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Abstract

The popularity of on-line document databases has led to
a new problem: finding which text databases (out of
many candidate choices) are the most relevant to a user.
Identifying the relevant databases for a given query is the
text database discovery problem. The first part of this paper
presents a practical solution based on estimating the result
size of a query and a database. The method is termed
GlOSS-Glossary of Servers Server. The second part of this
paper evaluates the effectiveness of GIOSS based on a trace
of real user queries. In addition, we analyze the storage cost
of our approach.

1 Introduction

Information vendors such as Dialog and Mead Data
Central provide content-indexed access to multiple
databases. Dialog for instance has over four hundred
databases. In addition, the advent of archie, WAIS,
World Wide Web, and other INTERNET tools has pro-
vided easy, distributed access to many more hundreds
of text document databases. Thus, users are faced with
finding the databases that are relevant to their infor-
mation need (the user query). This paper presents a
framework for (and analyzes a solution to) this prob-
lem, which we call the tezt database discovery problem.

The difficulty of our problem stems from the large
number of databases available to the users and their
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worldwide distribution: any solution to this problem
should scale with the increasing number of data sources.
For example, forwarding a user’s query to all known
databases and merging the results obtained is not a
feasible solution, due to the enormous amount of traffic
that would be generated and the load that would
be received by the information sources. Also, if the
databases charge for their use, this approach would be
exceedingly expensive to the users, since most likely lots
of useless databases would be accessed when processing
each query. The other obvious solution, that of building
a central full index for all of the documents, does not
scale well either. (As we will see, full indexes tend to be
as large as the document collection itself.)

Our solution to the text database discovery problem
is to build a service that can suggest potentially good
databases to search. Then, a user’s query will go
through two steps: first, the query is presented to
our server (dubbed GIOSS, for Glossary Of Servers
Server) to select a set of promising databases to search.
During the second step, the query is actually evaluated
at the chosen databases'. GIOSS gives a hint of what
databases might be useful for the user’s query, based
on word-frequency information for each database. This
information indicates how many documents at that
database actually contain each word in the database’s
vocabulary. For example, a Computer Science Library
could report that the word Knuth occurs in 180
documents, the word computer, in 25,548 documents,
and so on. This information is orders of magnitude
smaller than a full index (see Section 6.3 and Figure 11),
since for each word we only need to keep its frequency, as
opposed to the identities of the documents that contain
it.

Example 1.1 Consider four databases, A, B, C, and
D, and suppose that GIOSS has collected the statistics
of Figure 1. If GIOSS receives a query q=“find Knuth

1As an intermediate step, GIOSS could show the chosen
databases to the user, who would in turn select which ones to
actually search.



L4 | B [ C | D |

Knuth 100 Knuth 10 Knuth 4 Knuth 10
computer 100 | computer 10 | computer 100 | computer 0
[ d= 1000 [ d=100 [ d=200 [d=20 |

Figure 1: Portion of the database frequency information
kept by GIOSS for four databases. Parameter d is the
database size in documents.

A computer” (this query searches for documents that
contain both words, “Knuth” and “computer”), GIOSS
has to estimate the number of matching documents in
each of the four databases. Figure 1 shows that database
D does not contain any documents with the word
“computer,” and so, there cannot be any documents in
D matching query gq. For the other three databases,
GIlOSS has to “guess” what the number of documents
matching query ¢ is: an estimator for GIOSS uses
the GIOSS information to make this guess. There
are different ways in which this can be done. In this
paper, we study Ind, an estimator for GIOSS that
estimates the result size of the given query in each
of the databases in the following way. Database A
contains 1000 documents, 100 of which contain the word
“Knuth.” Therefore, the probability that a document in
A contains the word “Knuth” is 2°%. Similarly, the

1000°
probability that a document in A contains the word
“computer”’ is %. Under the assumption that words

appear independently in documents % the probability

that a document in database A has both the words
- 100 100

“Knuth” apd “computer” is 1000 X 1000° Co‘nsequently,

we can estimate the result size of query ¢ in database

A as f(g,4) = % X % x 1000 = 10 documents.

Similarly, f(g,B) = % X % x 100 = 1, f(g,C) =

325 X 200 % 200 = 2, and f(g, D) = 22 x = X 20 =0 (as
we explained above).

The Ind estimator chooses those databases with the
highest estimates as the answer to the given query. So,
Ind will return {A} as the answer to g. This may or
may not be a “correct” answer, depending on different
factors. Firstly, it is possible that some of the result
size estimates given by Ind are wrong. For example,
it could be the case that database A did not contain
any document matching ¢, while Ind predicted there
would be 10 such documents in A. Furthermore, if
databases B and C did contain matching documents,
then Ind would fail to pick any database with matching
documents (since its answer was {4}).

Secondly, even if the estimates given by Ind are ac-
curate, the correctness of the produced answer depends
on the semantics of the query the user that issued the

2 Although this independence assumption is questionable, we
obtained good experimental results with it. We examine this
assumption further in [1].

query is interested in. Assume in what follows that the
result size estimates given above are correct (i.e., there
actually are 10 documents matching query ¢ in database
A, one in database B, two in database C, and none in
database D). Given a query and a set of databases,
the user may be interested in (at least) four different
semantics for the query:

e Ezhaustive Search. The user is interested in the
set of all databases that contain any matching
documents. Since databases A, B, and C contain
documents that match the query above, the set
of databases to search should be {4,B,C}. The
answer given by Ind, {A}, is thus not a correct
answer according to this semantics. In [1] we study
an estimator targeted at this semantics.

o All-Best Search. The user wants all the best
databases for the query. The best databases are the
ones that contain more matching documents than
any other database. In this case, the user is willing
to miss some databases, as long as they are not
the best ones. That is, the user recognizes that
there are more databases that could be examined,
but wants to ensure that at least those databases
having the highest payoff (i.e., the largest number
of documents) are searched. Since A is the database
that contains the most documents matching ¢ (10),
the answer should be {A}. This is exactly the answer
given by Ind.

e Only-Best Search. The user only wants to examine
(some) best databases. Because of limited resources
(e.g., time, money) the user only wants to submit the
query at databases that will yield the highest payoff.
Since A is the best database for g, the answer should
be {A}. This is exactly the answer given by Ind.

e Sample Search. In this case, the user is in
“browsing” mode, and simply wants to obtain some
matching documents. Therefore, since A, B, and C
contain matching documents, any non-empty subset
of {4, B, C} will be a correct answer. The answer
produced by Ind, {A}, is one such subset. O

As aresult of space limitations, in this paper we focus
on the All-Best and Only-Best semantics. In [1] we
explore the other query semantics.

As we mentioned above, the answers given by an
estimator may be wrong. Therefore, given an estimator,
we need to evaluate its effectiveness with respect to the
different query semantics. For this, we have performed
experiments using query traces from the FOLIO library
information retrieval system at Stanford University, and
involving six databases available through FOLIO. As
we will see, the results obtained for GIOSS and several



estimators are very promising. Even though GIOSS
keeps a small amount of information about the contents
of the databases, this information proved to be sufficient
to produce very useful hints on where to search.
Another advantage of GIOSS is that its frequency
information can be updated mechanically, that is,
sources can periodically extract word counts and send
them to GIOSS. Other approaches (see Section 2)
require human-generated summaries of the contents of
a database, and are prone to errors or very out-of-date
information. Also, since GIOSS’ storage requirements
are so low, it is straightforward to replicate the service
at many sites. Thus, a user may be able to consult
GlOSS at the local machine or cluster, and immediately
determine the candidate databases for a given query.
The contributions of this paper are:

e a formal framework for the text database discovery
problem,

e the concept of a Glossary Of Servers Server (GIOSS)
that routes queries to appropriate information sources,
based on previously collected frequency statistics
about the sources,

e an estimator that may be used by GIOSS for making
decisions, and

e an experimental evaluation of GIOSS according to
different semantics for the queries, using real users’
queries.

Of course, GIOSS is not the only solution to the
text database discovery problem, and in practice we
may wish to combine it with other complementary
strategies. Section 2 describes these strategies. We
note, incidentally, that, to the best of our knowledge,
experimental evaluations of these other strategies for the
text database discovery problem are rare: in most cases,
strategies are presented with no statistical evidence as
to how good they are at locating sites with documents
of interest for actual user queries. Thus, we view the
experimental methodology and results of this paper
(even though they still have limitations) as an important
contribution to this emerging research area.

Section 3 introduces GIOSS and the concept of an es-
timator. In particular, Section 3.3 describes Ind, the
estimator for GIOSS that we will evaluate in the rest of
the paper, using the evaluation criteria defined in Sec-
tion 3.4. Section 4 describes the experiments performed
to assess the effectiveness of GIOSS. Section 5 reports
the experimental results. Section 6 examines GIOSS’
space requirements and introduces enhancements to fur-
ther reduce them.

2 Related work

Many solutions have been presented recently for the text
database discovery problem, or, more generally, for the
resource discovery problem: the text database discovery
problem is a subcase of the resource discovery problem,
since the latter generally deals with a larger variety of
types of information [2, 3].

One solution to the text database discovery problem
is to let the database selection be driven by the user.
Thus, the user will be aware of and an active participant
in this selection process. Different systems follow
different approaches to this: one such approach is to let
users “browse” through information about the different
databases. Examples include Gopher [2] and World
Wide Web [4]. Various search facilities are being created
for these systems, like the Veronica Service [5] for
Gopher, for example. The Prospero File System [6] lets
users organize information available in the INTERNET
through the definition (and sharing) of customized views
of the different objects and services available to them.

A different approach is to keep a database of “meta-
information” about the available databases and have
users query this database to obtain the set of databases
to search. For example, WAIS [7] provides a “directory
of servers.” This “master” database contains a set of
documents, each describing (in English) the contents of
a database on the network. In addition to this, free-
WALIS [8] automatically adds the 50 most frequently oc-
curring words in an information server to the associated
description in the directory of servers. The users first
query the master database, and once they have iden-
tified potential databases, direct their query to these
databases.

Schwartz [9, 10] presents a probabilistic resource dis-
covery protocol that conceptually consists of two phases:
a dissemination phase, during which information about
the contents of the databases is replicated at randomly
chosen sites, and a search phase, where several randomly
chosen sites are searched in parallel.

In Indie (shorthand for “Distributed Indexing”) [11,
12], information is indexed by “Indie brokers,” each of
which has associated a boolean query (called a “gener-
ator rule”). Each broker indexes (not necessarily local)
documents that satisfy its generator rule. The genera-
tor objects associated with the brokers are gathered by a
“directory of servers.” [13], [14], [15], and [16] are other
examples of this type of approach in which users query
“meta-information” databases. The master database
idea can be enhanced if we automatically extract the
semantics of queries and databases [17].

A “content based routing” system is used in [18]
to address the database discovery problem.  The
“content routing system” keeps a “content label” for
each information server, with attributes describing the



contents of the collection.

Chamis [19] takes a complementary approach to
GlOSS. Each user query is expanded with thesaurus
terms. The expanded query is compared with a
set of databases, and the query terms with exact
matches, thesauri matches, and “associative” matches
are counted for each database. Each database is then
ranked as a function of these counts. We believe that
this approach is complementary in its emphasis on
thesauri to expand the meaning of a user query.

3 GlOSS: Glossary Of Servers Server

Consider a query ¢ (permissible queries are defined
in Section 3.1) that we want to evaluate over a set
of databases DB. GIOSS selects a subset of DB
consisting of “good candidate” databases for actually
submitting g. To make this selection, GIOSS uses an
estimator (Section 3.3), that assesses how “good” each
database in DB is with respect to the given query, based
on the word-frequency information on each database
(Section 3.2).

3.1 Query representation

In this paper, we will only consider boolean “and”
queries, that is, queries that consist of positive atomic
subqueries connected by the boolean “and” operator
(denoted as “A” in what follows). An atomic subquery
is a keyword field-designation pair. An example of
a query is “find author Knuth A subject computer.”
This query has two atomic subqueries: “author Knuth”
and “subject computer.” In “author Knuth,” author
is the field designation, and Knuth the corresponding
keyword3.

The reason why we are considering only boolean
queries so far is because this model is used by library
systems and information vendors worldwide. Also, the
system we had available to perform our experiments
uses only boolean queries (see Section 4.1). Neverthe-
less, it should be stressed that we can generalize the
approach we take in this paper to the vector space re-
trieval model [20]. The reason why we restrict our study
to “and” queries is that we want to understand a sim-
ple case first. Also, most of the queries in the trace we
studied (see Section 4.1) are “and” queries. However,
a limited form of “or” queries is implicit whenever the
subject field designation is used (see Section 6.1).

3.2 Database word-frequency information

GlOSS keeps the following information on the databases:

3 Uniform field designators for all the databases we considered
(see Section 4.1) were available for our experiments. However,
GlOSS does not rely completely on this, and could be adapted
to the case where the field designators are not uniform across the
databases, for example.

e DBSize(db), the total number of documents in
database db, V db € DB, and

e freq(t,db), the number of documents in db that
contain ¢, V db € DB, and for all keyword field-
designation pairs t. Note that GIOSS does not have
available the actual “inverted lists” corresponding
to each keyword-field pair and each database, but
just the length of these inverted lists. The value
freq(t, db) is the size of the result of query “find t”
in database db.

If freq(t,db) = 0, GIOSS does not need to store this
explicitly, of course. Therefore, if GIOSS finds no
information about freq(t,db), then freg(t,db) will
be assumed to be zero (see Section 6.4).

A real implementation of GIOSS would require that each
database cooperate and periodically submit these fre-
quencies to the GIOSS server following some predefined
protocol.

Section 6.4 modifies the frequency information kept
by GIOSS on each database so as to reduce its size.

3.3 The Ind estimator

This section describes Ind, the estimator that we will use
in our experiments. (In [1] we study the effectiveness of
other estimators for GI0OSS.) An estimator consists of a
function (ESizef, below) that estimates the result size
of a query in each of the databases, and a “matching”
function (the max function for Ind), that uses these esti-
mates to select the set of databases (Choseny,, g below)
where to submit the given query. Ind (for “indepen-
dence”) is an estimator built upon the (possibly unreal-
istic) assumption that keywords appear in the different
documents of a database following independent and uni-
form probability distributions. Under this assumption,
given a database db, any n keyword field-designation

pairs tq,...,t,, and any document d € db, the proba-
bility that d contains all of ¢4,...,1%, is:
freq(t1,db) freq(tn,db)
DBSize(db) © '~ DBSize(db)

So, the estimated number of documents in db that will
satisfy the query “find t; A...At,” is given, according
to Ind, by:

H?:l freq(ti, db) (1)
DBSize(db)»—1

ESizer,4(find t1 A ... Aty,,db) =

Ind chooses those databases with the highest esti-
mates (as given by ESizej,4)*. The Choseny, g set of

*In [1] we present a variation to Ind that arises from making
its “matching” function more flexible.



| [ INSPEC | PSYCINFO ]

DBSize(.) 1,416,823 323,952
freg(author D. Knuth, ) 13 0
freg(title computer, ) 24,086 2704

Figure 2: Information needed by Ind for DB =
{INSPEC, PSYCINFO} and g= find author D. Knuth

A title computer.

selected databases to evaluate ¢ is then computed in the
following way:

Choseng,4(q9, DB) =
{db € DB|ESizef,4(g,db) > 0 A

ESizef, 4(q, db) = Jmax, ESize, 4(q,db')} (2)

To illustrate these definitions, let DB ={INSPEC,
PSYCINFO} (INSPEC and PSYCINFO are databases
that we will use in our experiments, see Section 4). Also,
let ¢ =find author D. Knuth A title computer. Figure 2
shows the statistics available to Ind. From this, Ind
computes: ESizej, 4(g, INSPEC ) = %‘f’gf‘f ~ 0.22.
Incidentally, the actual result size of the query ¢ in
INSPEC, RSize(g, INSPEC), is one document.

Since “D. Knuth” is not an author in the PSYCINFO
database, and due to the boolean semantics of the
query representation, the result size of query ¢ in the
PSYCINFO database must be zero. This agrees with
what Equation 1 predicts: ESizep,4(¢, PSYCINFO) =
g;;gg; = 0. This holds in general for boolean queries:

if freq(t;, db) = 0 for some 1 < ¢ < n, then

ESize,, 4(g, db) = RSize(g,db) = 0

where ¢ = find t; A...At,. As we have seen, when all
frequencies are non-zero, ESize, ; can differ from RSize.
In [1] we analyze how well ESize,,; approximates RSize.

To continue with our example, since DB ={INSPEC,
PSYCINFO}, and INSPEC is the only database with
a non-zero result size estimate, as given by ESizey, 4,
it follows that Choseny, (q, DB) = {INSPEC}. So,
Ind chooses the only database in the pair that might
contain some matching document for ¢q. In fact,
since RSize(q,INSPEC) = 1, Ind succeeds in selecting
the only database that actually contains a document
matching query gq.

3.4 Evaluation criteria

Let DB be a set of databases. In order to evaluate
the Ind estimator, we need to compare its prediction
against what actually is the “right subset” of DB to
query. There are different notions of what the right
subset means (see [1]). In this paper we will just study

one definition of right subset: Best(g, DB)®, those
databases that yield the most matching documents.
Ideally, a “relevant” document is one that would
interest the user that issued the query. Unfortunately,
we have no way to know this. One way to address
this problem is to consider as relevant any documents
matching the user’s query. However, this does not
necessarily solve the problem: For example, a database
might contain a document written by a psychologist
named Knuth on how computers can alienate people.
This document may not be relevant to the issuer of
the query “find Knuth A computers.” However, if we
have no additional information on what relevant is,
it is fair to simply look at databases with matching
documents. Therefore, we define Best(q, DB) to be
the set of databases that have the highest number of
documents matching query ¢. More formally,

Best(q, DB) = {dbe€ DB|RSize(q,db) > 0 A (3)
. _ . ’
RSize(g, db) = e RSize(q, db")}

Once this set has been defined for a query ¢ and a
database set DB, we can state different criteria to
evaluate Choseny,4(q, DB):

o All-Best Search: We are interested in searching
all of the Best databases for ¢g. By searching
these databases we seek a compromise between
two potentially conflicting goals: obtaining an
exhaustive answer to ¢ (this would be guaranteed if
we searched all of the databases containing matching
documents, not only those containing the highest
number of matching documents) and searching
databases that would deliver a significant number of
answers, to compensate for access costs, for example.
Thus, we say that Chosenp, 4 satisfies criterion Cyp
if:

Cap : Best C Choseng,g

So, we ensure that at least those databases having
the highest payoff (i.e., the largest number of
documents) are searched.

e Only-Best Search: We are less demanding than with
C4p: we are just interested in searching (some of)
the best databases for g. Our goal is to get a sample
of the documents that match the query ¢ (we might
be missing some of these best databases), but we
do not want to waste any time and resources by
searching a non-optimal database. So, we say that
Choseny, 4 satisfies criterion Cop if:

5In general, we will drop the parameters of the functions
when this will not lead to confusion. For example, we refer to
Best(q, DB) as Best, whenever ¢ and DB are clear from the
context.



Cop : Choseny,; C Best

The set Choseny,q will be said to strictly satisfy both
criteria C4p and Cop if Choseny, ;= Best.

Now, let C be either of the criteria above and @ be a
fixed set of queries. Then,

Success(C, Ind) = (4)
0 x |{q € Q|Chosenr, 4(q, DB) satisfies C}|
Q|

In other words, Success(C, Ind) is the percentage of @
queries for which Ind produced the “right answer” under

10

criterion C.

Following notions analogous to those used in Statis-
tics, we define the Alpha and the Beta errors of Ind for
an evaluation criterion C as follows:

Alpha(C, Ind) = 100 — Success(C, Ind) (5)

Beta(C, Ind) = Success(C, Ind)— (6)

100 x |[{g € Q|Chosen, 4(q, DB) strictly satisfies C'}|
Q|

So, Alpha(C,Ind) is the percentage of queries in @
for which the estimator gives the “wrong answer,”
that is, the Choseny,  set does not satisfy crite-
rion C at all. Beta(C, Ind) measures the percent-
age of queries for which the estimator satisfies the
criterion, but not strictly., =~ For the Beta queries,
the estimator yields a correct but “overly conserva-
tive” (for Cup) or “overly narrow” (for Cop) an-
swer. For example, consider an estimator, TRIV, that
would always produce @ as the value for Chosenrrrv.
TRIV would have Success(Cop,TRIV) = 100 (and
Alpha(Cop, TRIV) = 0). However, Beta has a high
value for conservative estimators: Beta(Cop, TRIV)
would be quite high.

The definitions of Success, Alpha, and Beta can be
expressed in terms of the precision and recall parameters
of information retrieval theory [21]. In [1] we explore
this issue. For the sake of clarity, we present the results
in terms of the Success, Alpha, and Beta parameters.

4 Experimental framework

In order to evaluate the performance of Ind, the
estimator of Section 3.3%, according to the criteria of
Section 3.4, we performed experiments using query
traces from the FOLIO library information retrieval
system at Stanford University.

8We will refer indistinctively to both the estimator and its
corresponding ChosenInd(q, DB) set as satisfying the criteria of
Section 3.4, for a query g and a set of databases DB.

Database | DBSize | Area

INSPEC 1,416,823 | Physics, Elect. Eng.,
Computer Sc., etc.

COMPENDEX | 1,086,289 | Engineering

ABI 454,251 | Business Periodical Literature

GEOREF 1,748,996 | Geology and Geophysics

ERIC 803,022 | Educational Materials

PSYCINFO 323,952 | Psychology

Figure 3: Summary of the characteristics of the six
databases considered.

4.1 Databases and the INSPEC query trace

Stanford University provides on-campus access to its
information retrieval system FOLIO from terminals in
libraries and from workstations via telnet sessions.
FOLIO gives access to several databases. Figure 3
summarizes some characteristics of the six databases
chosen for our experiments. Six is a relatively small
number, given our interest in exploring hundreds of
databases. However, we were limited to a small number
of databases by their accessibility and by the high cost
of our experiments. Thus, our results will have to be
taken with caution, indicative of the potential benefits
of GIOSS.

A trace of all user commands for the INSPEC
database was collected from 4/12/1993 to 4/25/1993.
This set of commands contained 8392 queries. As
discussed in Section 3.1, we only considered correctly
formed “and” queries. Also, we only used queries
involving just the indexes listed in Figure 9. The final
set of queries, TRACE;nNspEc, has 6897 queries, or
82.19% of the original set.

4.2 Database frequency information
construction

In order to perform our experiments, we evaluated each
of the TRACFErnsprc queries in the six databases
described in Figure 3. This gives the data we need to
build the Best set for each of the queries.

Also, to build the database word-frequency informa-
tion needed by GIOSS (Section 3.2) we evaluated, for
each query of the form find ¢t; A ... A t,, the n queries
find t1,..., find t, in each of the six databases. Note
that the result size of the execution of find ¢; in database
db is equal to freq(t;,db) as defined in Section 3. This
is exactly the information the Ind estimator needs to
define Choseny,q, for each query in TRACENspEC'.
We should note that this is just the way we gathered
the data in order to perform our experiments. An ac-
tual implementation of such a system would require that
each database communicate the length of each inverted

"In fact, we are not retrieving all of the word frequencies, but
only those that are needed for the queries in TRACENspEC -



Database set (DB) | {INSPEC, COMPENDEX, ABI,
GEOREF, ERIC, PSYCINFO}

Estimator Ind

Query set TRACEINSPEC

Query sizes All

considered

threshold 0

Figure 4: Basic configuration of the experiments.

list to GIOSS.

4.3 Configuration of the experiments

There are a number of parameters to our experiments.
Figure 4 shows an assignment of values to these
parameters that will determine the basic configuration.
In later sections, some of these parameters will be
changed, to produce alternative results. The threshold
parameter will be defined in Section 6.4.

5 Ind results

In this section we evaluate Ind by first studying its
ability to distinguish between two databases and then
generalizing the experiments to include six databases.

5.1 Evaluating Ind over pairs of databases

In this section, we report some results for the basic con-
figuration (Figure 4), but with DB, the set of available
databases, set to just two databases. Figure 5 shows a
matrix classifying the 6897 queries in TRACE;NspEc
for the case DB ={INSPEC, PSYCINFO}. The sum of
all of the entries of the matrix equals 6897. Each row
represents an outcome for Best. The first row, for in-
stance, represents queries where INSPEC had the most
matching documents (Best ={INSPEC}). On the other
hand, each column represents the prediction made by
Ind. For example, the number 5572 means that for 5572
of the queries in TRACE;Nsprc, Best ={INSPEC}
and Ind correctly selected INSPEC as its prediction
(Choseny, g ={INSPEC}). In the same row, there
were 42 other queries where Ind failed to pick the best
database. So, from this row we see that for most of
the queries (5614 out of 6897) INSPEC was the best
database. This is not surprising, since the queries used
in the experiments were originally issued by users to
the INSPEC database. The values in the diagonal in
Figure 5 indicate those queries for which Ind produced
exactly the set of best databases as an answer (and so,
criteria C4p and Cop were strictly satisfied). So, this
was the case for 6328, or 91.75%, of the queries.

In Figure 5, Choseny,y = 0 only if Best = §. From
Equations 1 and 2, it follows that this relationship
holds in general, that is, as long as there is at
least one database that contains matching documents,
Choseng,q will be non-empty. (This will not hold

Chosenlnd
Best || {I} [{P} [{LP}] @
{1} 5572 | 42 0 0
{P} 16 258 0 0
{1, P} 3 5 15 0
] 462 41 0 483

Figure 5: Results corresponding to DB = {INSPEC (I),
PSYCINFO (P)}.

| Criteria || Success | Alpha | Beta | Success — Beta |

Cain 99.04 0.96 | 7.29 91.75
Cos 91.87 8.13 | 0.12 91.75
Figure 6: Evaluation criteria for DB={INSPEC,

PSYCINFO}.

with the modification to GIOSS of Section 6.4.) Also,
note that very few times (15) does Ind determine a
tie between the two databases (and so, Chosenp,y
consists of both databases), since it is very unlikely
that ESize,4(g, INSPEC) will be exactly equal to
ESizef, (g, PSYCINFO). With the current definition
of Choseny, 4, if for some query ¢ and databases db;
and db; it is the case that, say, ESize, 4(q,db1) = 9 and
ESize, 4(g, dbs) = 8.9, then Chosenp, 4(q, {db1,dbs}) =
{db;}. We might want in such a case to include db, also
in Choseng, . We address this issue in [1].

Figure 6 reports the values of Success, Alpha, and
Beta corresponding to the results of Figure 5, for our
two different criteria. Consider for example the first
row of the matrix in Figure 6. This row corresponds
to criterion Cyp (see Section 3.4). From the table,
we see that Success(Cap, Ind) = 99.04%. This means
that in 99.04% of the cases Ind gave the correct answer,
that is, the Chosenp, set of databases included the
Best set of databases we were after. In 0.96% of the
queries (Alpha(Cap, Ind)) we got the “wrong” answer,
that is, the Chosenp, set did not contain one of the
best databases. Out of the successful cases, sometimes
Ind gives exactly the set of best databases, while in other
cases it gives a larger set. The value Beta(Cyap, Ind) =
7.29% tells us how many queries were in the latter case.
Finally, Success(Cap, Ind) — Beta(Cap, Ind) = 91.75%
gives the number of queries in the former case, or
the percentage of queries classified in the diagonal of
Figure 5, as explained above. The Success(Cop, Ind)
value is high, showing that in most cases Chosenp,g
consists only of “best” databases. Also, notice that for
both criteria C4p and Cpp the Success — Beta entries
are identical: for both criteria, Success— Beta measures
the fraction of queries for which Choseny, ;= Best.

In [1] we report the results for all the pairs of
databases that can be obtained from {INSPEC, COM-
PENDEX, ABI, GEOREF, ERIC, PSYCINFO}: in



| Criteria || Success | Alpha | Beta | Success — Beta |

Can 88.95 11.05 6.89 82.06
Con 84.38 15.62 2.32 82.06

Figure 7: Evaluation criteria for the basic configuration.

general, the more unrelated the subject domains of the
two databases considered were, the better Ind behaved
in distinguishing the databases.

5.2 Evaluating Ind over six databases

In this section we report some results for the basic six
database configuration, as defined in Figure 4. Figure 7
summarizes the results corresponding to our evaluation
criteria. This figure shows that the same phenomena
described in Section 5.1 prevail, although in general
the success rates are lower. Still, Success(Cyup, Ind)
is relatively high (88.95%), showing Ind’s ability to
predict what the best databases are. Also, the Success
figure for Cop is high (84.38%), making Ind useful
for exploring some of the best databases. This is
particularly significant for Ind: Choseny, (g, DB) will
be non-empty as long as there is some database in
DB that might contain some document matching query
g. Therefore, for 84.38% of the queries, Ind chooses
databases that actually are among the best ones,
provided there are any, what makes Ind particularly
good for the Cpp semantics.

Another interesting point is the fact that for only
96 out of the 6897 TRACErNsprc queries does
Choseng, 4 consist of more than one database. Further-
more, 95 of these 96 queries are one-atomic-subquery
queries, for which Chosenj,q = Best necessarily 8.
So, revisiting the results of Figure 7, for 88.95% of
the TRACEnsprc queries Ind chooses all of the best
databases, while it picks more than one database for
just 96 queries. Therefore, in most of the cases, not
only does Ind narrow down the search space to just one
database (out of the six available ones), but it also man-
ages to select the best database when there is one.

6 GlOSS’ storage requirements

In this section we study the space requirements of
GIlOSS and compare them with those of a full index
of the set of databases. We also analyze the impact on
the effectiveness of Ind of eliminating information on
low frequency words from GIOSS.

8 Ind chooses exactly the Best set for queries of size one: from
Equation 1, if ¢ is an atomic subquery and db a database, then
ESizey, ;(find t,db) = freq(t,db), and so, ESizey, 4(find t,db) =
RSize(find t, db).

6.1 Eliminating the “subject” index

Before we compute the frequency information size, we
will analyze the way the “subject” index is treated
in the six databases we considered. In all of these
databases, “subject” is a compound index, built from
other “primitive” indexes. For example, in the INSPEC
database, the “subject” index is constructed from
the “title,” “abstract,” “thesaurus,” “organization,”
and “other subjects” indexes: a query “find subject
computers” is equivalent to the “or” query: “find title
computers V abstract computers V thesaurus computers
V organization computers V other subjects computers.”

All of the experiments we reported so far treated
“subject” as a primitive index, as though GIOSS kept
the entries corresponding to the “subject” field des-
ignation as part of the database frequency informa-
tion. However, given that GIOSS has the entries for
the constituent indexes from which the “subject” index
is formed, we could attempt to estimate the entries cor-
responding to the “subject” index using the entries for
the primitive indexes. This way, we can save space by
not having to store entries for the “subject” index.

There are different ways to estimate freg(subject w,
db), given the primitive indexes indez;, indezs, ...,
indez,, that compose the “subject” index in database
db. One such way takes the maximum of the individual
frequencies for the primitive indexes:

freq(subject w, db) =~  max freq(indez; w, db)  (7)

Note that this estimate constitutes a lower bound for
the actual value of freg(subject w, db).

Figure 8 shows the results obtained for the ba-
sic configuration (Figure 4) but estimating the “sub-
ject” frequencies as in Equation 7, with one differ-
ence: only those indexes that actually appeared in
TRACEiNsprc queries were considered. The other
indexes are seldom used so it does not make sense for
GlOSS to keep statistics on them. The indexes consid-
ered are the ones that are listed in Figure 9. For exam-
ple, we simply ignored the “other subjects” index for the
INSPEC database. The last column in Figure 8 shows
the Success figures for the basic configuration, using the
exact frequencies for the “subject” index: there is very
little change in performance if we estimate the “subject”
frequencies as in Equation 7 °. Therefore, when we com-
pute the size of the GIOSS frequency information in the
next section, we will assume that GIOSS does not store
“subject” entries. Thus, we will consider only primitive
indexes that appear in TRACE[NspEc queries.

9In [1] we explore an alternative estimate for the “subject”
frequencies whose corresponding experimental results were very
similar to those for the Equation 7 estimate.



Figure 8: Evaluation criteria for the basic configura-
tion, but estimating the “subject” frequencies as the
mazimum of the frequencies of the primitive indexes.
The last column shows the Success values for the basic
configuration, using the exact “subject” frequencies.

Full GIOSS

Field Designator Index (threshold=0)

# of postings # of entries
Author 4108027 311632
Title 10292321 171537
Publication 6794557 18411
Abstract 74477422 487247
Thesaurus 11382655 3695
Conference 7246145 11934
Organization 9374199 62051
Class 4211136 2962
Numbers (ISBN, ...) 2445828 12637
Report Numbers 7833 7508

| Totals [ 130,340,123 | 1,089,614 |

Figure 9: Characteristics of the database frequency
information kept by GIOSS vs. those of a full index,
for the INSPEC database.

6.2 Characteristics of the database
frequency information and full indexes

As explained in Section 3.2, GIOSS needs to keep,
for each database, the number of documents that sat-
i1sfy each possible keyword field-designation pair. Fig-
ure 9 was generated using information of the corre-
sponding INSPEC indexes obtained from Stanford’s
FOLIO library information retrieval system. The “#
of entries” column reports the number of entries re-
quired for each of the INSPEC indexes appearing in
the TRACFErnsprc queries. For example, there are
311,632 different author surnames appearing in IN-
SPEC (field designation “author”), and each will have
an associated entry in the INSPEC frequency informa-
tion. A total of 1,089,614 entries will be required for
the INSPEC database. Each of these entries will cor-
respond to a keyword field-designation pair and its as-
sociated frequency (e.g., <author Knuth, 47>, meaning
that there are 47 documents in INSPEC with Knuth as
the author). In contrast, if we were to keep the com-
plete inverted lists associated with the different indexes
we considered, 130,340,123 postings would have to be
stored in the full index.

Criteria || Success | Alpha | Beta | Success— Success | Size of || Full Index | GlOSS/threshold=0 |
Beta (Fig. 7) Vocabulary 3.13 MBytes 3.13 MBytes
Cain 88.23 | 11.77 | 6.93 81.30 88.95 Index 248.60 MBytes 2.60 MBytes
Con 83.82 16.18 2.52 81.30 84.38 Total 251.73 MBytes 5.73 MBytes
% of Full Index 100 2.28

Figure 10: Estimated storage costs of a full index vs. the
GlOSS frequency information for the INSPEC database.

6.3 Storage cost estimates

In the following, we will roughly estimate the space
requirements of a full index vs. those of the frequency
information kept by GIOSS, for the INSPEC database.
The figures we will produce should be taken just as
an indication of the relative order of magnitude of the
corresponding requirements.

Each of the postings of a full index will typically
contain a field designation and a document identifier.
If we dedicate one byte for the field designation and
three bytes for the document identifier, we end up
with four bytes per posting. Let us assume that, after
compression, two bytes suffice per posting (compression
of 50% is typical for inverted lists).

Each of the frequencies kept by GIOSS will typically
contain a field designation, a database identifier, and the
frequency itself. Regarding the size of the frequencies
themselves, only 1417 keyword field-designation pairs
in INSPEC have more than 2'® documents containing
them. Therefore, in the vast majority of the cases,
two bytes suffice to store these frequencies, according
to the INSPEC data we have available. We will thus
assume that we dedicate two bytes per frequency. So,
using one byte for the field designation and two bytes
for the database identifier, we end up with five bytes
per frequency. Again, after compression we will assume
that 2.5 bytes are required per frequency. Using the
data from Figure 9 and our estimates for the size of each
posting and frequency information entry, we obtain the
index sizes shown in Figure 10 (“Index” row).

The vocabulary for INSPEC 1°, including only those
indexes that appear in TRACFErnspEc queries, con-
sists of 819,437 words. If we dedicate four bytes to
store each keyword (see [1]), around 4 x 819, 437 bytes,
or 3.13 MBytes are needed to store the INSPEC vo-
cabulary. This is shown in the “Vocabulary” row of
Figure 10.

After adding the vocabulary and index sizes (“Total”
row of Figure 10), the size of the frequency information
that GIOSS needs is only around 2.28% the size of the
corresponding full index, for the INSPEC database.

So far, we have only focused on the space re-
quirements of a single database, namely INSPEC. We

10The field designators are stored with each posting and
frequency, as described above.



will base the space requirement estimates for the six
databases on the figures for the INSPEC database, for
which we have reliable index information. To do this, we
multiply the different values we calculated for INSPEC
by a growth factor G (see Figure 3):

B EdbeDB DBSize(db)

G = ~ 4.12
DBSize(INSPEC)

where DB = {INSPEC, COMPENDEX, ABI, GEO-
REF, ERIC, PSYCINFO}. Therefore, the number of
postings required by a full index of the six databases
is estimated as Gx INSPEC number of postings =
537,001, 307 postings, or around 1024.25 MBytes. The
number of frequencies required by GIOSS for the six
databases is estimated as Gx INSPEC number of fre-
quencies — 4,489,210 frequencies, or around 10.70
MBytes (see the “Index” row of Figure 11).

The space occupied by the index keywords of the six
databases considered will be proportional to the size
of their merged vocabularies. Using index information
from Stanford’s FOLIO system, we can determine that
the size of the merged vocabulary of the six databases
we considered is approximately 90% of the sum of the six
individual vocabulary sizes. Therefore, we estimate the
size of the merged vocabulary for the six databases as
G x 0.90x INSPEC vocabulary size = 3,038,472 words,
or around 11.59 MBytes (see the “Vocabulary” row of
Figure 11).

Figure 11 summarizes the storage estimates for
GlOSS and a full index. Note that the GIOSS frequency
information is only 2.15% the size of the full index. This
is even less than the corresponding figure we obtained
above just for the INSPEC database (2.28%). The
reason for this is the fact that the merged vocabulary
size is only 90% of the sum of the individual vocabulary
sizes. Although this 10% reduction “benefits” both
GlOSS and the full index case, the impact on GIOSS
is higher, since the vocabulary size is a much larger
fraction of the total storage needed by GIOSS than it is
for the full index.

We have obtained the numbers of Figure 11 using
some very rough estimates and approximations, so they
should be taken cautiously. However, we think they
are useful to illustrate the low space requirements of
GlOSS: around 22.29 MBytes would suffice to keep the
word frequencies for the six databases we studied.

6.4 Pruning the word-frequency information

To further reduce the amount of information that we
keep about each database, we introduce the notion of a
threshold. If a database db has fewer than threshold
documents with a given keyword-field pair ¢, then
GlOSS will not keep this information. Therefore, GIOSS

| Size of || Full index | GlOSS/threshold=0 |

Vocabulary 11.59 MBytes 11.59 MBytes
Index 1024.25 MBytes 10.70 MBytes
Total 1035.84 MBytes 22.29 MBytes
% of Full index 100 2.15
Success(Cap, -) 100 88.23
Success(Cop, -) 100 83.82
Success(Cop, -) -

Beta(Cop, -) 100 81.30

Figure 11: Storage estimates for GIOSS and a full index
for the six databases. The entries for GIOSS in the last
three rows correspond to the basic configuration, but
estimating the “subject” frequencies as the maximum
of the frequencies of the primitive indexes.
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Figure 12: Criterion Cap, for different values of
threshold. The “subject” entries are estimated as the
maximum of the entries corresponding to the primitive
indexes.

will assume that freq(t,db) is zero whenever this data
is needed.

As a result of the introduction of threshold, the
estimator may now conclude that some database db does
not contain any documents matching a query of the form
“find t1 A...At," if freg(t;, db) is missing, for some
i, while in fact db does contain documents matching
the query. This situation was not possible before: if
freq(t;, db) was missing from the information set of the
estimator, then freq(t;,db) = 0, and so, there could be
no documents in db satisfying such a query.

To see if Ind’s performance deteriorates by the use of
this threshold, Figures 12 and 13 show some results for
different values of threshold, for the basic configuration,
but estimating the “subject” index entries as in Equa-
tion 7. These figures show that the performance for
the different criteria is only slightly sensitive to (small)
increases in threshold. Ironically, the Swuccess values
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Figure 13: Criterion Cgp, for different values of
threshold. The “subject” entries are estimated as the
maximum of the entries corresponding to the primitive
indexes.

for criterion Cop tend to improve for higher values of
threshold. The reason for this is that Choseny,  does
not include databases with ESizey,; = 0. By increas-
ing threshold, the number of such databases will pre-
sumably increase, thus making Choseny, 4 smaller, and
more likely to satisfy Cop : Choseny,  C Best.

The reason for introducing thresholds is to have to
store less information for the estimator. Figure 14 re-
ports the number of entries that would be left, for dif-
ferent field designators, in the frequency information
for the INSPEC database. Some field designators (e.g.,
“thesaurus”) are not affected much by this pruning of
the smallest entries, whereas the space requirements for
some others (e.g., “author,” “title,” and “abstract”) are
reduced drastically. Adding together all of the indexes,
the number of entries in the INSPEC frequency infor-
mation kept by GIOSS decreases very fast as threshold
increases: for threshold=1, for instance, 508, 978 entries,
or 46.71% of the original number of entries, are elimi-
nated. Therefore, the size of the GIOSS frequency infor-
mation can be substantially reduced beyond the already
small size estimated in Figure 11.

7 Conclusions

In this paper we presented GIOSS, a solution to the
text database discovery problem. We also developed
a formal framework for this problem, together with
different semantics to answer a user query. We used
this framework to evaluate the effectiveness of Ind, an
estimator for GIOSS. The experimental results we
obtained, although involving only six databases, are
encouraging: the Success values for our evaluation
criteria are higher than 84%.

The storage cost of GIOSS is relatively low (see
Figure 11). A rough estimate suggested that 22.29
MBytes would be enough to keep all the data needed
for the six databases we studied. Given this low space
requirement, GIOSS itself can be replicated to increase
its availability. Furthermore, we considered a variation
of GIOSS to reduce its storage cost: for example, with
only under 2% loss in Success values, we reduce the
number of entries kept by GIOSS by about half.

Because of space limitations, we have only included
in this paper some of the results of our experiments. In
[1] we describe additional experiments we conducted. In
particular, we believe that our results are independent
of the query trace we used, since we obtained very
similar results using a different query trace. Also, we
analyzed two other estimators for GIOSS, namely Min
and Bin. Min is an estimator built assuming that
the keywords that appear together in a user query are
strongly correlated (as opposed to Ind’s “independence”
assumption). Surprisingly, the results we obtained for
Min are very similar to those for Ind. Binis an estimator
aimed at addressing the Exhaustive Search semantics
briefly described in the Introduction. We analyze this
semantics, together with the others discussed in the
Introduction, in [1].

Our approach could also deal with information servers
that would charge for their use. Since we are select-
ing what databases to search according to a quanti-
tative measure of their “goodness” for a given query
(ESizef,,q), we could easily incorporate this cost factor
into the computation of ESizey, 4 so that, for example,
given two equally promising databases, a higher value
would be assigned to the least expensive of the two.

We are currently implementing a GIOSS server that
will keep information on databases having WAIS [7]
indexes. These databases can correspond to WAIS
servers, or to World Wide Web servers [4] with WAIS
indexes, for example. The GIOSS server will be available

through World Wide Web.
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