Issues in Parallel Information Retrieval

Anthony Tomasic Hector Garcia-Molina
Stanford University™ Stanford University'
Abstract

The proliferation of the world’s “information highways” has renewed interest in efficient doc-
ument indexing techniques. In this article, we provide an overview of the issues in parallel
information retrieval. Basic issues in information retrieval are described and various parallel
processing approaches to the problem are discussed. To illustrate the issues involved, we discuss
an example of physical index design issues for inverted indexes, a common form of document
index. Advantages and disadvantages for query processing are discussed. Finally, to provide an
overview of design issues for distributed architectures, we discuss the parameters involved in the
design of a system and rank them in terms of their influence on query response time.

1 Introduction

As the data volume and query processing loads increase, companies that provide information retrieval
services are turning to parallel storage and searching. The idea is to partition large document col-
lections, as well as their index structures, across computers. This not only allows for larger storage
capacities, but also permits searches to be executed in parallel.

In this article we sample research in the area of parallel information retrieval. We start by summa-
rizing basic information retrieval concepts, and then describe how they have been applied in a parallel
environment. We also give a short summary of our own research in this area, mainly as an example of
the types of algorithms that need to be developed, and the system issues that need to be studied.

2 Information Retrieval Basics

For an introduction to full-text document retrieval and information retrieval systems, see reference [16].
An information retrieval model (IRM) defines the interaction between a user and an information re-
trieval system and consists of three parts: a document representation, a user need and a matching
function.

The boolean IRM is provided by most existing commercial information retrieval systems. Its doc-
ument representation is the set of words that appear in each document. Typically, each word is also
typed to indicate if it appears in the title, abstract, or some other field of the document. The boolean
IRM user need is represented by a boolean query. A query consists of a collection of pairs of words and
types structured with boolean operators. For example the query title information and title retrieval
or abstract inverted contains three pairs and two operators. The matching function of a query in the
boolean IRM is boolean satisfiability of a document representation with respect to the query.

*Department of Computer Science, Stanford, CA 94305-2140. e-mail: tomasic@cs.stanford.edu
"Department of Computer Science, Stanford, CA 94305-2140. e-mail: hector@cs.stanford.edu



The vector IRM is popular in academic prototypes for information retrieval systems and has recently
gained commercial acceptance. Its document representation is the set of words that appear in each
document and an associated weight with each word. The weight indicates the “relevance” of the
corresponding word to the document. Thus, a document is represented as a vector. A vector IRM
user need is represented by another vector (this vector can be extracted from a document or a set
of words provided by a user). The matching function computes the similarity between the user need
and the documents. Thus, all the documents can be ranked with respect to the similarity. Typically,
the topmost similar documents are returned to the user as an answer. There is much research on the
assignment of weights to words and on the effectiveness of various matching functions for information
retrieval. However, both the boolean IRM and the vector IRM and associated variation of these
models can be computed efficiently with inverted lists. (See Section 4 for a description of inverted
lists.) Reference [28] surveys information retrieval models.

The focus of traditional information retrieval research is to develop IRMs that provide the most
effective interaction with the user. Our focus in this article, however, is in providing the most efficient
interaction with the user in terms of response time, throughput and other measures, regardless of which
IRM is used.

In the design of full-text document retrieval systems, there is a basic trade-off between the time to
process the document database and the time to process queries. Broadly speaking, the more time spent
processing the document database (i.e., building indexes) the less time is spent processing queries. In
some scenarios (such as government monitoring of communication), a tremendous amount of informa-
tion must be queried by only a few queries. In this case, time spent indexing is wasted and linear
searching of documents is more efficient. Work in this area concentrates on hardware processors for
speeding up the scanning of text [11]. More typically, indexing the documents is worthwhile because
the cost can be amortized across many queries. We consider only these latter systems.

Emrath’s thesis [6] explores this trade-off between query and update time by providing a data struc-
ture that can be tuned in the amount of information indexed. Essentially, the database is partitioned
into equal sized “pages.” A page is a fixed number of words located together in a document. Duplicate
occurrences of words are dropped within a page. If the page is large, many duplicates are dropped from
the index, speeding up indexing time. If the page is small, few duplicate words are dropped, slowing
down indexing time. For certain applications this tuning of the data structure works well.

More recent work [18, 26, 27] uses physical index design to express the trade-off. The collection
of documents is partitioned and each partition has an independent index at the physical index design
level, but the entire collection has a single logical index. This provides fast update time but slow query
time since each physical index must be searched. To provide fast query time, the physical indexes are
merged according to a family of algorithms. More typically, indexing the documents in a single physical
index is worthwhile because the cost can be amortized across many queries. We consider only these
latter systems for the remainder of this article.

Much research has gone into designing data structures for indexing text. Faloutsos [7] is a survey
of this issue. One approach is the use of signature schemes (also known as superimposed coding)
[13]. Here, each word is assigned a random (hashed) k-bit code of an n-bit vector — for example
the word “information” might correspond to bit positions 10 and 20 of a 2 kilobyte vector. Each
document is represented by an n-bit vector containing the union of all the k-bit codes of all the words
in the document. Queries are constructed by producing an n-bit vector of the k-bit codes of the
words in the query. Matching is performed by comparing a query against the document vectors in the
database. This scheme is used because the signatures of documents can be constructed in linear time.
Unfortunately, the matching process produces “false drops” where different words or combinations of
words are mapped into the same k-bit codes. One approach is to ignore false drops and inform the
user that some additional documents may be returned. We do not consider this approach further.



Otherwise, each document in the result of the matching process must be checked for false drops. While
the number of false drops can be statistically controlled for the average case, the worst-case behavior
of this data structure implies checking every document in the database for some queries, which is
prohibitively expensive for large document collections. Lin [14] describes a signature scheme where
multiple independent signatures are used to control false drops and to improve parallel performance.

Another data structure is PATRICIA trees and PAT arrays [9, 10]. Here, the database is represented
as one database string by placing documents end-to-end. A tree is constructed that indexes the semi-
infinite strings of the database string. A semi-infinite string is a substring of the database string starting
at some point and proceeding until it is a unique substring. The PAT system provides indexing and
querying over semi-infinite strings. The New Oxford English Dictionary has be index using this data
structure. The query time, indexing time, and storage efficiency are approximately the same as inverted
lists. The techniques described here can be applied to this data structure.

For commercial full-text retrieval systems, inverted files or inverted indexes [8, 13] are typically
used. Note that the information represented in each posting (each element of an inverted list) varies
depending on the type of information retrieval system. For a boolean IRM full-text information retrieval
system, the posting contains the document identifier and the position (as a byte offset or word offset
from the beginning of the document) of the corresponding word. For a boolean IRM abstracts text
information retrieval system, the posting contains the document identifier without a positional offset
(since duplicate occurrences of a word in a document are not represented in these systems). For a vector
IRM full-text or abstracts information retrieval systems the posting contains the document identifier
and a weight. All of the above systems can be typed. In this case, the type system can be encoded
by setting aside extra bits in each posting to indicate which fields the word appears in the document.
Other methods of representing the type information are also used. As the information retrieval model
becomes more complicated, more information is typically placed in each posting.

A related area of research is the compression of inverted indexes [29, 30]. The inverted index for a
full-text information retrieval system is very large — typically on the same scale in size as the text. In
fact, the original documents (minus punctuation) can be reconstructed from the inverted index. Thus,
one interesting physical design issue is the impact of the compression ratio of the inverted index on
response time. We return to this issue in Section 6.

3 Parallel Query Processing

Various distributed and parallel hardware architectures can be applied to the problem of information
retrieval. A series of papers by Stanfill studies this problem for a Connection Machine. In reference [20],
signature schemes are used. A companion paper by Stone [22] argues that inverted lists on a single
processor are more efficient. In reference [21], inverted lists are used to support parallel query processing
(in a fashion similar to that used by the system index organization that will discussed in Section 4).
Finally, in reference [19], an improvement of the previous paper based on the physical organization of
inverted lists is described. The technique essentially improves the alignment of processors to data.

An implementation of vector IRM full-text information retrieval is described in reference [1] for
the POOMA machine. The POOMA machine is a 100-node, 2-d mesh communication network where
each node has 16 MB of memory and a processor. One out of five nodes has an ethernet connection
and one half of the nodes have a local disk. The implementation partitions the documents among the
processors and builds a local inverted index of the partition. (This approach is similar to the host index
organization of Section 4; however there are two processors per disk, as opposed to multiple disks per
processor.) This paper cites a 2.098 second estimated query response time for a 191-term query on a
database of 136,020 documents with a 20-node machine.



Some preliminary experimental results are reported in reference [3] for a 16 processor farm (Meiko
Computing Surface). The vector IRM is used here and a signature scheme is used as the data structure.
Unfortunately, the database has only 6,004 documents and the query workload only 35 queries.

The performance of some aspects of query and update processing of an implementation of a boolean
IRM full-text information retrieval is discussed in reference [5] for a symmetric shared-memory multi-
processor (Sequent).

Reference [15] presents a discussion of the architecture issues in implementing the IBM STAIRS
information retrieval system on a network of personal computers. This paper argues for the physical
distribution of inverted lists across multiple machines when the size of a single database is larger than
the storage capacity of a node on the network. This idea is essentially a special case of disk striping,
where an object (in this case an inverted list) is partitioned across disks.

In the analysis of query processing, a query can be divided into three parts: parsing the query,
matching the query against the database, and retrieving the documents in the answer. Parsing con-
sumes few resources and is typically the same for all information retrieval systems. Retrieving of
documents offers some interesting issues (such as placement of the documents) but again few resources
are needed. Burkowski [2] examines the performance problem of the interaction between query pro-
cessing and document retrieval and studies the issue of the physical organization of documents and
indices. His paper models queries and documents analytically and simulates a collection of servers on
a local-area network.

Schatz [17] describes the implementation of a distributed information retrieval system. Here, per-
formance improvements come from changing the behavior of the interface to reduce network traffic
between the client interface and the backend information retrieval system. These ideas are complemen-
tary our work. Three improvements are offered. First, summaries of documents (or the first page) are
retrieved instead of entire documents. This scheme reduces the amount of network traffic to answer
an initial query and shortens the time to present the first result of a query, but lengthens the time to
present the entire answer. Second, “related” information such as document structure definitions are
cached to speed up user navigation through a set of documents. Third, the contents of documents (as
opposed to summaries) are prefetched while the user interface is idle.

Our own work [23, 24, 25] compares various options for partitioning an inverted list index across a
shared-nothing multi-processor. (Reference [12] considers shared-everything multi-processors.) Simu-
lated query loads are used in [24, 25], while [23] uses a trace-driven simulation.

4 Some Physical Design Choices

To illustrate more concretely the types of choices that are faced in partitioning index structures across
machines, in this section we briefly describe the choices for an inverted-lists index, using the terminology
of [25]. As stated earlier, this is the most popular type of index in commercial systems.

The left hand side of Figure 1 shows four sample documents, D0, D1, D2, D3, that could be stored
in an information retrieval system. Each document contains a set of words (the text), and each of these
words (maybe with a few exceptions) are used to index the document. In Figure 1, the words in our
documents are shown within the document box, e.g., document D0 contains words a and b.

As discussed in Section 1, full-text document retrieval systems traditionally build inverted lists on
disk to find documents quickly [8, 13]. For example, the inverted list for word b would be b: (DO0,1),
(D2,1), (D3,1). Each pair in the list is a posting that indicates an occurrence of the word (document
id, position). To find documents containing word b, the system needs to retrieve only this list. To find
documents containing both @ and b, the system could retrieve the lists for ¢ and b and intersect them.
The position information in the list is used to answer queries involving distances, e.g., find documents



LAN

DO|ab D2lab

CPUO CPU 1
Dl]a D3lab
cd

BUS 0 BUS 1

d 0 d 1 d 2 d 3

Figure 1: A example set of four documents and an example hardware configuration.

Index | Disk Inverted Lists in word: (Document, Offset) form

Host do a:(D0,0),(D1,0)

d1 b (DO, 1)

d2 a:(D2,0),(D3,0); c: (D3, 2)

d3 b:(D2,1),(D3,1);d: (D3, 3)
System | d 0 a: (D0, 0), (D1, 0), (D2,0), (D3, 0)

d1 b (DO, 1), (D2,1), (D3, 1)

d2 ¢ (D3,2)

d3 d: (D3,3)

Table 1: The various inverted index organizations for Figure 1.

where a and b occur within so many positions of each other.

Suppose that we wish to store the inverted lists on a multiprocessor like the one shown on the right
in Figure 1. This system has two processors (CPUs), each with a disk controller and I/O bus. (Each
CPU has its own local memory.) Each bus has two disks on it. The CPUs are connected by a local
area network. Table 1 shows four options for storing the lists. The host and I/O bus organizations are
identical in this example because each CPU has only one 1/O bus.

In the system index organization, the full lists are spread evenly across all the disks in the system.
For example, the inverted list of word b discussed above happened to be placed on disk d1. This
organization essentially divides the keywords among the processors.

In the host index organization, documents are partitioned into two groups, one for each CPU. Here
we assume that documents D0, D1 are assigned to CPU 0, and D2, D3 to CPU 1. Within each partition
we again build inverted lists. The lists are then uniformly dispersed among the disks attached to the
CPUs. For example, for CPU 1, the list for a is on d2, the list for b is on d3, and so on.

Clearly, many choices are available for physical index organization beyond those described here. We
cannot consider all possible organizations. We do consider two other organizations where the inverted
lists are divided among the disks and the I/O buses of the system. Our criteria for choosing these
organizations focuses first on the optimization of queries as opposed to updates. Thus, we assume
that the inverted lists on each machine are stored contiguously on disk. Second, we are interested in
the interaction between the physical index organization and the allocation of resources (CPUs, disks,



I/O buses) of a shared-nothing distributed system. Our choices cover the entire range of interaction
between indexes and hardware. In addition, we have studied issues such as striping and caching of the
physical index organization with respect to a single host.

5 Query Processing

Given a physical index partition like the ones illustrated in the previous section, how does one process
queries? To illustrate, let us focus on a particular type of query, a “boolean and” query. Such queries
are of the form aAbAc. .., and find the documents containing all the listed words. The words appearing
in a query are termed keywords. Given a query a Ab...the document retrieval system generates the
answer set for the document identifiers of all the documents that match the query. A match is a
document that contains the words appearing in the query.

Notice that boolean-and queries are the most primitive ones. For instance, a more complex search
such as (¢ A b) OR (¢ A d) can be modeled as two simple and-queries whose answer sets are merged.
A distance query “Find a and b occurring within z positions” can be modeled by the query a A'b
followed by comparing the positions of the occurrences. Thus, the query processing strategies for the
more complex queries can be based on the strategies we will illustrate here for the simple boolean-and
queries.

For the host index organization, boolean-and queries can processed as follows. The query a A b...
is initially processed at a home site. That site issues subqueries to all hosts; each subquery contains
the same keywords as the original query. A subquery is processed by a host by reading all the lists
involved, intersecting them, and producing a list of matching documents. The answer set of a subquery,
termed the partial answer set, is sent to the home host, which concatenates all the partial answer sets
to produce the answer set.

In the system index organization, the subquery sent to a given host contains only the keywords that
are handled by that host. If a host receives a query with a single keyword, it fetches the corresponding
inverted list and returns it to the home host. If the subquery contains multiple keywords, the host
intersects the corresponding lists, and sends the result as the partial answer set. The home host
intersects (instead of concatenates) the partial answer sets to obtain the final answer.

There are many interesting trade-offs among the storage organizations and query processing strate-
gies. For instance, with the system index organization, there are fewer 1/Os. That is, the a list is
stored in a single place on disk. To read it, the CPU can initiate a single I/0, the disk head moves to
the location, and the list is read. (This may involve the transfer of multiple blocks). In the host index
organization, on the other hand, the a list is actually stored on, say, 4 processors. To read these list
fragments, 4 I/Os must be initiated, four heads must move, and four transfers occur. However, each
of the transfers is roughly a fourth of the size, and they can take place in parallel. So, even though
we are consuming more resources (more CPU cycles to start more I/Os, and more disk seeks), the list
may be read more quickly.

The system index organization may save disk resources, but it consumes more resources at the
network level. Notice that in our example, the entire ¢ list is transferred from CPU 1 to CPU 0,
and these inverted lists are usually much longer than the document lists exchanged under the other
schemes. However, the long inverted list transfers do not occur in all cases. For example, the query
“Find documents with @ and b” (system index organization) does not involve any such transfers since
all lists involved are within one computer. Also, it is possible to reduce the size of the transmitted
inverted lists by moving the shortest list. For example, in our “Find documents with ¢ and ¢”, we can
move the shorter list of ¢ and ¢ to the other computer.

It is also important to notice that the query algorithms we have discussed can be optimized in a



Parameter Base Value Influence

Database scale 1.0 -359.6
Fraction of query words which are striped 0.0 278.4
Disk bandwidth (Mbit/sec) 10.4 112.7
Compression ratio 0.5 -67.4
Multiprogramming level (per host) 4 -48.1
CPU speed (MIPS) 20.0 47.7
Posting size (bits) 40.0 -44.5
Hosts 1 -27.9
Disks per I/O bus 4 25.4
I/O bus bandwidth (Mbit/sec) 24.0 11.2
Buffer overhead (ms) 4.0 -9.33
Disk buffer size (Kbyte) 32 9.12
LAN bandwidth (Mbit/s) (4 hosts) 100.0 2.33
I/O bus overhead (ms) 0.0 -1.96
Disk seek time (ms) 6.0 -1.93
Bytes per block 512 -0.81
Instructions per byte for a merge 40 0.0
Answer entry size (bytes) 4.0 0.0
Instructions per byte of decompression 40 0.0
Instruction count per query 500,000 0.0
Cache size (postings) 0 0.0
Instructions per byte of union operation 5 0.0
Subquery instruction count 100,000 0.0
Instructions per disk fetch 10,000 0.0
LAN overhead (ms) 0.1 0.0
LAN bandwidth (Mb/s) 100.0 0.0
Subquery length (bytes) 1024 0.0

Table 2: A ranking of the influence of simulation parameters on response time for the system index
organization with Prefetch I query optimization.

variety of ways. To illustrate, let us describe one possible optimization for the system index organi-
zation. We call this optimization Prefetch I; it is a heuristic and in some cases it may not actually
improve performance. (Other query optimization techniques have been studied in the literature.)

In the Prefetch I algorithm, the home host determines the query keyword k that has the shortest
inverted list. We assume that hosts have information on keyword frequencies; if not, Prefetch I is not
applicable. In phase 1, the home host sends a single subquery containing k to the host that handles
k. When the home host receives the partial answer set, it starts phase 2, which is the same as in the
un-optimized algorithm, except that the partial answer set is attached to all subqueries. Before a host
returns its partial answer set, it intersects it with the partial answer set of the phase 1 subquery, which
reduces the size of the partial answer sets that are returned in phase 2.

6 Experimental Parameters

In this section we summarize two studies we have performed to evaluate the index partition and query
processing trade-offs. We believe they are representative of the types of analysis that needs to be
performed to evaluate physical design alternatives for information retrieval. In particular, we focus on
the experimental parameters used and their impact on response time. Qur ranking of these parameters



gives an overview on the important areas to consider when designing an information retrieval system. In
addition to the simulation work described here, a general interest in the performance of text document
retrieval systems has led to a standardization effort for benchmarking of systems [4].

The first study [25] focused on full-text information retrieval. In full-text retrieval, the inverted
index contains essentially the same information as the documents, since the position of each word
in each document is recorded. Our inverted list model was based on experimental data, and our
query model was based on a probabilistic equations. The second study [23] focused on abstracts text
information retrieval where each electronic abstract is an abstract of a paper document. In this form
of retrieval, the inverted index records only the occurrence of a word in an abstract, and not every
occurrence. This dramatically reduces the size of the index with respect to full-text retrieval.

In general, our results indicate that the host index organization is a good choice, especially if long
inverted lists are striped across disks. Long inverted lists are present in full-text information retrieval.
Since the lists are long, the bottleneck is I/O performance. The host index organization uses system
resources effectively and can lead to high query throughputs in many cases. When it does not perform
the best, it is close to the best strategy.

For an application where only abstracts are indexed, the system organization (with the Prefetch
I optimization) actually outperforms the host organization. The bottleneck for these systems is the
network. This is because the inverted lists are much shorter, and can be easily moved across machines.

To study the impact of the experimental parameters on response time, we focus on the second study.
Our inverted list model and query model were based on inverted lists of actual abstracts and traces of
actual user queries from the Stanford University FOLIO information retrieval system. In both studies,
query processing and hardware measurement where accomplished by using a sophisticated simulation
containing over 28 parameters. Table 2 lists the parameters and the default values of each parameter.
For each parameter in the table, a simulation experiment was run which linearly varied the values of
the parameter. The simulation reflects the the architecture shown in Figure 1, as determined by the
number of hosts, I/O buses and disks shown in the table. Full details of our experiments and our
results are available in the references.

One way to succinctly show the parameters involved in the studies and their influence on perfor-
mance is to “rank” the parameters by their (normalized) influence on performance. Here we only look
at query response time as the performance metric. In particular, if @ and b are the smallest and largest
values measured for a parameter and z is the response time for ¢ and y the response time for b, we
compute (y — x)/(a/b) as an estimate of the influence the parameter has on response time. Of course,
this measure is only a rough indication of influence. The measure depends on the ranges of values over
which a parameter is measured. It also assumes that response time is monotonic over the range of
values chosen. We have inspected the data to insure that this last condition holds.

Table 2 shows the ranking of 28 parameters for the system index organization, as described in
Section 4, with the Prefetch 1 query optimization, as described in Section 5. In previous work, the
system index organization was shown to be the best overall choice for an index organization for abstracts
text information retrieval. The positive or negative nature of the ranking is due to the positive or
negative influence the parameter has on response time.

Database scale has the strongest influence — this parameter linearly scales the length of an inverted
list and scales the lengths of all other objects in the system — such as the size of the answers to queries.
With striping, a fraction of the inverted lists (in particular the longest ones) are striped across the disks
within a computer system. This is a complementary technique to the list partitioning done by the basic
index organization we have discussed, and can be very beneficial. Disk bandwidth is important due
to the disk intensive nature of the computation. The compression ratio linearly scales the length of
the inverted lists, but does scale any other parameter. The multiprogramming level is the number of
simultaneous jobs which are run on each host. The relative CPU speed scales all computations which



compute the number of instructions needed to accomplish a task. The posting size is the number of
bits needed to represent a posting. Hosts represents the number of processors in the system. When
this parameter is increased, a copy of the processor is made. That is, if the parameter doubles, the
number of I/O buses and disks in the entire system also doubles. In addition, the workload doubles,
since the number of concurrent queries is allocated on a per host basis. Examining the parameters at
the end of the table, we see that within the accuracy of the measurement, several parameters have no
influence on response time. One surprising fact shows cache size as having no influence. In fact, caches
have no influence on response time, but have a tremendous influence on throughput. Essentially, each
query almost always has a cache miss. Thus, the response time of the query is dictated by the read
from disk of the cache miss and thus the cache has little influence on response time. However, most
queries have cache hits also, which dramatically improves throughput.

7 Conclusion

In this article, we have sampled issues in parallel information retrieval. As an introduction to the issues
involved, we have discussed the literature in the area to introduce the various areas of research. We then
focused on a specific example to illustrate the issued involved in distributed shared-nothing information
retrieval. We discuss physical index organization and query optimization techniques. Then, to give the
reader a sense of the important variables in the design of a system, we rank the various parameters in
an experimental simulation study in terms of their influence on the response time of query processing.

References

[1] Tjsbrand Jan Aalbersberg and Frans Sijstermans. High-quality and high-performance full-text document
retrieval: the parallel infoguide system. In Proceedings of the First International Conference on Parallel
and Distributed Information Systems, pages 151-158, Miami Beach, Florida, 1991.

[2] Forbes J. Burkowski. Retrieval performance of a distributed text database utilizing a parallel processor
document server. In Proceedings of the Second International Symposium on Databases in Parallel and
Distributed Systems, pages 71-79, Dublin, Ireland, 1990.

[3] Janey K. Cringean, Roger England, Gordon A. Manson, and Peter Willett. Parallel text searching in serial
files using a processor farm. In Proceedings of Special Interest Group on Information Retrieval (SIGIR),
pages 429-453, 1990.

[4] Samuel DeFazio. Full-text document retrieval benchmark. In Jim Gray, editor, The Benchmark Handbook
for Database and Transaction Processing Systems, chapter 8. Morgan Kaufmann, second edition, 1993.

[5] Samuel DeFazio and Joe Hull. Toward servicing textual database transactions on symmetric shared memory
multiprocessors. In Proceedings of the International Workshop on High Performance Transaction Systems,

Asilomar, 1991.

[6] Perry Alan Emrath. Page Indexing for Textual Information Retrieval Systems. PhD thesis, University of
Mlinois at Urbana-Champaign, October 1983.

[7] Christos Faloutsos. Access methods for text. ACM Computing Surveys, 17:50-74, 1985.

[8] J. Fedorowicz. Database performance evaluation in an indexed file environment. ACM Transactions on

Database Systems, 12(1):85-110, 1987.

[9] William B. Frakes and Ricardo Baeza-Yates. Information Relrieval: Data Structures and Algorithms.
Prentice-Hall, 1992.

[10] Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. Lexicographical indices for text: Inverted files
vs. PAT trees. Technical Report OED-91-01, University of Waterloo Centre for the New Oxford English
Dictionary and Text Research, Canada, 1991.



[11]

[12]

Lee A. Hollaar. Implementations and evaluation of a parallel text searcher for very large text databases. In
Proceedings of the Twenty-Fifth Hawaw International Conference on System Sciences, pages 300-307. IEEE
Computer society Press, 1992.

Byeong-Soo Jeong and Edward Omiecinski. Inverted file partitioning schemes for a shared-everything mul-
tiprocessor. Technical Report GIT-CC-92/39, Georgia Institute of Technology, College of Computing, 1992.

Donald E. Knuth. The Art of Computer Programming. Addison-Wesley, Reading, Massachusetts, 1973.

Zheng Lin. Cat: An execution model for concurrent full text search. In Proceedings of the First International
Conference on Parallel and Distributed Information Systems, pages 151-158, Miami Beach, Florida, 1991.

Patrick Martin, lan A. Macleod, and Brent Nordin. A design of a distributed full text retrieval system.
In Proceedings of Special Interest Group on Information Retrieval (SIGIR), pages 131-137, Pisa, Italy,
September 1986.

Gerard Salton. Automatic Text Processing. Addison-Wesley, New York, 1989.

Bruce Raymond Schatz. Interactive retrieval in information spaces distributed across a wide-area network.
Technical Report 90-35, University of Arizona, December 1990.

Kurt Shoens, Anthony Tomasic, and Hector Garcia-Molina. Synthetic workload performance analysis of
incremental updates. In Proceedings of Special Interest Group on Information Retrieval (SIGIR), Dublin,
Ireland, 1994.

Craig Stanfill. Partitioned posting files: A parallel inverted file structure for information retrieval. In
Proceedings of Special Interest Group on Information Retrieval (SIGIR), 1990.

Craig Stanfill and Brewster Kahle. Parallel free-text search on the connection machine system. Communi-

cations of the ACM, 29:1229-1239, 1986.

Craig Stanfill, Robert Thau, and David Waltz. A parallel indexed algorithm for information retrieval. In
Proceedings of the Twelfth Annual International ACM/SIGIR Conference on Research and Development in
Information Retrieval pages 88-97, Cambridge, Massachusetts, 1989.

Harold S. Stone. Parallel querying of large databases: A case study. ITEEE Computer, pages 11-21, October
1987.

Anthony Tomasic and Hector Garcia-Molina. Caching and database scaling in distributed shared-nothing

information retrieval systems. In Proceedings of the Special Interest Group on Management of Data (SIG-
MOD), Washington, D.C.; May 1993.

Anthony Tomasic and Hector Garcia-Molina. Performance of inverted indices in shared-nothing distributed
text document information retrieval systems. In Proceedings of the Second International Conference On
Parallel and Distributed Information Systems, San Diego, 1993.

Anthony Tomasic and Hector Garcia-Molina. Query processing and inverted indices in shared-nothing
document information retrieval systems. The VLDB Journal, 2(3):243-271, July 1993.

Anthony Tomasic, Hector Garcia-Molina, and Kurt Shoens. Incremental updates of inverted lists for text
document retrieval. Technical Note STAN-CS-TN-93-1, Stanford University, 1993. Available via FTP
db.stanford.edu:/pub/tomasic/stan.cs.tn.93.1.ps.

Anthony Tomasic, Hector Garcia-Molina, and Kurt Shoens. Incremental updates of inverted lists for text
document retrieval. In Proceedings of 1994 ACM SIGMOD International Conference on Management of
Data, Minneapolis, MN, 1994.

Howard R. Turtle and W. Bruce Croft. Uncertainty in information retrieval systems. In Amihai Motro and
Philippe Smets, editors, Proceedings of the Workshop on Uncertainty Management in Information Systems,
pages 111-137, Mallorca, Spain, September 1992.

Peter Weiss. Size Reduction of Inverted Files Using Data Compression and Data Structure Reorganization.
PhD thesis, George Washington University, 1990.

Justin Zobel, Alistair Moffat, and Ron Sacks-Davis. An efficient indexing technique for full-text database
systems. In Proceedings of 18th International Conference on Very Large Databases, Vancouver, 1992.

10



