number of keywords in a query
increases� The sharp drop of the disk� I
O bus� and host lines from one keyword per query to two
keywords per query is due to the reduced size of partial answer sets� That is� since the base case
parameter set has four hosts� a query containing one keyword under the disk� I
O bus and host
index organizations will transmit �
� of the answer set across the local area network for these three
index organizations� In the case of a two word query� again �
� of the answer set is transmitted�
However� the total answer set size is much smaller since each partial answer set is the intersection
of two inverted lists� This explains the sharp drop in the response time for these organizations
from � to � keywords� As the number of keywords increases beyond �� the additional work per
keyword needed dominates the response time�

In the system index organization� the size of the partial answer sets transmitted depends on

��



0

2

4

6

8

10

12

14

16

0 0.05 0.1 0.15 0.2 0.25

t
h
r
o
u
g
h
p
u
t
 
(
q
u
e
r
i
e
s
 
p
r
o
c
e
s
s
e
d
/
s
e
c
)

fraction of query words which are striped

disk
I/O bus

host
system

prefetch I

Figure �� The e�ect of striping�

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30

q
u
e
r
y
 
r
e
s
p
o
n
s
e
 
t
i
m
e
 
(
m
s
)

number of keywords per query

disk
I/O bus

host
system

prefetch I

Figure �� The sensitivity of response time to the number of keywords in a query�

��



the hosts in which the particular words in the query reside� A subquery containing a single word
has a large partial answer set� For � keywords� the probability of a single word subquery at some
host is high� thus leading to a large response time due to the transmission of these partial answer
sets� At � keywords per query� the probability of a large partial answer sets is reduced and thus
response time is comparatively improved� With more than �� keywords per query the probability
of a large partial answer set is small and the response time for these queries is large due to the
work required for query processing�

Note that after �� keywords per query� prefetch I performs worse that the simple system
organization� This is because in the system organization the probability of a single word answer
set being transmitted is very small anyway� Thus� the additional cost of the prefetch I algorithm is
counterproductive� �This discrepancy can be eliminated by switching from the prefetch I algorithm
to the algorithm when the answer set of a subquery is expected to be small�	 However� for small
numbers of keywords� the prefetch I algorithm performs as expected and avoids transmitting large
partial answers sets characteristic of the system level organization�

So far� the system organization� with or without prefetch� has generally not performed well�
To determine under what circumstances a prefetch algorithm performs well� we remove the LAN
bandwidth bottleneck and increase the number of hosts to �� while keeping the number of disks
and I
O buses constant� We study the rise in query throughput as the seek time increases in
Figure �� Again� the disk organization is sensitive to the increase in seek time for the same reasons
as Figure �� The host and I
O bus index organizations are identical since each host has one I
O
bus� The 
gure shows that the large number of hosts makes the these two index organizations
sensitive to seek time� The prefetch I algorithm performs well �with a disk seek time above �� ms	
because an individual query �with � keywords	 involves at most � hosts which frees the other hosts
to process other subqueries� Given the arguments for considering disk seek time as a model of all

xed computation that consumes disk resources� �� ms is not an unreasonable amount of time for
a disk to be busy per inverted list fetch� For a disk seek time of �� ms in Figure �� the disk� I
O
bus� host� system� and prefetch I response times are ���� sec� ���� sec� ���� sec� ���� sec� and ����
sec� respectively�

� Conclusion

In this paper we have described various options for physical design of a text document retrieval
system� We have studied the performance of several parallel query processing strategies� and the
impact of the underlying technology� In particular� the choice of an index organization depends
heavily on the access time of the storage device and the bandwidth of interprocessor communication�
We also discovered some unexpected results� e�g�� as the size of a query increases� its response time
may drop� the fancier prefetch optimizations were usually counterproductive�

In general� our results indicate that the host index organization is a good choice� especially if
very long inverted lists are striped� It uses system resources e�ectively and can lead to high query
throughputs in many cases� When it does not perform the best� it is not very far o� from the best
strategy�

Our results also indicate that the system organization� even with the prefetch organization� is
not good unless disk seeks are high and network bandwidth is high� We should� however� point
out four factors that may be unfair to this approach� ��	 We are not modeling document fetches
from disks� If the documents were stored on the same disks as the indexes� then disk utilizations
would be higher� This would make the system organization more attractive since it reduces the
I
O load� ��	 We are not modeling pipelining of prefetching� I
O and CPU processing within a
query� This can reduce query response time� allow users to abort partially 
nished queries� and

��



0

2

4

6

8

10

12

14

16

10 20 30 40 50 60 70 80

t
h
r
o
u
g
h
p
u
t
 
(
q
u
e
r
i
e
s
 
p
r
o
c
e
s
s
e
d
/
s
e
c
)

disk seek time (hosts = 16, I/O buses per host = 1, LAN bandwidth = 90)

disk
I/O bus

host
system

prefetch I

Figure �� A good hardware con
guration for the prefetch algorithm�

would be more bene
cial to the system organization since it deals with longer inverted lists� ��	
Another reduction in response time is early termination of the intersection algorithm� That is�
if the inverted lists are in sorted order� the intersection algorithm can �in some cases	 terminate
having read only a fraction of the inverted lists� ��	 We are using a closed simulation model where
larger response times penalize throughput�

In the future we plan to study the prefetch strategies more carefully� eliminating these potential
biases� We also plan to build an actual experimental system� with a large collection of documents�
in order to validate our models and results� We believe that the results in this paper will be very
useful in guiding the construction of this system�

Acknowledgements� Thanks to Sam DeFazio� Benjamin Kao� Miron Livny� Sergio Plotkin�
Mendel Rosenblum� and the anonymous referees for help on various aspects of this paper�

References

��� Ijsbrand Jan Aalbersberg and Frans Sijstermans� High�quality and high�performance full�text
document retrieval� the parallel infoguide system� In Proceedings of the First International
Conference on Parallel and Distributed Information Systems� pages �������� Miami Beach�
Florida� �����

��� Forbes J� Burkowski� Retrieval performance of a distributed text database utilizing a par�
allel processor document server� In Proceedings of the Second International Symposium on
Databases in Parallel and Distributed Systems� pages ������ Dublin� Ireland� �����

��� D� Chapman and S� DeFazio� Statistical characteristics of legal document databases� Technical
report� Mead Data Central� Miamisburg� Ohio� �����

��



��� Ann L� Chervenak� Performance measurements of the 
rst raid prototype� Technical Report
UCB
UCD ��
���� University of California� Berkley� May �����

��� Samuel DeFazio� Document retrieval benchmark� Working Draft Version ���� Sequent Com�
puter Systems� �����

��� Samuel DeFazio and Joe Hull� Toward servicing textual database transactions on symmet�
ric shared memory multiprocessors� In Proceedings of the International Workshop on High
Performance Transaction Systems� Asilomar� �����

��� Perry Alan Emrath� Page Indexing for Textual Information Retrieval Systems� PhD thesis�
University of Illinois at Urbana�Champaign� October �����

��� Christos Faloutsos� Access methods for text� ACM Computing Surveys� ��������� �����

��� J� Fedorowicz� Database performance evaluation in an indexed 
le environment� ACM Trans�
actions on Database Systems� ����	�������� �����

���� Ophir Frieder and Hava Tova Siegelmann� On the allocation of documents in multiproces�
sor information retrieval systems� In Proceedings of the Fourteenth Annual International
ACM�SIGIR Conference on Research and Development in Information Retrieval� pages ����
���� Chicago� Illinois� �����

���� Donna Harman and Gerald Candela� Retrieving records from a gigabyte of text on a mini�
computer using statistical ranking� Journal of the American Society for Information Science�
����	��������� �����

���� Lee A� Hollaar� Implementations and evaluation of a parallel text searcher for very large text
databases� In Proceedings of the Twenty�Fifth Hawaii International Conference on System
Sciences� pages �������� IEEE Computer society Press� �����

���� Byeong�Soo Jeong and Edward Omiecinski� Inverted 
le partitioning schemes for a shared�
everything multiprocessor� Technical Report GIT�CC���
��� Georgia Institute of Technology�
College of Computing� �����

���� Zheng Lin� Cat� An execution model for concurrent full text search� In Proceedings of the
First International Conference on Parallel and Distributed Information Systems� pages ����
���� Miami Beach� Florida� �����

���� Miron Livny� DeNet user�s guide� Technical report� University of Wisconsin�Madison� �����

���� Gabriel Matsliach and Oded Shmueli� An e�cient method for distributing search structures�
In Proceedings of the First International Conference on Parallel and Distributed Information
Systems� pages �������� Miami Beach� Florida� �����

���� David A� Patterson� Garth Gibson� and Randy H� Katz� A case for redundant arrays of
inexpensive disks �raid	� In International Conference on Management of Data �SIGMOD ����
pages �������� �����

���� F� Rabitti and J� Zizka� Evaluation of access methods to text documents in o�ce systems� In
Research and Development in Information Retrieval� pages ������ King�s college� Cambridge�
�����

���� Gerard Salton� Automatic Text Processing� Addison�Wesley� New York� �����

��



���� Craig Stan
ll� Partitioned posting 
les� A parallel inverted 
le structure for information
retrieval� In ACM Special Interest Group on Information Retrieval �SIGIR�� �����

���� Anthony Tomasic and Hector Garcia�Molina� Caching and database scaling in distributed
shared�nothing information retrieval systems� In Proceedings of the Special Interest Group on
Management of Data �SIGMOD�� Washington� D�C�� May �����

���� Anthony Tomasic and Hector Garcia�Molina� Performance of inverted indices in shared�
nothing distributed text document information retrieval systems� In Proceedings of the Second
International Conference On Parallel and Distributed Information Systems� San Diego� �����

���� Kishor Shridharbhai Trivedi� Probability and Statistics with Reliability� Queuing� and Com�
puter Science Applications� Prentice�Hall� Englewood Cli�s� New Jersey� �����

���� Ellen M� Voorhees� The e�ciency of inverted index and cluster searches� In Proceedings of
the ACM Conference on Research and Development in Information Retrieval� pages ��������
Pisa� Italy� �����

���� Peter Weiss� Size Reduction of Inverted Files Using Data Compression and Data Structure
Reorganization� PhD thesis� George Washington University� �����

���� Stephen Wolfram� Mathematica� Addison�Wesley� Redwood City� California� �nd edition�
�����

���� George Kingsley Zipf� Human Behavior and the Principle of Least E�ort� Addison�Wesley
Press� �����

���� Justin Zobel� AlistairMo�at� and Ron Sacks�Davis� An e�cient indexing technique for full�text
database systems� In Proceedings of ��th International Conference on Very Large Databases�
Vancouver� �����

��



A Derivation of the Probability Distribution Z

Given the curve 
t equations� we wish to derive the form of the probability distribution Z� This
is accomplished by transforming the continuous curve 
t equation from a logarithmic domain to a
linear domain and then using this equation to approximate an integer probability distribution� The
distribution that results from a linear curve 
t is derived by introducing two auxiliary equations

x� � ln x� y� � ln y

that describe the relationship between the domains� The form of the curve 
t equation is

y� � mx� � b

and by replacement and raising exponents becomes

eln y � em ln x�b

which then reduces by algebra to

y � em ln xeb � eln	x
m
eb � xmeb�

Note that typically a Zipf Harmonic function ���� is used to approximate the distribution of
the occurrences of high frequency words in a document� Such a function corresponds to a linear

t in log space� The de
nitions of the Zipf Harmonic function appear in ���� as follows� �Here� we
model the distribution of all the words in the document� This simpli
es the analysis and has little
impact since we simulate only the high frequency words�	 To show this relationship� suppose for
the moment that Z is this function� We arrange the probabilities of Z�j	 in nonincreasing order
Z��	 � � � � � Z�T 	� Zipf�s law states that

Z�i	 �
c

i
� � � i � T�

where the constant c is determined from the probability distribution normalization requirement�PT
i�� Z�i	 � �� Thus c � �

HT
where HT is the T th Harmonic number� Given this de
nition� we

derive the linear form of the Zipf Harmonic function in log
log graphs as follows� Let

x� � ln x� y� � ln y

again describe the relationship between the the logarithmic and linear domains� Then we rewrite
x as

ex
�

� x

and from the above derivation we can write

y �
�

HTx

for the equation of the distribution� By substitution and some algebra�

y� � ln
�

HTx
� ln �� lnHT � ln x

we derive the linear form
y� � �x� � lnHT �

��



This demonstrates that the Zipf Harmonic function is at best some linear 
t on the data shown�
However� Figure � shows that the quadratic 
t is better an any linear 
t�

Returning to the problem of determining equation Z from the quadratic 
t� we can use a
derivation similar to the one above giving the derivation

x� � ln x� y� � ln y

y� � ax�
�
� bx� � c

eln y � ea	lnx

��b ln x�c

y � ea	lnx

�

eb lnxec � ea ln x ln xeln	x
b
ec � �eln	x

a
	lnxeln	x
b
ec

to produce the general form
y � xa ln x�bec�

Thus� by using this continuous approximation to the integer probability distribution and ex�
tracting the values of a� b and c from the curve 
t� we can express Z as

Z�j	 �
j����������ln j���������e�������

�������� ���
��	

where the denominator is a normalization constant� Thus�
PT

j�� Z�j	 � � as required by probability
distributions�

B Derivation of the e�ect of u on the expected size of a query

answer set

A document matches a query when every word which appears in the query also appears in the
document� For expected number of documents to match a query of length K� we write

D � Pr�query Y of length K matches document A	

by the independence of documents� then

D �
X
Y �S

Pr�Y 	 Pr�Y matches A j Y 	

by the theorem of total probability� The conditional probability

Pr�Y matches A j Y 	

Pr��v�� � � � � vK	 matches A j Y � �v�� � � � � vK		

Pr�v� matches A	 � � �Pr�vK matches A	 j Y � �v�� � � � � vK	

reduces to a multiplication by the independence of each match� The probability of a match of a
word v and a document A

Pr�v matches A	

Pr�v occurs at least once in A	

�� Pr�v does not occur in A	

�� Pr�v does not occur as word�� � � � � wordW in A	

��



�� ��� Z�v		W

reduces to a simple function of Z and W by the independence of each word trial� Thus� by
replacement� we arrive at the expected number of documents to match a query of size K�

D �
X

Y�	v������vK
�S

Pr�Y 	��� ��� Z�v�		
W � � � � ��� ��� Z�vK		

W � ��	

We can reduce this further by using the independence assumption about the set of queries S�
Let the words of a query be chosen independently according to a uniform distribution Q�j	� then
Pr�Y 	 � � �

uT
	K and

D

�uT 	K

X
	v������vK
�S

��� ��� Z�v�		
W � � � � ��� ��� Z�vK		

W �

is transformed to

D

�uT 	K

X
v��V �

� � �
X

vK�V
�

��� ��� Z�v�		
W � � � � ��� ��� Z�vK		

W � ��	

by independence of the words which appear in the query� �Note that this assumption is tenta�
tive and some features of user interfaces such as thesauri and wild�carding will invalidate this
assumption�	 We rewrite this as

D

�uT 	K

X
v��V

�

��� ��� Z�v�		
W � � � �

X
vK�V

�

��� ��� Z�vK		
W � ��	

and 
nally�

D

�uT 	K

�
uTX
v��

��� ��� Z�v		W �

�K
� ��	

Note that the in the above equation� the expression �����Z�v		W can be viewed as the probability
of at least one success inW trials where a success is determined by the distribution Z�j	� Since the
summation in the above equation is di�cult to compute� we approximate this expression by the
use of a Poisson approximation of the Binomial theorem as follows� The probability of x successes
of probability p in Y trials is the binomial distribution b�x� Y� p	� The Poisson distribution is

p�x��	 � �xe��

x
 � The approximation of the Binomial distribution by a Poisson distribution is by
writing � � pY which is valid when Y � �� and p � ���� ����� Let Y � W� p � Z�j	� � � WZ�j	�
The probability of � successes in the Poisson distribution is p����	 � e��� The probability of at
least one success is � � e��� Thus� � � �� � Z�v		W � � � e�WZ	j
� The above equation can be
rewritten as

D

�uT 	K

�
uTX
v��

�� e�WZ	j


�K
� ��	

We use Mathematica ���� to perform the summation and using the parameter values in Table �
and Equation � for Z� we graph this function for the various values of K and u in Figure ��

��


