
Issues in Parallel Information Retrieval

Anthony Tomasic

Stanford University�
Hector Garcia�Molina

Stanford Universityy

Abstract

The proliferation of the world�s �information highways� has renewed interest in e�cient doc�
ument indexing techniques� In this article� we provide an overview of the issues in parallel
information retrieval� Basic issues in information retrieval are described and various parallel
processing approaches to the problem are discussed� To illustrate the issues involved� we discuss
an example of physical index design issues for inverted indexes� a common form of document
index� Advantages and disadvantages for query processing are discussed� Finally� to provide an
overview of design issues for distributed architectures� we discuss the parameters involved in the
design of a system and rank them in terms of their in�uence on query response time�

� Introduction

As the data volume and query processing loads increase� companies that provide information retrieval
services are turning to parallel storage and searching� The idea is to partition large document col�
lections� as well as their index structures� across computers� This not only allows for larger storage
capacities� but also permits searches to be executed in parallel�

In this article we sample research in the area of parallel information retrieval� We start by summa�
rizing basic information retrieval concepts� and then describe how they have been applied in a parallel
environment� We also give a short summary of our own research in this area� mainly as an example of
the types of algorithms that need to be developed� and the system issues that need to be studied�

� Information Retrieval Basics

For an introduction to full�text document retrieval and information retrieval systems� see reference �����
An information retrieval model �IRM� de	nes the interaction between a user and an information re�
trieval system and consists of three parts
 a document representation� a user need and a matching
function�

The boolean IRM is provided by most existing commercial information retrieval systems� Its doc�
ument representation is the set of words that appear in each document� Typically� each word is also
typed to indicate if it appears in the title� abstract� or some other 	eld of the document� The boolean
IRM user need is represented by a boolean query� A query consists of a collection of pairs of words and
types structured with boolean operators� For example the query title information and title retrieval
or abstract inverted contains three pairs and two operators� The matching function of a query in the
boolean IRM is boolean satis	ability of a document representation with respect to the query�

�Department of Computer Science� Stanford� CA ����������	 e�mail
 tomasic�cs	stanford	edu
yDepartment of Computer Science� Stanford� CA ����������	 e�mail
 hector�cs	stanford	edu

�



The vector IRM is popular in academic prototypes for information retrieval systems and has recently
gained commercial acceptance� Its document representation is the set of words that appear in each
document and an associated weight with each word� The weight indicates the �relevance� of the
corresponding word to the document� Thus� a document is represented as a vector� A vector IRM
user need is represented by another vector �this vector can be extracted from a document or a set
of words provided by a user�� The matching function computes the similarity between the user need
and the documents� Thus� all the documents can be ranked with respect to the similarity� Typically�
the topmost similar documents are returned to the user as an answer� There is much research on the
assignment of weights to words and on the e
ectiveness of various matching functions for information
retrieval� However� both the boolean IRM and the vector IRM and associated variation of these
models can be computed e�ciently with inverted lists� �See Section � for a description of inverted
lists�� Reference ���� surveys information retrieval models�

The focus of traditional information retrieval research is to develop IRMs that provide the most
e�ective interaction with the user� Our focus in this article� however� is in providing the most e�cient
interaction with the user in terms of response time� throughput and other measures� regardless of which
IRM is used�

In the design of full�text document retrieval systems� there is a basic trade�o
 between the time to
process the document database and the time to process queries� Broadly speaking� the more time spent
processing the document database �i�e�� building indexes� the less time is spent processing queries� In
some scenarios �such as government monitoring of communication�� a tremendous amount of informa�
tion must be queried by only a few queries� In this case� time spent indexing is wasted and linear
searching of documents is more e�cient� Work in this area concentrates on hardware processors for
speeding up the scanning of text ����� More typically� indexing the documents is worthwhile because
the cost can be amortized across many queries� We consider only these latter systems�

Emrath�s thesis ��� explores this trade�o
 between query and update time by providing a data struc�
ture that can be tuned in the amount of information indexed� Essentially� the database is partitioned
into equal sized �pages�� A page is a 	xed number of words located together in a document� Duplicate
occurrences of words are dropped within a page� If the page is large� many duplicates are dropped from
the index� speeding up indexing time� If the page is small� few duplicate words are dropped� slowing
down indexing time� For certain applications this tuning of the data structure works well�

More recent work ���� ��� ��� uses physical index design to express the trade�o
� The collection
of documents is partitioned and each partition has an independent index at the physical index design
level� but the entire collection has a single logical index� This provides fast update time but slow query
time since each physical index must be searched� To provide fast query time� the physical indexes are
merged according to a family of algorithms� More typically� indexing the documents in a single physical
index is worthwhile because the cost can be amortized across many queries� We consider only these
latter systems for the remainder of this article�

Much research has gone into designing data structures for indexing text� Faloutsos ��� is a survey
of this issue� One approach is the use of signature schemes �also known as superimposed coding�
����� Here� each word is assigned a random �hashed� k�bit code of an n�bit vector � for example
the word �information� might correspond to bit positions �� and �� of a � kilobyte vector� Each
document is represented by an n�bit vector containing the union of all the k�bit codes of all the words
in the document� Queries are constructed by producing an n�bit vector of the k�bit codes of the
words in the query� Matching is performed by comparing a query against the document vectors in the
database� This scheme is used because the signatures of documents can be constructed in linear time�
Unfortunately� the matching process produces �false drops� where di
erent words or combinations of
words are mapped into the same k�bit codes� One approach is to ignore false drops and inform the
user that some additional documents may be returned� We do not consider this approach further�

�



Otherwise� each document in the result of the matching process must be checked for false drops� While
the number of false drops can be statistically controlled for the average case� the worst�case behavior
of this data structure implies checking every document in the database for some queries� which is
prohibitively expensive for large document collections� Lin ���� describes a signature scheme where
multiple independent signatures are used to control false drops and to improve parallel performance�

Another data structure is PATRICIA trees and PAT arrays ��� ���� Here� the database is represented
as one database string by placing documents end�to�end� A tree is constructed that indexes the semi�
in	nite strings of the database string� A semi�in	nite string is a substring of the database string starting
at some point and proceeding until it is a unique substring� The PAT system provides indexing and
querying over semi�in	nite strings� The New Oxford English Dictionary has be index using this data
structure� The query time� indexing time� and storage e�ciency are approximately the same as inverted
lists� The techniques described here can be applied to this data structure�

For commercial full�text retrieval systems� inverted 	les or inverted indexes ��� ��� are typically
used� Note that the information represented in each posting �each element of an inverted list� varies
depending on the type of information retrieval system� For a boolean IRM full�text information retrieval
system� the posting contains the document identi	er and the position �as a byte o
set or word o
set
from the beginning of the document� of the corresponding word� For a boolean IRM abstracts text
information retrieval system� the posting contains the document identi	er without a positional o
set
�since duplicate occurrences of a word in a document are not represented in these systems�� For a vector
IRM full�text or abstracts information retrieval systems the posting contains the document identi	er
and a weight� All of the above systems can be typed� In this case� the type system can be encoded
by setting aside extra bits in each posting to indicate which 	elds the word appears in the document�
Other methods of representing the type information are also used� As the information retrieval model
becomes more complicated� more information is typically placed in each posting�

A related area of research is the compression of inverted indexes ���� ���� The inverted index for a
full�text information retrieval system is very large � typically on the same scale in size as the text� In
fact� the original documents �minus punctuation� can be reconstructed from the inverted index� Thus�
one interesting physical design issue is the impact of the compression ratio of the inverted index on
response time� We return to this issue in Section ��

� Parallel Query Processing

Various distributed and parallel hardware architectures can be applied to the problem of information
retrieval� A series of papers by Stan	ll studies this problem for a Connection Machine� In reference �����
signature schemes are used� A companion paper by Stone ���� argues that inverted lists on a single
processor are more e�cient� In reference ����� inverted lists are used to support parallel query processing
�in a fashion similar to that used by the system index organization that will discussed in Section ���
Finally� in reference ����� an improvement of the previous paper based on the physical organization of
inverted lists is described� The technique essentially improves the alignment of processors to data�

An implementation of vector IRM full�text information retrieval is described in reference ��� for
the POOMA machine� The POOMA machine is a ����node� ��d mesh communication network where
each node has �� MB of memory and a processor� One out of 	ve nodes has an ethernet connection
and one half of the nodes have a local disk� The implementation partitions the documents among the
processors and builds a local inverted index of the partition� �This approach is similar to the host index
organization of Section �� however there are two processors per disk� as opposed to multiple disks per
processor�� This paper cites a ����� second estimated query response time for a ����term query on a
database of ������� documents with a ���node machine�

�



Some preliminary experimental results are reported in reference ��� for a �� processor farm �Meiko
Computing Surface�� The vector IRM is used here and a signature scheme is used as the data structure�
Unfortunately� the database has only ����� documents and the query workload only �� queries�

The performance of some aspects of query and update processing of an implementation of a boolean
IRM full�text information retrieval is discussed in reference ��� for a symmetric shared�memory multi�
processor �Sequent��

Reference ���� presents a discussion of the architecture issues in implementing the IBM STAIRS
information retrieval system on a network of personal computers� This paper argues for the physical
distribution of inverted lists across multiple machines when the size of a single database is larger than
the storage capacity of a node on the network� This idea is essentially a special case of disk striping�
where an object �in this case an inverted list� is partitioned across disks�

In the analysis of query processing� a query can be divided into three parts
 parsing the query�
matching the query against the database� and retrieving the documents in the answer� Parsing con�
sumes few resources and is typically the same for all information retrieval systems� Retrieving of
documents o
ers some interesting issues �such as placement of the documents� but again few resources
are needed� Burkowski ��� examines the performance problem of the interaction between query pro�
cessing and document retrieval and studies the issue of the physical organization of documents and
indices� His paper models queries and documents analytically and simulates a collection of servers on
a local�area network�

Schatz ���� describes the implementation of a distributed information retrieval system� Here� per�
formance improvements come from changing the behavior of the interface to reduce network tra�c
between the client interface and the backend information retrieval system� These ideas are complemen�
tary our work� Three improvements are o
ered� First� summaries of documents �or the 	rst page� are
retrieved instead of entire documents� This scheme reduces the amount of network tra�c to answer
an initial query and shortens the time to present the 	rst result of a query� but lengthens the time to
present the entire answer� Second� �related� information such as document structure de	nitions are
cached to speed up user navigation through a set of documents� Third� the contents of documents �as
opposed to summaries� are prefetched while the user interface is idle�

Our own work ���� ��� ��� compares various options for partitioning an inverted list index across a
shared�nothing multi�processor� �Reference ���� considers shared�everything multi�processors�� Simu�
lated query loads are used in ���� ���� while ���� uses a trace�driven simulation�

� Some Physical Design Choices

To illustrate more concretely the types of choices that are faced in partitioning index structures across
machines� in this section we brie�y describe the choices for an inverted�lists index� using the terminology
of ����� As stated earlier� this is the most popular type of index in commercial systems�

The left hand side of Figure � shows four sample documents� D�� D�� D�� D�� that could be stored
in an information retrieval system� Each document contains a set of words �the text�� and each of these
words �maybe with a few exceptions� are used to index the document� In Figure �� the words in our
documents are shown within the document box� e�g�� document D� contains words a and b�

As discussed in Section �� full�text document retrieval systems traditionally build inverted lists on
disk to 	nd documents quickly ��� ���� For example� the inverted list for word b would be b
 �D�����
�D����� �D����� Each pair in the list is a posting that indicates an occurrence of the word �document
id� position�� To 	nd documents containing word b� the system needs to retrieve only this list� To 	nd
documents containing both a and b� the system could retrieve the lists for a and b and intersect them�
The position information in the list is used to answer queries involving distances� e�g�� 	nd documents

�



D�

d � d � d � d �

D�

D� D�

a b a b

a a b
c d

BUS � BUS �

CPU � CPU �

LAN

Figure �
 A example set of four documents and an example hardware con	guration�

Index Disk Inverted Lists in word	 
Document� O�set� form

Host d � a
 �D�� ��� �D�� ��
d � b
 �D�� ��
d � a
 �D�� ��� �D�� ��� c
 �D�� ��
d � b
 �D�� ��� �D�� ��� d
 �D�� ��

System d � a
 �D�� ��� �D�� ��� �D�� ��� �D�� ��
d � b
 �D�� ��� �D�� ��� �D�� ��
d � c
 �D�� ��
d � d
 �D�� ��

Table �
 The various inverted index organizations for Figure ��

where a and b occur within so many positions of each other�
Suppose that we wish to store the inverted lists on a multiprocessor like the one shown on the right

in Figure �� This system has two processors �CPUs�� each with a disk controller and I�O bus� �Each
CPU has its own local memory�� Each bus has two disks on it� The CPUs are connected by a local
area network� Table � shows four options for storing the lists� The host and I�O bus organizations are
identical in this example because each CPU has only one I�O bus�

In the system index organization� the full lists are spread evenly across all the disks in the system�
For example� the inverted list of word b discussed above happened to be placed on disk d�� This
organization essentially divides the keywords among the processors�

In the host index organization� documents are partitioned into two groups� one for each CPU� Here
we assume that documents D�� D� are assigned to CPU �� and D�� D� to CPU �� Within each partition
we again build inverted lists� The lists are then uniformly dispersed among the disks attached to the
CPUs� For example� for CPU �� the list for a is on d�� the list for b is on d�� and so on�

Clearly� many choices are available for physical index organization beyond those described here� We
cannot consider all possible organizations� We do consider two other organizations where the inverted
lists are divided among the disks and the I�O buses of the system� Our criteria for choosing these
organizations focuses 	rst on the optimization of queries as opposed to updates� Thus� we assume
that the inverted lists on each machine are stored contiguously on disk� Second� we are interested in
the interaction between the physical index organization and the allocation of resources �CPUs� disks�

�



I�O buses� of a shared�nothing distributed system� Our choices cover the entire range of interaction
between indexes and hardware� In addition� we have studied issues such as striping and caching of the
physical index organization with respect to a single host�

� Query Processing

Given a physical index partition like the ones illustrated in the previous section� how does one process
queries� To illustrate� let us focus on a particular type of query� a �boolean and� query� Such queries
are of the form a�b�c � � �� and 	nd the documents containing all the listed words� The words appearing
in a query are termed keywords� Given a query a � b � � � the document retrieval system generates the
answer set for the document identi	ers of all the documents that match the query� A match is a
document that contains the words appearing in the query�

Notice that boolean�and queries are the most primitive ones� For instance� a more complex search
such as �a � b� OR �c � d� can be modeled as two simple and�queries whose answer sets are merged�
A distance query �Find a and b occurring within x positions� can be modeled by the query a � b
followed by comparing the positions of the occurrences� Thus� the query processing strategies for the
more complex queries can be based on the strategies we will illustrate here for the simple boolean�and
queries�

For the host index organization� boolean�and queries can processed as follows� The query a � b���
is initially processed at a home site� That site issues subqueries to all hosts� each subquery contains
the same keywords as the original query� A subquery is processed by a host by reading all the lists
involved� intersecting them� and producing a list of matching documents� The answer set of a subquery�
termed the partial answer set� is sent to the home host� which concatenates all the partial answer sets
to produce the answer set�

In the system index organization� the subquery sent to a given host contains only the keywords that
are handled by that host� If a host receives a query with a single keyword� it fetches the corresponding
inverted list and returns it to the home host� If the subquery contains multiple keywords� the host
intersects the corresponding lists� and sends the result as the partial answer set� The home host
intersects �instead of concatenates� the partial answer sets to obtain the 	nal answer�

There are many interesting trade�o
s among the storage organizations and query processing strate�
gies� For instance� with the system index organization� there are fewer I�Os� That is� the a list is
stored in a single place on disk� To read it� the CPU can initiate a single I�O� the disk head moves to
the location� and the list is read� �This may involve the transfer of multiple blocks�� In the host index
organization� on the other hand� the a list is actually stored on� say� � processors� To read these list
fragments� � I�Os must be initiated� four heads must move� and four transfers occur� However� each
of the transfers is roughly a fourth of the size� and they can take place in parallel� So� even though
we are consuming more resources �more CPU cycles to start more I�Os� and more disk seeks�� the list
may be read more quickly�

The system index organization may save disk resources� but it consumes more resources at the
network level� Notice that in our example� the entire c list is transferred from CPU � to CPU ��
and these inverted lists are usually much longer than the document lists exchanged under the other
schemes� However� the long inverted list transfers do not occur in all cases� For example� the query
�Find documents with a and b� �system index organization� does not involve any such transfers since
all lists involved are within one computer� Also� it is possible to reduce the size of the transmitted
inverted lists by moving the shortest list� For example� in our �Find documents with a and c�� we can
move the shorter list of a and c to the other computer�

It is also important to notice that the query algorithms we have discussed can be optimized in a

�



Parameter Base Value In�uence
Database scale ��� ������
Fraction of query words which are striped ��� 	
���
Disk bandwidth 
Mbit�sec� ���� ��	�

Compression ratio ��� ��
��
Multiprogramming level 
per host� � �����
CPU speed 
MIPS� 	��� �
�

Posting size 
bits� ���� �����
Hosts � �	
��
Disks per I�O bus � 	���
I�O bus bandwidth 
Mbit�sec� 	��� ���	
Bu�er overhead 
ms� ��� �����
Disk bu�er size 
Kbyte� �	 ���	
LAN bandwidth 
Mbit�s� 
� hosts� ����� 	���
I�O bus overhead 
ms� ��� �����
Disk seek time 
ms� ��� �����
Bytes per block ��	 �����
Instructions per byte for a merge �� ���
Answer entry size 
bytes� ��� ���
Instructions per byte of decompression �� ���
Instruction count per query ������� ���
Cache size 
postings� � ���
Instructions per byte of union operation � ���
Subquery instruction count ������� ���
Instructions per disk fetch ������ ���
LAN overhead 
ms� ��� ���
LAN bandwidth 
Mb�s� ����� ���
Subquery length 
bytes� ��	� ���

Table �
 A ranking of the in�uence of simulation parameters on response time for the system index
organization with Prefetch I query optimization�

variety of ways� To illustrate� let us describe one possible optimization for the system index organi�
zation� We call this optimization Prefetch I� it is a heuristic and in some cases it may not actually
improve performance� �Other query optimization techniques have been studied in the literature��

In the Prefetch I algorithm� the home host determines the query keyword k that has the shortest
inverted list� We assume that hosts have information on keyword frequencies� if not� Prefetch I is not
applicable� In phase �� the home host sends a single subquery containing k to the host that handles
k� When the home host receives the partial answer set� it starts phase �� which is the same as in the
un�optimized algorithm� except that the partial answer set is attached to all subqueries� Before a host
returns its partial answer set� it intersects it with the partial answer set of the phase � subquery� which
reduces the size of the partial answer sets that are returned in phase ��

� Experimental Parameters

In this section we summarize two studies we have performed to evaluate the index partition and query
processing trade�o
s� We believe they are representative of the types of analysis that needs to be
performed to evaluate physical design alternatives for information retrieval� In particular� we focus on
the experimental parameters used and their impact on response time� Our ranking of these parameters

�



gives an overview on the important areas to consider when designing an information retrieval system� In
addition to the simulation work described here� a general interest in the performance of text document
retrieval systems has led to a standardization e
ort for benchmarking of systems ����

The 	rst study ���� focused on full�text information retrieval� In full�text retrieval� the inverted
index contains essentially the same information as the documents� since the position of each word
in each document is recorded� Our inverted list model was based on experimental data� and our
query model was based on a probabilistic equations� The second study ���� focused on abstracts text
information retrieval where each electronic abstract is an abstract of a paper document� In this form
of retrieval� the inverted index records only the occurrence of a word in an abstract� and not every
occurrence� This dramatically reduces the size of the index with respect to full�text retrieval�

In general� our results indicate that the host index organization is a good choice� especially if long
inverted lists are striped across disks� Long inverted lists are present in full�text information retrieval�
Since the lists are long� the bottleneck is I�O performance� The host index organization uses system
resources e
ectively and can lead to high query throughputs in many cases� When it does not perform
the best� it is close to the best strategy�

For an application where only abstracts are indexed� the system organization �with the Prefetch
I optimization� actually outperforms the host organization� The bottleneck for these systems is the
network� This is because the inverted lists are much shorter� and can be easily moved across machines�

To study the impact of the experimental parameters on response time� we focus on the second study�
Our inverted list model and query model were based on inverted lists of actual abstracts and traces of
actual user queries from the Stanford University FOLIO information retrieval system� In both studies�
query processing and hardware measurement where accomplished by using a sophisticated simulation
containing over �� parameters� Table � lists the parameters and the default values of each parameter�
For each parameter in the table� a simulation experiment was run which linearly varied the values of
the parameter� The simulation re�ects the the architecture shown in Figure �� as determined by the
number of hosts� I�O buses and disks shown in the table� Full details of our experiments and our
results are available in the references�

One way to succinctly show the parameters involved in the studies and their in�uence on perfor�
mance is to �rank� the parameters by their �normalized� in�uence on performance� Here we only look
at query response time as the performance metric� In particular� if a and b are the smallest and largest
values measured for a parameter and x is the response time for a and y the response time for b� we
compute �y � x���a�b� as an estimate of the in�uence the parameter has on response time� Of course�
this measure is only a rough indication of in�uence� The measure depends on the ranges of values over
which a parameter is measured� It also assumes that response time is monotonic over the range of
values chosen� We have inspected the data to insure that this last condition holds�

Table � shows the ranking of �� parameters for the system index organization� as described in
Section �� with the Prefetch I query optimization� as described in Section �� In previous work� the
system index organization was shown to be the best overall choice for an index organization for abstracts
text information retrieval� The positive or negative nature of the ranking is due to the positive or
negative in�uence the parameter has on response time�

Database scale has the strongest in�uence � this parameter linearly scales the length of an inverted
list and scales the lengths of all other objects in the system � such as the size of the answers to queries�
With striping� a fraction of the inverted lists �in particular the longest ones� are striped across the disks
within a computer system� This is a complementary technique to the list partitioning done by the basic
index organization we have discussed� and can be very bene	cial� Disk bandwidth is important due
to the disk intensive nature of the computation� The compression ratio linearly scales the length of
the inverted lists� but does scale any other parameter� The multiprogramming level is the number of
simultaneous jobs which are run on each host� The relative CPU speed scales all computations which

�



compute the number of instructions needed to accomplish a task� The posting size is the number of
bits needed to represent a posting� Hosts represents the number of processors in the system� When
this parameter is increased� a copy of the processor is made� That is� if the parameter doubles� the
number of I�O buses and disks in the entire system also doubles� In addition� the workload doubles�
since the number of concurrent queries is allocated on a per host basis� Examining the parameters at
the end of the table� we see that within the accuracy of the measurement� several parameters have no
in�uence on response time� One surprising fact shows cache size as having no in�uence� In fact� caches
have no in�uence on response time� but have a tremendous in�uence on throughput� Essentially� each
query almost always has a cache miss� Thus� the response time of the query is dictated by the read
from disk of the cache miss and thus the cache has little in�uence on response time� However� most
queries have cache hits also� which dramatically improves throughput�

� Conclusion

In this article� we have sampled issues in parallel information retrieval� As an introduction to the issues
involved� we have discussed the literature in the area to introduce the various areas of research� We then
focused on a speci	c example to illustrate the issued involved in distributed shared�nothing information
retrieval� We discuss physical index organization and query optimization techniques� Then� to give the
reader a sense of the important variables in the design of a system� we rank the various parameters in
an experimental simulation study in terms of their in�uence on the response time of query processing�

References

��� Ijsbrand Jan Aalbersberg and Frans Sijstermans� High�quality and high�performance full�text document
retrieval� the parallel infoguide system� In Proceedings of the First International Conference on Parallel
and Distributed Information Systems� pages �������� Miami Beach� Florida� �����

�	� Forbes J� Burkowski� Retrieval performance of a distributed text database utilizing a parallel processor
document server� In Proceedings of the Second International Symposium on Databases in Parallel and
Distributed Systems� pages 
��
�� Dublin� Ireland� �����

��� Janey K� Cringean� Roger England� Gordon A� Manson� and Peter Willett� Parallel text searching in serial
�les using a processor farm� In Proceedings of Special Interest Group on Information Retrieval �SIGIR��
pages �	������ �����

��� Samuel DeFazio� Full�text document retrieval benchmark� In Jim Gray� editor� The Benchmark Handbook
for Database and Transaction Processing Systems� chapter �� Morgan Kaufmann� second edition� �����

��� Samuel DeFazio and Joe Hull� Toward servicing textual database transactions on symmetric shared memory
multiprocessors� In Proceedings of the International Workshop on High Performance Transaction Systems�
Asilomar� �����

��� Perry Alan Emrath� Page Indexing for Textual Information Retrieval Systems� PhD thesis� University of
Illinois at Urbana�Champaign� October �����

�
� Christos Faloutsos� Access methods for text� ACM Computing Surveys� �
����
�� �����

��� J� Fedorowicz� Database performance evaluation in an indexed �le environment� ACM Transactions on
Database Systems� �	
���������� ���
�

��� William B� Frakes and Ricardo Baeza�Yates� Information Retrieval� Data Structures and Algorithms�
Prentice�Hall� ���	�

���� Gaston H� Gonnet� Ricardo A� Baeza�Yates� and Tim Snider� Lexicographical indices for text� Inverted �les
vs� PAT trees� Technical Report OED������� University of Waterloo Centre for the New Oxford English
Dictionary and Text Research� Canada� �����

�



���� Lee A� Hollaar� Implementations and evaluation of a parallel text searcher for very large text databases� In
Proceedings of the Twenty�Fifth Hawaii International Conference on System Sciences� pages ������
� IEEE
Computer society Press� ���	�

��	� Byeong�Soo Jeong and Edward Omiecinski� Inverted �le partitioning schemes for a shared�everything mul�
tiprocessor� Technical Report GIT�CC��	���� Georgia Institute of Technology� College of Computing� ���	�

���� Donald E� Knuth� The Art of Computer Programming� Addison�Wesley� Reading� Massachusetts� ��
��

���� Zheng Lin� Cat� An execution model for concurrent full text search� In Proceedings of the First International
Conference on Parallel and Distributed Information Systems� pages �������� Miami Beach� Florida� �����

���� Patrick Martin� Ian A� Macleod� and Brent Nordin� A design of a distributed full text retrieval system�
In Proceedings of Special Interest Group on Information Retrieval �SIGIR�� pages ������
� Pisa� Italy�
September �����

���� Gerard Salton� Automatic Text Processing� Addison�Wesley� New York� �����

��
� Bruce Raymond Schatz� Interactive retrieval in information spaces distributed across a wide�area network�
Technical Report ������ University of Arizona� December �����

���� Kurt Shoens� Anthony Tomasic� and Hector Garcia�Molina� Synthetic workload performance analysis of
incremental updates� In Proceedings of Special Interest Group on Information Retrieval �SIGIR�� Dublin�
Ireland� �����

���� Craig Stan�ll� Partitioned posting �les� A parallel inverted �le structure for information retrieval� In
Proceedings of Special Interest Group on Information Retrieval �SIGIR�� �����

�	�� Craig Stan�ll and Brewster Kahle� Parallel free�text search on the connection machine system� Communi�
cations of the ACM� 	���		���	��� �����

�	�� Craig Stan�ll� Robert Thau� and David Waltz� A parallel indexed algorithm for information retrieval� In
Proceedings of the Twelfth Annual International ACM�SIGIR Conference on Research and Development in
Information Retrieval� pages ����
� Cambridge� Massachusetts� �����

�		� Harold S� Stone� Parallel querying of large databases� A case study� IEEE Computer� pages ���	�� October
���
�

�	�� Anthony Tomasic and Hector Garcia�Molina� Caching and database scaling in distributed shared�nothing
information retrieval systems� In Proceedings of the Special Interest Group on Management of Data �SIG�
MOD�� Washington� D�C�� May �����

�	�� Anthony Tomasic and Hector Garcia�Molina� Performance of inverted indices in shared�nothing distributed
text document information retrieval systems� In Proceedings of the Second International Conference On
Parallel and Distributed Information Systems� San Diego� �����

�	�� Anthony Tomasic and Hector Garcia�Molina� Query processing and inverted indices in shared�nothing
document information retrieval systems� The VLDB Journal� 	
���	���	
�� July �����

�	�� Anthony Tomasic� Hector Garcia�Molina� and Kurt Shoens� Incremental updates of inverted lists for text
document retrieval� Technical Note STAN�CS�TN������ Stanford University� ����� Available via FTP
db�stanford�edu��pub�tomasic�stan�cs�tn������ps�

�	
� Anthony Tomasic� Hector Garcia�Molina� and Kurt Shoens� Incremental updates of inverted lists for text
document retrieval� In Proceedings of ���� ACM SIGMOD International Conference on Management of
Data� Minneapolis� MN� �����

�	�� Howard R� Turtle and W� Bruce Croft� Uncertainty in information retrieval systems� In Amihai Motro and
Philippe Smets� editors� Proceedings of the Workshop on Uncertainty Management in Information Systems�
pages ������
� Mallorca� Spain� September ���	�

�	�� Peter Weiss� Size Reduction of Inverted Files Using Data Compression and Data Structure Reorganization�
PhD thesis� George Washington University� �����

���� Justin Zobel� Alistair Mo�at� and Ron Sacks�Davis� An e�cient indexing technique for full�text database
systems� In Proceedings of ��th International Conference on Very Large Databases� Vancouver� ���	�

��


