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� Overview

On�line information vendors o�er access to multi�
ple databases� In addition� the advent of a variety of
INTERNET tools ��� �� has provided easy� distributed
access to many more databases� The result is thou�
sands of text databases from which a user may choose
for a given information need �a user query	� This pa�
per� an abridged version of �
�� presents a framework
for �and analyzes a solution to	 this problem� which
we call the text�database discovery problem �see �
� for
a survey of related work	�

Our solution to the text�database discovery prob�
lem is to build a service that can suggest potentially
good databases to search� A user�s query will go
through two steps� 
rst� the query is presented to
our server �dubbed GlOSS� for Glossary�Of�Servers
Server	 to select a set of promising databases to
search� During the second step� the query is actu�
ally evaluated at the chosen databases� GlOSS gives
a hint of what databases might be useful for the
user�s query� based on word�frequency information for
each database� This information indicates� for each
database and each keyword in the database vocabu�
lary� how many documents at that database actually
contain the keyword� for each 
eld designator �Sec�
tions � and 
	� For example� a Computer�Science li�
brary could report that �Knuth� �keyword	 occurs as
an author ��eld designator	 in ��� documents� the key�
word �computer�� in the title of ������ documents� and
so on� This information is orders of magnitude smaller
than a full index �see ���	 since for each keyword 
eld�
designation pair we only need to keep its frequency�
not the identities of the documents that contain it�

To evaluate the set of databases that GlOSS re�
turns for a given query� Section � presents a frame�
work based on the precision and recall metrics of
information�retrieval theory� In that theory� for a
given query q and a given set S of relevant docu�

ments for q� precision is the fraction of documents
in the answer to q that are in S� and recall is the
fraction of S in the answer to q� We borrow these
notions to de
ne metrics for the text�database discov�
ery problem� for a given query q and a given set of
�relevant databases� S� P is the fraction of databases
in the answer to q that are in S� and R is the frac�
tion of S in the answer to q� We further extend our
framework by o�ering di�erent de
nitions for a �rel�
evant database� �Section �	� We have performed ex�
periments using query traces from the FOLIO library
information�retrieval system at Stanford University�
and involving six databases available through FOLIO�
As we will see� the results obtained for di�erent vari�
ants of GlOSS are very promising �Section �	� Even
though GlOSS keeps a small amount of information
about the contents of the available databases� this in�
formation proved to be su�cient to produce very use�
ful hints on where to search�

� GlOSS� Glossary�Of�Servers Server

Consider a boolean �and� query q � that we want
to evaluate over a set of databases DB� GlOSS se�
lects a subset of DB consisting of �good candidate�
databases for actually submitting q� To make this se�
lection� GlOSS has available the following information�

� DBSize�db	� the total number of documents in
database db� � db � DB� and

� freq�t� db	� the number of documents in db that
contain t� � db � DB� and for all keyword 
eld�
designation pairs t� Note that GlOSS does not
have available the actual �inverted lists� corre�
sponding to each keyword�
eld pair and each
database� but just the length of these inverted
lists�

�We can generalize this paper�s approach to �or� queries
�see ����� and to the vector�space retrieval model ���	



This information is extracted from each database by
a collector program �not discussed further here	 that
forwards it periodically to GlOSS�

To assess how good each database is for a given
query� GlOSS uses an estimator� an estimator EST�
�for some 
xed � � � � �	 consists of a func�
tion ESizeEST that predicts the result size of a
query in a database� and a �matching� function that
uses these estimates to select the �good� databases
�ChosenEST�	� Once ESizeEST �q� db	 has been de�

ned� we can determine ChosenEST��q�DB	 in the
following way�

ChosenEST��q�DB	 � fdb � DBj ��	

ESizeEST �q� db	 � � �

����ESizeEST �q� db	� hest

hest

���� � �g

where hest � maxdb��DB ESizeEST �q� db�	�
Users can set the value for � according to the query

semantics they are interested in� in general� higher
values for � make the ChosenEST� set �larger�� if
� � �� only those databases containing the strictly
highest non�zero estimates will belong to ChosenEST� �
whereas if � � �� all databases with a non�zero esti�
mate will belong to ChosenEST��

� The Ind� estimators

The Ind� �for �independence�	 estimators ��� are
built upon the �unrealistic	 assumption that keywords
appear in the di�erent documents of a database fol�
lowing independent and uniform probability distribu�
tions �� Under this assumption� given a database db�
any n keyword 
eld�designation pairs t�� � � � � tn� and
any document d � db� the probability that d contains
all of t�� � � � � tn is�

freq�t�� db	

DBSize�db	
� � � ��

freq�tn� db	

DBSize�db	

So� according to Ind�� the estimated number of docu�
ments in db that will satisfy the query ��nd t��� � ��tn�
is ����

ESizeInd�find t� � � � �� tn� db	 �

Qn

i�� freq�ti� db	

DBSize�db	n��

The ChosenInd� set is then computed with Equation
�� for any value of ��

� Evaluation metrics

Let DB be a set of databases and q a query� In or�
der to evaluate an estimator EST �e�g�� EST�Ind�	�

�Even though this assumption is unrealistic� we will see that
the Ind� estimators work surprisingly well	

we need to compare its prediction against what ac�
tually is Right�q�DB	� the �right subset� of DB to
query� There are several notions of what the right
subset means� depending on the semantics the query
submitter has in mind� In this paper� we will con�
sider two of these notions� for which the goodness of
a database db with respect to a query q will be de�
termined by the number of documents that db returns
when presented with q �
��

Our 
rst de
nition for Right�q�DB	
is Matching�q�DB	� the set of all databases in DB

containing at least one document that matches query
q� More formally�

Right�q�DB	 � Matching�q�DB	

� fdb � DBjRSize�q� db	 � �g

where RSize�q� db	 is the actual result size of query
q in database db� There are �at least	 two types of
users that may specifyMatching�q�DB	 as their right
set of databases� One is users that want an exhaus�
tive answer to their query� They are not willing to
miss any of the matching documents� We will refer
to these users as �recall�oriented� users� On the other
hand� �precision�oriented� users may be in �sampling�
mode� they simply want to obtain some matching doc�
uments without searching useless databases�

Our second de
nition for Right�q�DB	 is� for a

xed � � � � �� Best� �q�DB	� the set of those
databases containing the most matching documents�
More formally�

Right�q�DB	 � Best��q�DB	

� fdb � DBjRSize�q� db	 � � �����RSize�q� db	� hreal

hreal

���� � �g

where hreal � maxdb��DB RSize�q� db�	� Parameter �
is not a parameter of our estimators� but of our evalu�
ation metrics� the submitter of a query does not give a
� value to GlOSS� Higher values for � yield more com�
prehensive Best� sets� Therefore� parameter � should
be 
xed according to the desired �meaning� for Best� �
For example� suppose that we are evaluating Ind� for
a user that wants to locate Best databases� but is will�
ing to search at sites that have ��� or more of the
number of matching documents than the overall Best
sites have� Then� the experimental results that are
relevant to this user are those obtained for � � ����

Again� users that de
ne Best��q�DB	 as their right
set of databases for query q might be classi
ed as be�
ing �recall oriented� or �precision oriented�� �Recall�
oriented� users are willing to miss some databases�



as long as they are not the best ones� These users
want to ensure that at least those databases having the
highest payo� �i�e�� the largest number of documents	
are searched� On the other hand� �precision�oriented�
users want to examine �some	 best databases� Due
to limited resources �e�g�� time� money	 the users only
want to submit their query at databases that will yield
the highest payo��

Once we have de
ned the Right set for a query
q and a database set DB� we evaluate how well
ChosenEST �q�DB	 approximates Right�q�DB	 by
adapting the well�known precision and recall parame�
ters from information�retrieval theory ��� to the text�
database discovery framework� If we regard Right as
the set of �items� �databases in this context	 that are
relevant to a given query q� and ChosenEST as the set
of items that is actually retrieved� we can de
ne the
following functions PRight and RRight� based upon the
precision and recall parameters�

PRight�q�DB	 �

�
jChosen�Rightj

jChosenj if jChosenj � �

� otherwise

RRight�q�DB	 �

�
jChosen�Rightj

jRightj
if jRightj � �

� otherwise

where Chosen � ChosenEST �q�DB	 �EST is a 
xed
estimator for GlOSS	 and Right � Right�q�DB	�

Intuitively� P is the fraction of selected databases
that are Right ones� and R is the fraction of the Right
databases that are selected� �Precision oriented� users
will be interested in high values of P � while �recall
oriented� users will be interested in high values of R�

Section � evaluates di�erent estimators in terms of
the average value� over a set of user queries� of the P
and R parameters de
ned above� for di�erent Right

sets of databases�

� Ind� results

In order to evaluate the performance of the Ind� es�
timators according to the P and R parameters of Sec�
tion �� we performed experiments using ���� queries
and six databases available through the FOLIO library
information�retrieval system at Stanford University�
Real users issued the queries to the INSPEC database
through the FOLIO system� In �
�� we describe the
query trace and the experiments� We also study how
well ESizeInd approximates RSize�

Figure � shows the average values of the P and
R parameters for Ind�� for growing values of �� Our
estimator remains 
xed �since � � �	 for the di�er�
ent values of �� and so does Matching� This is why
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Figure �� The average P and R parameters as a func�
tion of �� for the Ind� estimator �� � �	�

the curves corresponding to PMatching and RMatching

are �at� In particular� PMatching�������� this means
that� for the average query� ������ of the databases
in ChosenInd� have matching documents� In con�
trast� RMatching�������� meaning that� for the aver�
age query� ChosenInd� includes only ������ of the
Matching databases� Ind� chooses only the most
promising databases� not all of the ones that might
contain matching documents� Higher values of � ad�
dress this problem �see below	�

On the other hand� the set of best databases� Best� �
varies as � does� In Figure � we see that parameter
RBest� worsens as � grows� since Best� tends to con�
tain more databases� while ChosenInd� remains 
xed�
This is exactly why PBest� improves with higher val�
ues of �� Note that for � � �� Best� � Matching� and
so� PMatching and RMatching coincide with PBest� and
RBest�� respectively�

Figure � shows the average values of the P and R

parameters for Ind�� for growing values of �� For all
these results� � � � �i�e�� the �best� set of databases
is 
xed to Best�	� Since ChosenInd� tends to cover
more databases as � grows� RMatching and RBest� im�
prove for higher values of �� For � � �� RMatching�
RBest�� �� since ChosenInd� contains all of the po�
tentially matching databases� This is also why PBest�
worsens as � grows� Parameter PMatching remains ba�
sically unchanged for higher values of �� but worsens
for � close to one� for the same reasons PBest� gets
lower�
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Figure �� The average P and R parameters as a func�
tion of �� for the Ind� estimator �� � �	�

Right PRight RRight PRight RRight

�Min�� �Min�� �Ind�� �Ind��

Matching ������ ����
� ������ ������
Best� ���
�� ����
� ����
� ������

Figure 
� The average P and R parameters for the
Min� estimator� The last two columns show the cor�
responding values for the Ind� estimator�

� Other results

The Ind� estimators are based upon the assump�
tion that the occurrence of query keywords in doc�
uments follows independent and uniform probability
distributions� We can build alternative estimators by
departing from this assumption� For example� we can
adopt the �opposite� assumption� and assume that
the keywords that appear together in a user query are
strongly correlated� So� we de
ne another family of
estimators for GlOSS� Min� �for �minimum�	� by let�
ting�

ESizeMin�find t� � � � �� tn� db	 �
n

min
i��

freq�ti� db	

ESizeMin�q� db	 is an upper bound of the actual re�
sult size of query q� RSize�q� db	 � ESizeMin�q� db	�
ChosenMin� follows from the de
nition of ESizeMin�
using Equation �� As Figure 
 shows� the results we
obtained for the Min� estimator� using the INSPEC
queries� are very similar to those we obtained for the
Ind� estimator�

To analyze how dependent the results are on the
trace used� we ran our experiments using a di�er�
ent query trace� consisting of ���� real�user queries�

Right PRight RRight PRight RRight

�ERIC� �ERIC� �INSPEC� �INSPEC�

Matching ������ ������ ������ ������
Best� ������ ���
�� ����
� ������

Figure �� The average P and R parameters for the
Ind� estimator� using the ERIC queries� The last two
columns show the corresponding values for the IN�
SPEC queries�

Real users issued these queries to the ERIC database
through Stanford�s FOLIO system� Figure � shows the
results corresponding to these queries� for the di�er�
ent instances of the P and R parameters� The results
obtained di�er only slightly from the ones for the IN�
SPEC queries� which suggests that our results are not
sensitive to the type of trace used�
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