
Synthetic Workload Performance Analysis of Incremental Updates �

Kurt Shoens

IBM Almadeny

Anthony Tomasic

Stanford Universityz

Hector Garcia�Molina

Stanford Universityx

January �� ����

Abstract

Declining disk and CPU costs have kindled a renewed interest in e�cient document indexing

techniques� In this paper� the problem of incremental updates of inverted lists is addressed using

a dual�structure index data structure that dynamically separates long and short inverted lists

and optimizes the retrieval� update� and storage of each type of list� The behavior of this index

is studied with the use of a synthetically�generated document collection and a simulation model

of the algorithm� The index structure is shown to support rapid insertion of documents� fast

queries� and to scale well to large document collections and many disks�

� Introduction

As the costs of processors� main memories� and disks have fallen� full�text indexing has become

an increasingly popular tool� These costs trends have also encouraged the storage of increasing

numbers of documents on�line� As a result� there is renewed interest in e�cient document indexing

techniques�

The underlying index structure for most document retrieval systems is the inverted list ���� The

inverted list for a particular word w contains a sequence of postings� each reporting the occurrence

of w in a document� Each posting may include a variety of information� such as the word o�set

�within the document	 where w occurs or the region where w occurs �title� abstract� author list�

etc�	 In a full text index� every word occurring in documents �minus perhaps some stop words	

has an inverted list� The size of the inverted lists for a full text index varies from perhaps 
�� to


��� the size of the text document database itself�

In an information retrieval system� users submit queries that consist of a set of words and

some condition� The exact form of the condition varies among systems� Boolean systems support

�This research was sponsored by the Advanced Research Projects Agency �ARPA� of the Department of Defense
under Grant No� MDA�������J����� with the Corporation for National Research Initiatives �CNRI�� The views
and conclusions contained in this document are those of the authors and should not be interpreted as necessarily
representing the o	cial policies or endorsement
 either expressed or implied
 of ARPA
 the U� S� Government or
CNRI�

yIBM Almaden Research Center� e�mail� shoens�almaden�ibm�com
zDepartment of Computer Science
 Stanford
 CA �
������
�� e�mail� tomasic�cs�stanford�edu
xDepartment of Computer Science
 Stanford
 CA �
������
�� e�mail� hector�cs�stanford�edu






boolean expression conditions such as ��cat and dog	 or mouse�� Proximity systems support

additional conditions� such as requiring that �cat� and �dog� occur within so many words of each

other� or that �mouse� occur within a title region� In a vector model system� the query speci�es

weights for the words� and the system locates documents that maximize the weighted sum of

occurring words� All of these query models are well served by inverted lists�

Traditional information retrieval systems� of the type used by libraries �e�g�� Stanford Univer�

sity�s FOLIO or the University of California�s MELVYL	 or information vendors �e�g�� Dialog Inc�

or Mead Data Central Inc�	� assume a relatively static body of documents� Given a body of docu�

ments� these systems build the inverted list index from scratch� laying out each list sequentially and

contiguously to others on disk �with no gaps	� �They also build a B�tree or hash table that maps

each word to the locations of its list on disk�	 Periodically� e�g�� every weekend� new documents

are added to the database and a new index is built� Rebuilding the index is a massive operation�

but its cost is amortized over multiple days of operation�

In many of today�s environments� such full index reconstruction is unsatisfactory� One reason

is that text document databases are more dynamic� For instance� if one is indexing news articles�

electronic mail� or stock information� the latest information is required� Thus� one would like

to update the index in place� as new documents arrive� �Updating the index for each individual

arriving document is ine�cient� as we will discuss later� Instead� the goal is to batch together in

memory small numbers of documents for each in�place index update� The in�memory batch can

be searched simultaneously with the larger index�	

A second reason why in�place updates are desirable is that they eliminate �or at least postpone	

resource consuming reorganizations� Massive reorganizations may be acceptable in conventional

systems where user load is minimal over weekends� but in today�s world of � days a week� 
� hours

a day continuous operation� degradation of service for prolonged periods is not acceptable�

A third reason why in�place updates may be desirable is that the index may simply be too

massive for reorganization� As the volume of documents grows in some applications� it may be

more desirable to have a dynamic index that can grow and dynamically migrate to new disk drives�

without ever being fully reorganized�

To address these issues� in a previous work ��� we proposed and experimentally analyzed a new

dynamic dual�structure for inverted lists� Lists are initially stored in a �short list� data structure�

as they grow they migrate to a �long list� data structure� Our proposed algorithm dynamically

selects lists to migrate� Our previous work also studied a family of disk allocation policies for long

lists� Each policy dictates� among other things� where to �nd space for a growing list� whether

to try to grow a list as an in�place update or to migrate all or parts of it� and how much free

space to leave at the end of a list� Finally� we did a detailed performance evaluation of the dual�

structure lists and the various allocation policies� The evaluation is based on a collection of �� days

worth of NetNews indexed according to our algorithms� Our experimental system generates the

exact sequence of disk block updates that each policy produces and executes them on real disks�

Based on the resulting disk layout� we also computed disk space utilization and estimated query

performance�

In the previous work� we used real text data and measured performance on real disks� While






this approach has the advantage of being grounded in reality� it has some disadvantages� First� a

given text collection has speci�c characteristics such as size and type of indexing� Our collection

was relatively small ���� MB	� We only studied an abstracts index of our text collection where

duplicate occurrences of a word in a document are dropped� Our synthetic document generator

will permit us to study larger text collections of documents� As we shall see� some e�ects in our

system can only be observed with larger text collections� In addition to abstracts indexes� we

will study the e�ect of full text indexing of those collections� Second� in real experiments� we are

dependent on the speci�c hardware characteristics of our test system� Performing experiments

with real disks takes a long time � a typical graph can take a day of computation time to produce�

And those results depend on a disk with speci�c characteristics such as seek time and transfer rate�

Our simulations take only a few minutes to run� permitting us to explore a much larger range of

parameters� In addition� our simulation is calibrated to the results of our real disks� so we are

sure that the simulation is accurate� Our synthetic disk simulation permits us to vary multiple

parameters of the I�O architecture to study a parameter�s e�ects�

In summary� the new contributions of this paper are�

� a method for generating synthetic documents that are representative of a real document

collection�

� a performance evaluation of our algorithms to show the e�ects of data structure tuning� disk

performance� index scale� type of indexing� and striping� and

� a comparison between our dynamic approach of building incremental indexes and a static

approach typically found in existing systems�

The next section describes the dual�structure index and algorithms introduced in our previous

work� The next two sections describe our experimental design and results� We wrap up with

related work and conclusions�

� Dual�Structure Index and Algorithms

In this paper we assume that when a new document arrives it is parsed and its words are inserted

into an in�memory inverted index� At some point the in�memory inverted index must be written

to disk� Our objective is to update the disk incrementally with the in�memory inverted index as

e�ciently as possible�

The lengths of the inverted lists for a database of text documents have a roughly exponential

distribution �the Zipf curve ���	� This presents a dilemma for the in�place update of inverted lists

since some inverted lists �corresponding to frequently appearing words	 will expand rapidly with

the arrival of new documents while others �corresponding to infrequently appearing words	 will

expand slowly or not at all�

In our scheme there are two data structures for lists� We place short inverted lists �of in�

frequently appearing words	 in a �xed size region of disk where the region contains postings for

multiple words� These lists are referred to as short lists and the �xed size regions are known as

�



buckets� The idea is that every inverted list starts o� as a short list� when a bucket �lls up with

inverted lists� the longest inverted list becomes a long list� We place the long inverted lists �of

frequently appearing words	 in variable length contiguous sequences of blocks on disk� We refer

to these inverted lists as long lists� Each block of a long list contains postings for only one word�

Given a word w� we examine a directory which determines if the word has a long inverted list� If

the word does not have a long inverted list� it has a short inverted list or no inverted list at all�

In this case� a function h�w	 �e�g�� a hash function or a tree search	 returns the bucket where the

short inverted list� if any� for the word is stored�

��� Buckets and Short Lists

At some point� an in�memory list L for word w �generated from arriving documents	 must be

moved to disk� First� if w already has a long list �on disk	� L is appended to the long list as

discussed in the next section� Otherwise� we assume L is a short list and insert it into bucket

h�w	� If the bucket is not already in memory� it is read in� and L inserted� �If a list for w already

existed in the bucket� L is added to it� else a new short list is created in the bucket�	 If the bucket

over�ows� we then pick the longest short list� in block� say M � remove it� and make M a long list�

Once M is removed� the bucket will be partially empty� The updated bucket h�w	 is written to

disk �eventually	� and list M is written to disk as discussed in the next section� Note that a word

w never has both a short list and a long list associated with it� The buckets dynamically determine

which words have inverted lists containing only a few postings� since these words are unlikely to

grow enough to over�ow into a long list� �Assuming that the bucket data structure is large enough

to hold all the infrequent words�	

��� Long list data structure

Once a short inverted list L for a word w over�ows from a bucket� L is written out to disk and the

directory is updated with the existence of w and the location of L� On a subsequent update� an

in�memory list L� for a word w is directly appended to L without accessing a bucket� The append

is accomplished as follows� If L� �ts in the reserved space at the end of L� then L� is added as an

in�place update� That is� the last block of L is read� L� is concatenated to the tail of L and the

result is written out as an in�place update� If L� does not �t in the reserved space at the end of

L� then L� is appended to L in a new region of disk� That is� L is read from disk� L� appended to

L� and the result written to a new region of disk with a 
�� reserved space at the end of the new

region� The old version of L on disk is then freed to be reused� The value of 
�� was determined

to give good performance by experimental analysis ���� The long list management policy we have

described here is called �whole� limit � y� proportional allocation� in ���� This is the only policy

we consider here� Others are described and compared in ����

Figure 
 illustrates the four di�erent situations for our dual structured index� For this example

�and for this example only	� we use two simpli�cations� we use a single bucket for all words and

we assume one posting exactly �ts one disk block� The bucket has a capacity of 
� postings�

�If there are multiple longest short lists
 we choose one arbitrarily�

�



A

B

Buckets Long Lists Buckets Long Lists

Old State New StateIn-Memory

A

B
(a)

(b)

(c)

(d)

A

A

A

B

B

B

B

A B A

B A B A

B A B

A

x

Figure 
� Each row� labeled �a	 through �d	 is an example of the dual structure index� Each column
of large boxes represent the contents of the di�erent data structures as indicated at the top of the
column� �A� and �B� represent words and �x� represents an free inverted list which can be reused
for any word� The small empty squares represent postings and the small shaded squares represent
space reserved for postings� Only a single bucket with a capacity of 
� postings is used in this
�gure�

Each row� labeled �a	 through �d	 is an example of the dual structure index� The in�memory

column represents the new inverted lists generated by a batch of documents� The old�state column

represents the state of the disk before the new lists are added� the new�state column is the result

after insertion� In Figure 
 �a	� two words for a total of seven postings are inserted into the empty

bucket� �Postings are represented by small empty squares�	 In Figure 
 �b	� six postings for two

words are inserted into the bucket� The bucket now contains 

 postings� so a word must over�ow

since the bucket capacity is 
� postings� The longest short list is chosen� thus the word �A� with

seven postings is chosen over the word �B� with six postings� The short list over�ows into the long

list data structure and it is written to disk with a 
�� reserved space� which is one posting �the

free posting is represented by a shaded square	� In Figure 
 �c	 two words with a single posting

each are added� The posting for the word �B� is added to the short inverted list for �B� in the

bucket� The posting for the word �A� is added as an in�place update to the long inverted list for

the �A� word� Finally� in Figure 
 �d	 two words with a single posting each are added� The posting

for the word �B� is again added to the short inverted list for �B� in the bucket� The posting for

�A� cannot �t in the reserved space� so the long inverted list is moved to a new location with both

the extra posting appended to the end and with new reserved space� The old long list for �A� is

freed for subsequent reuse by any word� as indicated by the �x� symbol�

In summary� the dual�structure index allows us to apply di�erent storage structures to the huge

number of infrequent words and to the relatively few frequent words� Through the use of �xed�size

�



Variable Default Value Description

Pro�le See Table 

f�x	 See Equation 

Type Abstracts Type of indexing of documents
TotalPosting 
�
 Million Total postings in all updates
Updates 
�� Number of updates
Documents 


� Documents per update
UniqueWords ��� Unique words per document
StopList � Number of words in stop list

Table 
� The variables used to control the synthetic generation of documents and the associated
default value of each variable�

buckets� this approach dynamically discovers the frequent words that require their own long list�

Updates to the large number of infrequent words are amortized into a relatively small number

of disk operations� since the buckets are small enough to �t in memory� In addition� coalescing

infrequent words reduces wasted disk space by packing multiple very short inverted lists into a disk

block� Long lists are kept contiguous to insure good query performance�

� Experimental Design

This section describes our experimental framework� which consists of three parts� The �rst part

is the synthetic document generator� The output of the generator is given to a simulation of the

algorithms and data structures described in Section 
� The result of this simulation is a sequence

of disk operations� This sequence is synthetically simulated by our disk simulation� The result of

the disk simulation is a set of timings for incremental updates�

��� Batch update generator

The synthetic document generator creates batches of updates that we use to drive our algorithm

simulations� The document generator uses an arbitrary pro�le of word�occurrence frequences�

represented by variable Pro�le� an estimate function f of vocabulary growth� and some document

characteristic variables� If the Type of index is Abstracts� then one posting per unique word per

document is generated� Otherwise� Type is Full and one posting per word occurrence per document

is generated� Table 
 summarizes the parameters used�

��� Design of the Generator

The synthetic document generator operates as follows� Since the growth in the vocabulary of

the database does not go to zero over time �because new words are constantly introduced to the

database with each update e�g�� family names� company names� misspellings� etc�	� two types of

words are generated� One are words that are already in the index and the other are synthetic

words that are new to the index�

�



First� the simulator constructs a synthetic �nal index �SFI	 representing the �nal index at the

end of all batch updates based on three arguments�

� a Pro�le of a word�occurrence distribution� which is a set of words and the number of times

each word occurs�

� the total postings TotalPostings in the synthetic �nal index� and

� a function f�x	 that� given a parameter x representing the number of postings� f�x	 estimates

the number of unique words a document collection of size x�

To construct SFI� the generator proceeds by �rst basing the distribution on Pro�le� It then es�

timates the number of new synthetic unique words in the synthetic distribution by computing

f�TotalPostings	�TotalPostings� The base distribution is expanded to accommodate the new words

by assigning 
 posting to each new synthetic word in the distribution� giving SFI�

Next� random documents are created by the generator by selecting UniqueWords random words

from the SFI� The probability that a word is chosen is proportional to its frequency distribu�

tion� e�g�� if the word �cat� occurs x times in the SFI� then its probability of being chosen is

x�TotalPosting� Documents random documents are generated and then a synthetic batch update

is constructed from the documents� The generator repeatedly creates new random documents and

constructs synthetic batch updates until Updates batch updates are generated� The form of each

synthetic batch update is a set of words and the number of times that each word occurs� This

corresponds to the lengths of the inverted lists in an actual implementation of an information

retrieval system�

Some information systems index all occurrences of a word� rather than just the count of the

occurrences in each document� Indexing all occurrences supports e�cient query proximity operators

such as �nding terms adjacent to one another or within some speci�ed number of words of each

other� To determine how e�ective our algorithms are for this class of systems� we model the index

for a full text indexing system� This is indicated to the generator by setting Type�Full� First� we

assume that the position information for each posting would take the same amount of space as the

count information� so the size of individual postings is unchanged� Second� we model the increase

in the number of postings by indexing every occurrence of a word� Third� actual systems often

limit the increase in postings for this kind of index by using a �stop list� of very frequent terms

that are presumed to o�er limited search discrimination� To model the e�ects of a stop list� we

eliminate the top StopList most frequent words from each synthetic batch update�

��� Determining Parameters

For our experiments� we supplied arguments to our batch document generator to emulate the

characteristics of a collection of �� days of NetNews articles that we collected in our previous

work� Some statistics for this document collection are described in Table 
� Our collection is based

on all the articles at our local newsfeed� We then eliminated all nontext articles and articles of

short length ����

To provide the proper parameters to our synthetic document generator� we follow these steps�

�



Text Document Database News

Total Raw Text ��� MB
Total Words ����
��

Total Postings ����
�����
Documents 
������

Average Postings per Word �

Frequent Words ����
�

Infrequent Words �������
Postings for Frequent Words �����

Postings for Infrequent Words ����

Table 
� Statistics for a News abstracts text database� Abstracts databases index general infor�
mation about a document such as author names� title� the set of words in the abstract� etc� A
frequent word for this table ranks in the top �� of all words �in order of frequency	� Postings for
frequent words are given as the percentage of all postings in the database� Infrequent words are
all words that are not frequent�


� Estimate the growth in the vocabulary of the text document database�


� Estimate the number of documents in a batch update�

�� Estimate the number of unique words in a document�

�� Verify that the generator is accurate�

In Figure 
� the data points graphs the size of the vocabulary measured at the end of each

batch update� The x�axis is the number of postings and ends at about �� million postings� the

total number of postings in our database� We use postings as the axis instead of the batch update

number because we expect words to be introduced into the vocabulary on a per posting basis

instead of on an arbitrary division of documents into batches� The y�axis in the �gure is the number

of words in the vocabulary� Each data point is the size of the vocabulary for our experimental

NetNews collection measured after the given incremental update� The �gure shows the continued

introduction of new words into the index for each incremental update�

To predict the size of the vocabulary as the number of postings grows beyond �� million

postings� we generate a function f�x	 by a curve �t to the data� To determine the form of f � we

start with the function x lnx �analytically derived in �
�	 and then add all combinations of lower

order terms� The result of �tting the data to the equation a� bx� c lnx� dx lnx using ��� is the

equation

f�x	 � ��������
� ����������x� ������� lnx� �����������x lnx� �
	

�We also tried curve �ts for every subexpression of the function� The function above had the lowest

least�squares error of all the curve �t equations�	 Figure 
 shows a close agreement between the

growth in the vocabulary size and the function f � However� the curve �t equation has a limited

range of utility since it eventually produces negative numbers as x approaches in�nity �due to a

negative value of d � the constant for the dominate term of the function	� We limit the scaling

�



0

100000

200000

300000

400000

500000

600000

700000

800000

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07 4.5e+07 5e+07

v
o
c
a
b
u
l
a
r
y
 
s
i
z
e
 
(
w
o
r
d
s
)

postings

data
-436739.2 + 0.09494688 x + 35499.8 ln x - 0.004679559 x ln x

Figure 
� Comparison of the synthetic vocabulary size function f to the actual growth in vocab�
ulary size� Each data point is generated by counting the vocabulary size of the index after each
incremental update�

of our database to just over � times� or Updates� 
��� the number of postings in the real text

collection� Within this range the curve �t function behaves reasonably�

To estimate the behavior of documents in a batch� we assume that the number of documents

per batch and the number of unique words per batch are about equal to the averages of the

�� known batches� so we let each batch have Documents� 


� documents and each document

have UniqueWords� ��� unique words� To compute TotalPosting for our SFI� we linearly scale the

experimental �nal index of about �� million postings for �� batch updates to predict TotalPosting�


�
 million postings for 
�� updates� Using f � the SFI has an estimated total vocabulary of about


�
� million words� The resulting synthetic text collection represents ������� documents occupying


�
 GB�

To verify that the batch generator is accurate� we compare the vocabulary size of the function

f with the vocabulary size produced by the generated documents� Figure � shows that the batch

update generator initially overestimates the vocabulary size� This is due to the fact that the

selection of a word for a batch update is over the entire range of words in the SFI� Eventually

the generator underestimates the vocabulary size� This indicates that not every possible word was

chosen for some batch update� However� we believe the generator is good enough to qualitatively

compare the behavior of databases scaled to larger sizes�

�



0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08 1.4e+08 1.6e+08

v
o
c
a
b
u
l
a
r
y
 
s
i
z
e
 
(
w
o
r
d
s
)

postings

f(x)

batch update generator

Figure �� Comparison of the batch update generator to the curve �t function�

Variable Default Value Description

Ndisk � Number of disks
Buckets ���� Number of buckets
BucketSize ���� Postings in each bucket
BlockSize ���� Bytes in long list blocks

Table �� Variables controlling the dual structure index model

��� Dual�structure index simulation

To study the behavior of the dual�structure index� we wrote a simulation of the algorithms and

data structures described in Section 
� The simulation reads a list of document batches and writes

a trace of the disk I�O operations required to update the bucket data structure and the long lists�

At the end of each batch update� we simulate the �ushing of all data structures to disk� More

detail on the simulation is available in ����

In comparing our simulation to an implementation of the bucket data structure in an informa�

tion retrieval system� we note that an implementation would perform a similar computation using

inverted�lists as our simulation does using the document representation generated by the synthetic

document generator� Thus� our simulation generates exactly the same sequence of disk requests as

an actual information retrieval systems� but the contents of the lists di�er� In our simulation the

contents of the disk requests are empty� in an actual information retrieval system� the contents are

inverted lists�

In our model� the bucket structure is striped over all available disks� We also assume that the


�



Variable Default Value Description

Seek 
��� Seek time �ms	
ReadBlock ��� Read a block �ms	
WriteBlock ��� Write a block �ms	

Table �� Variables controlling the disk model

buckets all �t in memory so no disk I�O�s are simulated to read the buckets�

Parameters to the simulation are described in Table ��

��� Synthetic Disks

Our synthetic disk model replaces execution of traces on disks with the evaluation of an analytic

function� It reads the disk I�O trace and predicts how long it would take to perform the inserts

for a given number of disks with a given performance� This model can accommodate various seek

times and data rates� as well as varying numbers of disks run in parallel�

Our model is based on an average time to read or write the �rst block of a request� plus an

additional charge for each subsequent block in the request� This model takes into account the

relatively large time to seek to a block and the relative e�ciency of reading or writing many blocks

at a time� Read and write data rates are modeled separately� because real disks exhibit signi�cantly

di�erent rates �especially optical disks	�

Table � lists the variables used in the synthetic functions� Let x be the number of blocks to read

or write� For read operations� we use Seek�ReadBlock � x as the number of milliseconds required

for the read operation� For write operations� we use Seek � WriteBlock � x� as the number of

milliseconds required for the write operation� These parameters were derived from measurements

of three disks on a single controller for workloads like those used in this study� The synthetic disk

model reads a disk trace� computes the time taken by each disk using the read and write formula�

and then reports the maximum of these times as a prediction of the total time need to execute the

disk trace by actual hardware�

To verify the accuracy of the model� we compared the actual times encountered in running the

disk traces on real hardware to those predicted by the synthetic disk model� The results are shown

in Figure �� Two sets of curves are shown� Each set compares real to synthetic� The top set is

the time taken for each batch update when no additional reserved space is allocated at the end

of a long inverted list� The second set is when 
�� reserved space is allocated� We see from the

graph that the synthetic disk model does a good job of estimating the time taken by real disks in

performing the disk traces�

� Results

This section describes the results of our study� One of our goals is to analyze how the dual structure

scheme scales� hence� we explore its behavior as the number of batches �days of operation	 grows







0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80

t
i
m
e
 
p
e
r
 
u
p
d
a
t
e
 
(
s
e
c
o
n
d
s
)

update

real 0.0

synthetic 0.0

real 0.1

synthetic 0.1

Figure �� Comparison of the per batch update times of disk traces of real disks to disk traces
of synthetic disks� Each line labeled �real� is based on real documents and hardware� Each line
labeled synthetic is real documents and synthetic hardware� The additional number for each line
is the fraction of reserved space added at the end of each long inverted list�

from the �� in our real collection to 
��� representing over half a year of operation� A second goal

is to study the impact of various key system parameters� such as the number and speed of the

disks� and the number of buckets�

��� Choosing the Number of Buckets

The size of the bucket data structure in our dual�structure index is important� Too little bucket

space results in many long lists� slower batch insertions� and increasing internal fragmentation due

to the allocation of disk blocks to relatively short lists� Too much bucket space results in internal

fragmentation in the bucket structure and a higher �xed cost per batch insertion�

In this section� we apply our synthetic batch generator to examine the behavior of buckets as

the index grows� We use the batch update generator and the synthetic disk process to estimate the

per batch update time for 
�� batch updates� Figure � shows this situation for several di�erent

sizes of the bucket data structure� �We vary the number of buckets and keep the size of each bucket

constant�	 Examining the curves for the �rst 
� updates� we see that as the bucket data structure

grows in size� the update time per batch is higher� This is due to the need to write out a larger

bucket data structure� Over the entire set of updates� however� the larger bucket data structure

eventually has the lowest per batch update time since the smallest number of long lists exist for

the index with the largest number of buckets� The spikes in the curves correspond to an unusual

amount of moving of lists for that update� This is to be expected since each batch update is of a

�xed size� This means that many of the long lists are growing at a constant rate and consequently







0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120 140 160 180 200

t
i
m
e
 
p
e
r
 
u
p
d
a
t
e
 
(
s
e
c
o
n
d
s
)

update

1500 buckets

3000 buckets

4500 buckets

9000 buckets

Figure �� The update time per batch for the dual scheme for various bucket sizes�

they all over�ow the 
�� reserve space at the same time� The slight bend in the curve for 
���

buckets is due to the �attening out of the vocabulary size for the index as it grows�

For the same situation as the previous �gure� Figure � shows the space occupied by the index

for each of the bucket sizes� The jump in the space occupied in each curve is due to the update in

which the largest lists over�ow from the bucket data structure� Since each of these very long lists

has a 
�� reserved space� a tremendous amount of space is reserved for these lists� We see that

the slope of the curve for the 
��� bucket scenario is higher than the slope for the ���� bucket

scenario� Eventually� these curves will converge to points separated only by the size of the bucket

data structure� This is due to the bucket data structure �lling up with words containing short lists

with only a few postings�

��� Tuning the bucket data structure

So far we have assumed a �xed�size bucket space� Our dual structure algorithm works well in that

it readily adapts to the available space� However� after many updates� shorter and shorter lists

become long lists� This suggests that the bucket data structure requires expansion� i�e�� an increase

in the memory committed to the bucket data structure� For expansion� the buckets are grown in

memory� and when they are written to disk at the end of a batch� they are written to an expanded

disk area� This raises a host of issues�should there be more buckets or larger buckets periodic

or continuous expansion a threshold value to trigger expansion based on the size of the list or

the fraction of the index in buckets� or some other criteria We believe these issues are important�

However� whatever expansion scheme is chosen� it is not critical for the issues we study in this

paper�


�



0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100 120 140 160 180 200

c
u
m
u
l
a
t
i
v
e
 
m
e
g
a
b
y
t
e
s
 
o
c
c
u
p
i
e
d
 
b
y
 
i
n
d
e
x

update

9000 buckets

4500 buckets

3000 buckets

1500 buckets

Figure �� The update time per batch for the dual structure index with for various bucket sizes�

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50 60 70

n
u
m
b
e
r
 
o
f
 
l
o
n
g
 
l
i
s
t
s

index after update

0 delta

100 delta

200 delta

600 delta

Figure �� Controlling the creation of long lists by increasing the bucket size� The x�axis is the
update number� The y�axis is the number of long lists in the index at the end of the update� As
updates are processed� the bucket size is determined by the function BucketSize � dx where d is
the label associated with each curve and x is the update number�


�



For completeness� we brie�y consider one possible expansion here� We limit the number of long

lists by incrementally increasing the amount of memory dedicated to buckets as the index grows�

Figure � shows the number of words with long lists at the end of each update� Let x be an update

number� Each curve corresponds to the function BucketSize�d �x �where d is the delta associated

with a curve	� For instance� the second to top curve is labeled 
��� so the size of the buckets at

each update x is ���� � 
��x� The graph demonstrates that the number of words with long lists

in the index can be held essentially constant as the index grows by allocating a constant increase

in the size of the bucket data structure�

The memory cost of increasing the memory dedicated to the bucket data structure is high� With

a delta of �� the total size of the bucket data structure isBuckets�BucketSize�d�x	 � BucketTotal

or 
��� � ����� � � � ��	 � �� ���� ��� words and postings� At the end of the last update� the

bucket data structure holds 
���� of all the words and postings� Assuming that a word or a

posting needs � bytes to store on average� the bucket data structure is 
���� of the size of the

raw text of the database� With a delta of 
��� the total size of the bucket data structure is


��� � ������ 
�� � ��	 � 
�� 
��� ��� or almost double the size of the bucket data structure with a

delta of �� We use a delta of � for the remainder of the paper�

��� An Alternative Scheme for Comparison

For the remaining experiments we will describe in this section� it is useful to contrast our dual�

structure index to a simple �old master�new master� index structure� which we refer to as the

alternative scheme� This alternative scheme is what current information retrieval systems typically

use� In this scheme� the postings for each word are stored contiguously and there is no free space

allocated between the lists for di�erent words� On each batch update� the entire existing database

is read sequentially� the updates in memory are applied� and the database is written out� Note that

the database need not be read completely into memory� but can be processed in convenient�sized

chunks� In our comparison� we assume that the time to perform an update in the alternative

scheme is mostly disk I�O time and that the I�O time to write the database can be completely

overlapped with the time to read it�

The alternative scheme as described above requires about twice as much disk space to store

the index� since a copy of the old and new index must exist simultaneously� It is possible to design

schemes that break the index into several large pieces to reduce the storage overhead� We assume

in our simulation of the alternative scheme that such designs will have little e�ect on the batch

build time if the pieces are kept reasonably large �e�g�� � to �
 megabytes	�

Since the alternative scheme�s update time is controlled by disk data rate� we assume that the

index is laid out so that the index can be read in parallel from half the disks and written in parallel

to the other half�

The alternative scheme o�ers a couple of advantages� First� since there are no gaps between the

lists for di�erent words� there is no space overhead due to internal fragmentation� The postings for

words are stored contiguously� so they can be read quickly for queries� Finally� all of the disk I�O

during an update is sequential� which typically yields a factor of ten faster data rate than random

I�O�


�



0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120 140 160 180 200

t
i
m
e
 
p
e
r
 
u
p
d
a
t
e
 
(
s
e
c
o
n
d
s
)

update

alternative

dual 50 ms

dual 20 ms

dual 10 ms

Figure �� Comparison of varying seek times

On the negative side� the alternative scheme has to re�read the entire database� even when

applying a small batch update� We expect the index build time of the alternative scheme to su�er

as the database grows� These features will become apparent when we present our performance

results in the following sections�

��� Disk Performance

In this section� we show the e�ects of disk performance on index building time� In our measurements

on a real system� we used disks that took about 
� milliseconds to read or write the �rst block and

could sustain a data rate of about 
 megabyte�second� We considered these disks to be �medium

speed�� We also modeled optical disk�like parameters �slow seek� somewhat slower read data rate�

signi�cantly slower write data rate	 and current best�performance magnetic disks �faster seek and

data rate	�

To compare seek times� we modeled four disks with 
�� 
�� and �� millisecond times to read

or write the �rst block plus the data rates that we measured on our real disks� The results of this

comparison are shown in Figure �� There is a strong component of seek time� Initially� most of the

I�O operations are for rewriting the buckets and are strongly sequential� As the trace progresses�

the average size of the data of an I�O operation falls to only a few blocks as more long words

are created� Since the average number of blocks written for each long word is small� the average

size of the data of an I�O operation falls and the seek time begins to dominate the total I�O time

required to add a batch to the data base� Since the number of seeks is proportional to the number

of long words� the faster seek time disks have a smaller slope of increased update time as batches

are added�


�



0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100 120 140 160 180 200

t
i
m
e
 
p
e
r
 
u
p
d
a
t
e
 
(
s
e
c
o
n
d
s
)

update

alternative slow
alternative medium

alternative fast

dual slow

dual medium

dual fast

Figure �� Comparison of varying data rates

The alternative scheme is not a�ected by seek time� a single line is shown for four 
 MB�second

disks� The alternate scheme is clearly more time consuming than the dual structure one� even with

slow disks� except when the index is very small� Because of its high cost� the alternate scheme

would probably not be used after each relatively small batch as we have done here� Instead� larger

batches would be constructed� The update cost would still be very high� but it would not be paid

as frequently�

To compare the e�ects of data rate� we model disks with 
� millisecond seeks as seen on our

real disks and used a variety of data rates� as show in Figure �� The slow transfer curve has a data

rate based on optical disks ���� KB�sec reads� 

� KB�sec writes	� The medium transfer curve

has a data rate based on our disks �
 MB�sec to read and write	� The fast transfer curve has a

data rate based on current high end disks �� MB�sec to read and write	�

For the dual�structure index� two e�ects are visible from the �gure� First� the slower data rate

device exhibits far larger variations in update times� The spikes in the update times are due to

update batches that move many long lists� Second� faster transfer times signi�cantly reduce the

update times� This variation is mostly due to the reduced time to rewrite the buckets on each disk�

That di�erence is seen on the time required to process the �rst batch�

The time to perform a batch update in the alternative scheme is the database size divided by

the data rate� Therefore� higher data rates result in a �atter line�

Note that the best build performance in this set is given by the alternative scheme� This is

due to the combination of a high data rate and only �nominal� seek performance� The poor seek

performance hurts the dual structure index but does not a�ect the alternative scheme� Should

technology trends provide disks with signi�cantly faster data rates but only somewhat faster seek

times� the dual structure index should be tuned with a larger bucket data structure� As seen


�



0

200

400

600

800

1000

0 20 40 60 80 100 120 140 160 180 200

t
i
m
e
 
p
e
r
 
u
p
d
a
t
e
 
(
s
e
c
o
n
d
s
)

update

alternative slow

alternative medium

alternative fast & dual fast

dual slow

dual medium

Figure 
�� Comparison of varying disks

earlier� a larger bucket structure increases the amount of sequential I�O per update but decreases

the amount of seeking�

To provide a complete picture of the di�erences in index time caused by disks of various perfor�

mance� we compare various speci�c devices directly� The slow disk curve represents optical drive

parameters ��� millisecond seek� ��� KB�sec read� 

� KB�sec write	� The medium disk curve

represents our disk parameters �
� millisecond seek� 
 MB�sec read and write	� The fast disk curve

represents the latest generation disk parameters �
� millisecond seek� � MB�sec read and write	�

The results are shown in Figure 
�� For the dual structure index� the e�ects of the previous two

studies are combined� The fastest seek time provides a more gradual slope coupled with the fastest

data rate giving the lowest base update time� For the alternative index� seek time is irrelevant and

the results from the data rate study are repeated�

Again� note that for the fastest disk drives� the alternative scheme and the dual structure index

produce nearly identical performance� The fast disk has � times the data rate but only 
 times the

seek performance as our nominal drives�

Another important variable in the con�guration of a system is the total number of disks� As

the number of disks grows� more I�O�s can occur concurrently� In particular� the buckets will reside

on more disks and can be thus updated in less time� Each long list is still written to a single disk�

but more lists can be updated concurrently�

To study the e�ect of this variable we �x the single disk parameters to those of our current disk

drives� The maximum system disk throughput we assumed for this study is 

 MB�second and

is well within the capabilities of current workstations� Given a properly spread I�O load� the use

of multiple disks simulates a smaller number of disks that support a high data rate and fast seek

time� This e�ect is borne out in this study� shown in Figure 

� As more disks are used� the slope


�



0

100

200

300

400

500

600

0 50 100 150 200 250

t
i
m
e
 
p
e
r
 
u
p
d
a
t
e
 
(
s
e
c
o
n
d
s
)

update

dual 1

alternative 4

alternative 8

dual 4
alternative 12

dual 8

dual 12

Figure 

� Comparison of varying number of disks�

of the lines for the dual structure index �atten out and the variations in batch time are reduced�

as seen in the seek study� In addition� more disks reduce the base time to rewrite the buckets� as

seen in the data rate study�

For the alternative scheme� more disks means more aggregate throughput so the lines �atten

out accordingly� Note that increasing the number of disks helps the dual structure index more than

it helps the alternative scheme� This is because the dual�structure scheme can take advantage of

the larger number of seeks per second that can be performed with more drives�

To summarize� we have shown that the time to update the dual structure index is roughly a

linear combination of the size of the bucket data structure divided by the aggregate disk data rate

and the number of long words time the seek time� Since increasing the size of the bucket structure

reduces the number of long words� the dual structure index can be tuned to accommodate the data

rate and seek time for the disks used to store the index�

For the alternate scheme� the time is proportional to the database size divided by the aggregate

disk data rate� Both of the schemes split well over multiple disks�

��� Full text vs� abstract

The following table summarizes the posting volumes seen when indexing one occurrence per doc�

ument� all occurrences� and all occurrences with a stop list for our synthetic trace of 
�� batches�

Type of index Posting count Index space

Type � Abstracts 
�� million 
�
 GB

Type � Full 

� million 
�� GB

Type � Full� StopList� 
� 
�� million 
�� GB


�



0

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160 180 200

t
i
m
e
 
p
e
r
 
u
p
d
a
t
e
 
(
s
e
c
o
n
d
s
)

update

dual abstract

dual full, stop=20

dual full, stop=0

alternative full, stop=0

alternative full, stop=20

alternative abstract

Figure 

� Times per update on synthetic documents comparing indexing one occurrence per term
per document� all occurrences of a term� and all occurrences of a term minus a 
� word stop list�

As can be seen from the table� indexing all occurrences adds ��� more postings� The use of a

stop list reduces the postings about 
��� �Using a stop list on the one occurrence per document

index only reduces postings about ���	 In addition� indexing all occurrences increases the variation

in long list sizes�

Figure 

 shows the time taken to update the dual structure index with the three alternatives�

We modeled the disk behavior for four disks with the performance of our real disks� As usual� the

large variations in the time per update are caused when many long lists over�ow the 
�� reserve

space and are moved on the same update�

Note that the use of the 
��word stop list removes the wide variations in batch build time�

There is still a penalty of 
�� additional disk space consumed� but a total build time only ��

larger� The reason that the build time does not increase that much is that the time is dominated

by the number of seeks� Since the number of long words updated on each batch is about the same�

there is little variation�

��� Striping long lists

In this section� we consider the e�ects of striping long lists across the available disks� Such striping

of long lists allows the occurrences of a word to be read in parallel from several drives to reduce

query times� However� during index building� striping words across drives will cause a larger

number of disk seeks to be performed per batch� As seen earlier� the number of seeks drives the

slope of the update line as the database grows� To counteract this e�ect� we also consider limiting

striping to relatively long lists�


�



0

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160 180 200

t
i
m
e
 
p
e
r
 
u
p
d
a
t
e
 
(
s
e
c
o
n
d
s
)

update

stripe 0

stripe 10

dual

Figure 
�� Times per update on synthetic documents comparing the dual structure index with two
striped variations

In our striping design� we assume that the allocation of a long list will be split among as many

drives as possible� We further assume that the space allocated for each word will be �lled in one

disk at a time� In that way� the free space at the end of a long list will be concentrated on the

minimum number of disks� which will help reduce the number of seeks required during the batch

updates�

To limit striping to frequent words� we introduce a new parameters� MINALLOC� which gives

the minimum number of blocks we will allocate to a stripe� For example� suppose we have four

disks and MINALLOC is 
�� If a total of 
� blocks are required for a long list� two stripes of 
�

blocks each will be allocated� rather than four stripes of � blocks each� If a total of 
� blocks were

required� we would allocate a stripe of 
� blocks and a stripe of � blocks to avoid wasting space�

As MINALLOC is increased� the number of long words subject to striping decreases�

Figure 
� shows the build times for our standard dual�structure index� for the striped index

with MINALLOC set to zero� and for striping with MINALLOC set to 
�� As predicted� striping

signi�cantly increases the build time slope with MINALLOC set to zero� With MINALLOC

increased to 
�� however� the build time penalty for striping vanishes�

Due to space limitations� in this paper we have not studied query processing times� However�

since the main advantage of striping is the improved read times of long lists� let us brie�y consider

this metric�

Without list striping� the postings for a word can be read with a single sequential I�O� in both

the dual structure and the alternate schemes� The transfer time is proportional to the number of

postings divided by the single disk rate� except when the list is in a bucket �in the dual structure

scheme	� In this last case� a read of the entire bucket is required�







0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120 140 160 180 200

t
i
m
e
 
t
o
 
r
e
a
d
 
w
o
r
d
 
(
s
e
c
o
n
d
s
)

database after update

dual word 10

dual word 100

stripe 0 & 10, word 10

stripe 0 & 10, word 100

Figure 
�� Times to read the 
�th and 
��th most popular words for the dual structure index and
two striped variations

Striping can reduce the transfer time of long lists� To illustrate the potential gains� let us

consider two particular words� the 
�th and 
��th most popular ones� Figure 
� compares the

times to read the lists for these words with the variations in index design considered earlier� The

striped schemes take advantage of multiple disks and read lists considerably faster than the non�

striped schemes� In addition� notice that the read performance with MINALLOC set to 
� is the

same as with MINALLOC set to ��

A complete evaluation of query performance is beyond the scope of this paper� as it requires

knowledge of the distribution of words appearing in queries� the distribution for the number of

words� and the query arrival patterns� The last factor is important because striping also increases

the number of seeks that must be performed� Thus� under certain high load scenarios� striping can

be counterproductive� However� the results we have given here show that� if striping is bene�cial

for query processing� then an appropriate choice for MINALLOC makes the dual structure index

updateable in the same time as without striping�

� Related Work

Cutting and Pedersen �
� consider incremental updates of inverted lists where a B�tree is used to

organize the vocabulary� Updates are optimized by storing short inverted lists directly in the B�tree�

In our framework this optimization can be represented by a very small bucket for approximately

each word in the text document database� However� in Section � we show that using few� larger�

buckets o�ers better performance� In addition� our scheme dynamically determines a threshold

value for determining if an inverted list is stored in a �xed sized structure or a variable length one�







Cutting and Pedersen also described a buddy system for the allocation of long lists� This approach

deserves further experimental study since it o�ers comparable space utilization and it is not clear

if it o�ers better update performance than the methods presented here�

Faloutsos and Jagadish ��� extensively analyze the physical organization of long list� Perfor�

mance comparisons between our work and the schemes presented there are di�cult since updates

are not batched in that paper� In another work� Faloutsos and Jagadish �
� extensively analyze a

dual�structure scheme based on signature schemes for long lists and inverted lists for short lists�

The division in the structure is static as opposed to a dynamic scheme presented here� In addition�

we believe that using inverted lists for short lists is computationally expensive since many I�O

operations� each containing only a few postings� are required to update this structure�

Zobel� Mo�at and Sacks�Davis �
�� consider several issues in inverted �le indexing� The com�

pression methods presented there complement this paper well� They also consider �xed size buckets

for storing inverted lists but do not discuss techniques for handling long lists�

An interesting and entirely di�erent approach� by Fox and Lee� based on preprocessing of doc�

ument representations and a merge update of inverted lists is described in ���� The scheme is

non�incremental� Harman and Candela ��� also describe an update method and cite an indexing

time of �
� hours for ��� MB of documents on a minicomputer with six Intel ����� processors�

Finally� our own measurements for freeWAIS version ��
�
 on a DEC ���� Model 
�� ��
 MB

memory	 with an external disk �Seagate	 on a SCSI�I bus shows that to index �
�� MB of our

experimental text document database requires ���
 minutes using ULTRIX V��
A �Rev� ��	 oper�

ating system�

� Conclusion

For dynamic� time critical text document databases� it is important to modify index structures in

place� as batches of documents arrive� We have presented a dual structure index strategy to address

this problem� Comparing the results presented here with the literature� we have argued that the

dual�structure index has better performance than existing implementations with the added bonus

of providing incremental updates� The principle source of our improvement is the dynamic division

of postings into short and long inverted lists and the application of appropriate data structures to

each type of list�

We have described a means of creating large synthetic document collections and have described

a simple model of parallel disks� The synthetic document model can be tuned to model the

statistics of an existing text collection and can be scaled to model varying numbers and sizes of

documents� We adjusted our disk model to conform to our existing real disks� the disk model can

also be modi�ed to model slower disks� such as optical� or the faster disks that have been recently

announced�

We studied the I�O subsystem extensively and determined that the time required to write

the bucket data structure to disk is dominated by the subsystem data rate� whereas the time to

incrementally update the long lists is dominated by the disk seek time� We quantitatively describe

the performance improvements due to speeding up disk or adding more disks� In particular� we


�



showed that the inverted �le organization described in this paper stripes across multiple disks well�

We showed the e�ects of varying the amount of disk space allocated to the bucket data structure

and suggested a way to scale the number of buckets as the size of the inverted �le grows�

Finally� we showed the e�ects of applying our inverted �le organization to the indexing of each

word occurrence as opposed to indexing only counts of occurrences per document� With no stop

list� we observed a 
�� time penalty for full�text indexing� with a 
� word stop list� the penalty

falls to ���

Acknowledgments� Thanks to Mendel Rosenblum for discussions on �le system mechanisms

related to this paper�

References

�
� Doug Cutting and Jan Pedersen� Optimizations for dynamic inverted index maintenance� In
Proceedings of SIGIR ���� pages �����

� 
����

�
� Christos Faloutsos and H� V� Jagadish� Hybrid index organizations for text databases� In
A� Pirotte� C� Delobel� and G� Gottlob� editors� Proceedings �rd International Conference on

Extending Database Technology � EDBT ���� Vienna� 
��
� Springer�Verlag�

��� Christos Faloutsos and H� V� Jagadish� On b�tree indices for skewed distributions� In Proceed�

ings of 	
th International Conference on Very Large Databases� pages �������� Vancouver�
British Columbia� Canada� 
��
�

��� William B� Frakes and Ricardo Baeza�Yates� Information Retrieval� Data Structures and

Algorithms� Prentice�Hall� 
��
�

��� Donna Harman and Gerald Candela� Retrieving records from a gigabyte of text on a mini�
computer using statistical ranking� Journal of the American Society for Information Science�
�
��	���
����� 
����

��� Donald E� Knuth� The Art of Computer Programming� Addison�Wesley� Reading� Mas�
sachusetts� 
����

��� Anthony Tomasic� Hector Garcia�Molina� and Kurt Shoens� Incremental updates of inverted
lists for text document retrieval� Technical Note STAN�CS�TN����
� Stanford University�

���� FTP db�stanford�edu��pub�tomasic�stan�cs�tn����
�ps�

��� Stephen Wolfram� Mathematica� Addison�Wesley� Redwood City� California� 
nd edition�

��
�

��� George Kingsley Zipf� Human Behavior and the Principle of Least E�ort� Addison�Wesley
Press� 
����

�
�� Justin Zobel� AlistairMo�at� and Ron Sacks�Davis� An e�cient indexing technique for full�text
database systems� In Proceedings of 	
th International Conference on Very Large Databases�
Vancouver� 
��
�


�


