
Incremental Updates of Inverted Lists for Text Document Retrieval �

To appear Proceedings of SIGMOD ���

Anthony Tomasic

Stanford Universityy
Hector Garcia�Molina

Stanford Universityz
Kurt Shoens

IBM Almadenx

May ��� ����

Abstract

With the proliferation of the world�s �information highways� a renewed interest in e�cient

document indexing techniques has come about� In this paper� the problem of incremental

updates of inverted lists is addressed using a new dual�structure index data structure� The

index dynamically separates long and short inverted lists and optimizes the retrieval� update�

and storage of each type of list� To study the behavior of the index� a space of engineering trade�

o	s which range from optimizing update time to optimizing query performance is described�

We quantitatively explore this space by using actual data and hardware in combination with a

simulation of an information retrieval system� We then describe the best algorithm for a variety

of criteria�

� Introduction

As the world�s �information highways� proliferate and grow in capacity� they are providing access

to an ever growing number of electronic document repositories� At each repository� the number

of documents available on�line is rapidly increasing� At the same time� the number of end�users

with network access is rapidly growing� and a variety of tools ��� such as World Wide Web and

WAIS make it possible to reach even more information sources� This rapidly growing number

of documents� sites� and user queries has brought about renewed interest in e	cient document

indexing techniques�

The underlying index structure for most document retrieval systems is the inverted list �
�� The

inverted list for a particular word w contains a sequence of postings� each reporting the occurrence

of w in a document� Each posting may include a variety of information� such as the word o�set

�within the document
 where w occurs or the region where w occurs �title� abstract� author list�

�This research was sponsored by the Advanced Research Projects Agency �ARPA� of the Department of Defense
under Grant No� MDA�������J����� with the Corporation for National Research Initiatives �CNRI�� The views
and conclusions contained in this document are those of the authors and should not be interpreted as necessarily
representing the o	cial policies or endorsement
 either expressed or implied
 of ARPA
 the U� S� Government or
CNRI�

yDepartment of Computer Science
 Stanford
 CA ����
������ e�mail� tomasic�cs�stanford�edu
zDepartment of Computer Science
 Stanford
 CA ����
������ e�mail� hector�cs�stanford�edu
xIBM Almaden Research Center
 �
� Harry Road San Jose
 CA �
���� e�mail� shoens�almaden�ibm�com

�



etc�
 In a full text index� every word occurring in documents �minus perhaps some stop words
 has

an inverted list� As a rule of thumb� the size of the inverted lists for a full text index is roughly

the same size as the text document database itself� In an abstracts index� only words appearing in

the bibliographic information �e�g�� title� abstract
 have lists�

In an information retrieval system� users submit queries that consist of a set of words and

some condition� The exact form of the condition varies� in a boolean system� queries are boolean

expressions such as ��cat and dog
 or mouse�� In this example� the system would retrieve the

inverted list for �cat� and �dog�� intersect them� and then would union the result with the list for

�mouse�� The query may also give additional conditions� such as requiring that �cat� and �dog�

occur within so many words of each other� or that �mouse� occur within a title region� In a vector

model system� the query speci�es weights for the words� and the system must locate documents

that maximize the weighted sum of occurring words� Vector model systems typically use inverted

lists to prune the set of candidate documents before the vector condition is evaluated�

Traditional information retrieval systems� of the type used by libraries �e�g�� Stanford Univer�

sity�s Socrates or the University of California�s MELVYL
 or information vendors �e�g�� Dialog Inc�

or Mead Data Central Inc�
� assume a relatively static body of documents� Given a body of doc�

uments� these systems build the inverted list index from scratch� laying out each list sequentially

and contiguously to others on disk �with no gaps
� �They also built a B�tree that maps each word

to the locations of its list on disk�
 Periodically� e�g�� every weekend� new documents would be

added to the database and a brand new index would be built� Rebuilding the index is a massive

operation� but its cost is amortized over multiple days of operation�

In many of today�s environments� such full index reconstruction is not feasible� One reason is

that text document databases are more dynamic� For instance� if one is indexing news articles�

electronic mail� or stock information� the latest information is required� Thus� one would like

to update the index in place� as new documents arrive� �Updating the index for each individual

arriving document is ine	cient� as we will discuss later� Instead� the goal is to batch together

small numbers of documents for each in�place index update� To maintain access to the batch� it

can be searched simultaneously with the larger index�


A second reason why in�place updates are desirable is that they eliminate �or at least postpone


resource consuming reorganizations� Massive reorganizations may be acceptable in conventional

systems where user load is minimal over weekends� but in today�s world of 
 days a week� �� hours

a day continuous operation� degradation of service for prolonged periods is not acceptable�

A third reason why in�place updates may be desirable is that the index may simply be too

massive for reorganization� As the volume of documents grows in some applications� it may be

more desirable to have a dynamic index that can grow and dynamically migrate to new disk drives�

without ever being fully reorganized�

In spite of the natural attractiveness of in�place index updates� very little is known about their

implementation options or their performance� Systems that implement in�place updates typically

use �as far as we know
 relatively naive strategies that may be ine	cient� For example� any time

a WAIS index needs to grow an inverted list� it copies the whole list to a new disk area� leaving no

free space at the end for future updates� Perhaps it would be more e�ective to leave some space�

and to make additions that �t in that space� If multiple disks are available� can we stripe large

lists across multiple disks to improve performance� Inverted lists vary tremendously in size� the

�



ones for frequently occurring words can be huge� but there may be many that have only a few

postings� What is the most e�ective layout of these lists to make their updates e	cient� Which

layouts lead to less disk space utilization� To better query performance�

Although we will not fully answer all these questions� in this paper we make the following

contributions�

� A new dynamic dual�structure data structure for inverted lists� Lists are initially stored in

a �short list� data structure� as they grow they migrate to a �long list� data structure� Our

proposed algorithm dynamically selects lists to migrate�

� A family of disk allocation policies for long lists� Each policy dictates� among other things�

where to �nd space for a growing list� whether to try to grow a list in place or to migrate all

or parts of it� how much free space to leave at the end of a list� and how to partition a list

across disks�

� A detailed performance evaluation of the dual�structure lists and the various allocation poli�

cies� The evaluation is based on a collection of �� days worth of NetNews that are indexed

according to our algorithms� Our experimental system generates the exact sequence of disk

block updates that each policy produces� this sequence is then executed on an IBM Risc

System ���� Model ��� computer with � disks to measure the update time� Based on the

resulting disk layout� we also compute disk space utilization and estimate query performance�

Real disk I�O operations have the advantage of not simplifying the dynamic nature of the

execution �which occurs with a simulation
�

In this paper we do not consider issues related to fault tolerance� We assume that the hardware

is highly reliable� However� to be fair in estimating and comparing the I�O costs of various policies�

we will periodically �ush to disk all the data and directory information for each policy� In addition�

the algorithms and data structures are constructed so that the incremental update of the index can

be restarted if it is aborted� We believe fault tolerance issues are a rich area for future research�

In the next section we describe the dynamic dual�structure for inverted lists� In Section �

we describe a model for the various allocation policies of inverted lists that reside on disk� We

evaluate these policies in an experimental design described in Section � and report the results of

the evaluation in Section �� In Section � we describe related work in the �eld� Finally� Section 


concludes the paper� In addition� we have extrapolated our results to larger synthetic text document

databases and describe the results in �����

� Dual�Structure Index

In this paper we assume that when a new document arrives it is parsed and its words are

inserted into an in�memory inverted index� At some point the in�memory inverted index must be

written to disk� Collecting many documents into an in�memory inverted index before writing the

index to disk amortizes the cost of storing a posting� Our objective is to incrementally update the

disk with the in�memory inverted index as e	ciently as possible�

The lengths of the inverted lists for a database of text documents have a roughly exponential

distribution �the Zipf curve ����
� This presents a dilemma for the in�place update of inverted

�



Text Document Database News

Total Raw Text ��� MB
Total Words 
������

Total Postings ��������


Documents �����
�

Average Postings per Word ��
Frequent Words ������

Infrequent Words 
������
Postings for Frequent Words �����

Postings for Infrequent Words ����

Table �� Statistics for a News abstracts text database� Abstracts databases index general infor�
mation about a document such as author names� title� the set of words in the abstract� etc� A
frequent word for this table ranks in the top �� of all words �in order of frequency
� Postings for
frequent words are given as the percentage of all postings in the database� Infrequent words are
all words that are not frequent�

lists since some inverted lists �corresponding to frequently appearing words
 will expand rapidly

with the arrival of new documents while others �corresponding to infrequently appearing words


will expand slowly or not at all� In addition� new documents will contain previously unseen words�

Table � shows some statistical properties of a database ofNews articles �cf� Section � for a complete

description of the database
� For example� if we consider frequently appearing words as those that

rank in the top ���� of all words �in order of frequency
 we see that the postings for the frequently

appearing words account for the vast majority ������
 of the postings�

In our scheme there are two data structures for lists� We place short inverted lists �of in�

frequently appearing words
 in a �xed size region of disk where the region contains postings for

multiple words� These lists are referred to as short lists and the �xed size regions are known as

buckets� The idea is that every inverted list starts o� as a short list� when a bucket �lls up with

inverted lists� the longest inverted list becomes a long list� We place the long inverted lists �of

frequently appearing words
 in variable length contiguous sequences of blocks on disk� We refer

to these inverted lists as long lists� Each block of a long list contains postings for only one word�

Given a word w� we examine a directory which determines if the word has a long inverted list� If

the word does not have a long inverted list� it has a short inverted list or no inverted list at all�

In this case� a function h�w
 �e�g�� a hash function or a tree search
 returns the bucket where the

short inverted list� if any� for the word is stored�

At some point� an in�memory list L for word w �generated from arriving documents
 must be

moved to disk� First� if w already has a long list �on disk
� L is appended to the long list as

discussed in the next section� Otherwise� we assume L is a short list and insert it into bucket

h�w
� If the bucket is not already in memory� it is read in� and L inserted� �If a list for w already

existed in the bucket� L is added to it� else a new short list is created in the bucket�
 If the bucket

over�ows� we then pick the longest short list� in block� say M � remove it� and make M a long list�

Once M is removed� the bucket will be partially empty� The updated bucket h�w
 is written to

�If there are multiple longest short lists
 we choose on arbitrarily�

�



0

1000

2000

3000

4000

5000

6000

7000

8000

0 200 400 600 800 1000 1200 1400 1600 1800 2000
w
o
r
d
s
 
a
n
d
 
p
o
s
t
i
n
g
s
 
(
1
 
u
n
i
t
 
p
e
r
 
w
o
r
d
 
o
r
 
p
o
s
t
i
n
g
)

time (1 unit per change to bucket)

words + postings (top)
postings (middle)

words (bottom)

Figure �� An animation of the behavior of bucket � for the �rst � updates for a system with ���
buckets� The top line is words � postings� the middle line is postings� and the bottom line is words�

disk �eventually
� and list M is written to disk as discussed in the next section� Note that a word

w never has both a short list and a long list associated with it� The buckets dynamically determine

which words have inverted lists containing only a few postings� since these words are unlikely to

grow enough to over�ow into a long list� �Assuming that the bucket data structure is large enough

to hold all the infrequent words�


Figure � shows an animation of the behavior of buckets� We choose bucket � as an example

bucket and run the bucket algorithm for a short time on a small system� Data is from a News� as

explained in Section �� The bucket has a size of ���� units� where each posting is charged � unit

and each word is charged one unit too� �For each inverted list in the bucket� we need to store the

word it represents plus all of its postings�
 Each time step on the x�axis corresponds to a change

in the bucket � the insertion of a new word with its postings� the appending of postings to an

existing word� or the removal of a word and its postings from the bucket� The y�axis measures

the combined number of words and postings in the bucket� The top line in the �gure is the total

number of words and postings� the middle line is the total number of postings and the bottom

line is the total number of words in the bucket� For the total number of words in the bucket� we

see a slow rise in the number of words in the bucket as new words are continuously inserted into

the bucket� For the number of postings in the bucket �the middle line
� we see a steep climb as

the bucket �lls up and two leaps where a very long in�memory list is inserted into the bucket at

approximately time ��� and time 
��� The second insertion of the long in�memory list causes an

over�ow and the list is removed from the bucket� shown as a downward spike in the graph� After

the spike� the bucket continues to �ll to about time ��� where it over�ows and again the longest

short list is removed from the bucket�

In summary� the dual�structure index allows us to apply di�erent storage structures to the huge

number of infrequent words and to the relatively few frequent words� Through the use of �xed�size

buckets� this approach dynamically discovers the frequent words that require their own long list�

Updates to the large number of infrequent words are amortized into a relatively small number

of disk operations� since the buckets are small enough to �t in memory� In addition� coalescing

infrequent words reduces wasted disk space due to allocation of complete disk blocks to very short

�



lists�

� Policies for Allocation of Long Lists

In this section we present policies for the allocation of long lists to disk� Implementations of IR

systems indexes merge inverted lists to compute the answer to a boolean query� This is possible

because the document identi�ers appear in sorted order in inverted lists� We assume that new

documents are numbered with identi�ers in increasing order and that all long lists are updated by

appending new postings to them� With these assumptions� the merge operation can be used to

compute answers to boolean queries with our long list data structure�

Long lists are created initially by the over�ow of a bucket� Once a word has a long list on disk�

subsequent in�memory lists for that word will be appended to that long list� In this section we

consider only long lists and refer to them by the shorthand lists�

In allocating lists to disk� there are two extremes policies� One extreme policy optimizes the

time to incrementally update� Let L be the list for a word w and let M be the in�memory list

to be appended to L� If M is written to disk sequentially at the current end of the data on disk�

irrespective of L� then update performance is optimized because the disk head never seeks during

a sequence of updates� The other extreme policy optimizes the reading of a list during query

processing� To update a word w� we can read L from disk� append M to it� and write the new

combined list to a new location on disk� This optimizes query performance because exactly one

seek is required to read any list� However� query performance for the update optimized policy is

poor �since the list for a word will be spread over the disk
 and the update performance for the

query optimized policy is poor �since reads are intermixed with writes
�

Between these two extreme policies� there are many intermediate ones that move lists and

allocate new space for them in a variety of ways� In this section we present a framework for

describing these intermediate policies� Obviously many more choices exist than what we will

describe here� but we cover most of the interesting choices�

The �rst issue is to compose lists from disk blocks� We use the term chunk for variable sized

contiguous regions of disk and reserve the term extent for �xed sized contiguous regions of disk�

�We also study the extent case later�
 Multiple chunks for an inverted list may be allocated� The

pointers to all chunks are recorded in the directory� The directory entries for a word may point to

chunks on multiple disks� The directory resides in memory at all times� Periodically� the directory

is written to disk�

The second issue is to assign a disk unit to a new word or chunk� When the list for a new word

w is added to the directory or a new chunk of a list for a word w is allocated� a disk is chosen� Let

there be n disks� numbered from � to n� �� and let i be the disk chosen when the last new word or

chunk was allocated �i is initially �
� The strategy considered here is to chose disk is i� � mod n�

�Other strategies could be to look for the most empty disk or a disk where the list has the fewest

chunks� These strategies are not considered in this paper to keep the space of possible solutions

manageable�


The third issue is to combine in�memory lists with long lists� We have an in�memory list M

that we wish to append to a long list L� Both lists are for a word w� Let x be the size �in postings


of the long list� let y be the size �in postings
 of the in�memory list� and let z be the size �in

�



Variable Value Meaning

Limit � Never update in�place
z Update in�place if enough space

Style �ll �e � �
 Fill in �xed size extents
new Write a new chunk when appropriate
whole Long lists are single whole chunks

Alloc constant �k � ��
 Constant extra postings reserved
block �k � �
 Multiple of a �xed sized block reserved
proportional �k � ���
 Proportional extra postings reserved

Table �� The variables and values that determine a policy for the allocation of long inverted lists
to disks� The values in parenthesis are for each allocation strategy or style�

postings
 of the space remaining in the chunk which can accommodate new postings� As described

below� when a chunk is allocated to disk� it may have reserved space at the end of the chunk where

future postings may be append� Note that z may be zero or positive and that x and y are always

positive� Our strategies for appending will call on the following basic operations which operate

with respect to long list L� The RELEASE list is used to delay the deallocation of long lists while

they are copied�

UPDATE�a� reads the last block containing postings for word w of in�memory list a� appends a

to it� and then writes the result back as an in�place update�

b �� READ�a� reads all the postings for long list a� places a on the RELEASE list� and returns

the postings read as in�memory list b�

WRITE�a�b� writes up to e blocks worth of postings from in�memory list a and returns the

remaining postings as in�memory list b� The global parameter e is called the extent size�

�The �ll style� below� breaks up in�memory lists into extent size chunks�
 If a contains less

than e blocks worth of postings� e blocks are still allocated on disk�

WRITE RESERVED�a� writes the a in�memory list to disk with reserved space at the end of

the list �see fourth issue below
�

A strategy for appending an in�memory to a long lists is speci�ed by two variables� Limit and

Style� Limit is either � or z� Style is �ll� new� or whole� Table � summaries the variables and

values governing policies�

Figure � shows the algorithm for updating long lists� The �rst three lines check if the existing

chunk can and should be extended with the in�memory postings� If this isn�t possible or desirable

�Limit � �
� the fourth through sixth lines �whole
 copy the old postings to a new location with

the in�memory postings appended� Lines seven� eight and nine ��ll
 write out multiple extents�

Lines ten and eleven �new
 write a new chunk with reserved space� One consequence from lines one

and two is that an in�memory inverted list is never split into two di�erent chunks for an in�place

update�






�� if y � Limit then

�� UPDATE�M
 update long list in�place with the in�memory list
�� else
�� if Style � whole then
�� b �� READ�L
 read long list
�� WRITE RESERVED�M and b
 append in�memory list and write with reserved space

� if Style � fill then

�� WHILE �M not empty
 in�memory postings remain
�� WRITE�M�M
 write in�memory postings
��� if Style � new then

��� WRITE RESERVED�M
 write in�memory postings with reserved space

Figure �� The algorithm for updating long lists�

Periodically� the buckets and the directory are written to disk� At this time� the disk blocks

for the previous buckets and directory are returned to free space for the disks� In addition� in the

case of the whole strategy� the old long lists on the RELEASE list are returned to free space for

the disks�

The fourth and �nal issue is to allocate space on a disk for a chunk� Given a request for a

chunk of size f and a disk� we need a contiguous region of free space on the disk to satisfy the

request �this is similar to the problem of free space allocation for blocks in a �le system
� We use a

�rst��t strategy by scanning the free list for the disk from the beginning of the disk� Upon �nding

a contiguous sequence of f or more blocks� the chunk is placed at the beginning of the free blocks

and the remaining free blocks are returned to free space� �Other strategies could be to best��t

or to use a buddy system� These strategies are not considered in this paper to keep the space of

possible solutions manageable�


In addition� the WRITE RESERVED call reserves space at the end of every list for future

growth� That is� additional space is allocated to a chunk to hold postings which will appear in

subsequent updates� Let x be the size �in postings
 of the inverted list being written to disk and let

f�x
 be the allocated space �list plus reserved space
� The resulting size �in blocks
 of a chunk is

the number of blocks needed to hold f�x
� For the new style x is typically the size of an in�memory

list� For the whole style x is typically the size of the entire long list for a word�

We consider three choices for the de�nition of f�x
� The constant strategy adds a constant

number k of postings to the end of the inverted list� i�e�� f�x
 � x� k� The block strategy insures

the chunk is of constant multiple of size k� i�e�� f�x
 � k � dx
k
e� �In practice� we specify k for this

strategy in terms of blocks instead of postings�
 Finally� the proportional strategy allocates a chunk

in proportion to the number of postings being written to disk� i�e�� f�x
 � kx� The variable Alloc

equals constant� block� or proportional� for the corresponding choice of strategy�

��� Policies

A policy is determined by the values of the variables Style� Limit and sometimesAlloc� If Limit �

�� then any reserved space for a chunk is never used� so we automatically set Alloc � constant

�



with k � �� If Style � fill then the allocation strategy is irrelevant since it is never considered�

Consider the update optimized policy described earlier� This can be achieved by settingLimit �

� and Style � new� This policy minimizes update time by simply writing out the update list blocks

as fast as possible� No reading is done because no updates in�place occur� We expect that this

policy will have the best update time and that the query time for the resulting index will be poor�

Consider the policy for fast queries� Let Limit � � and Style � whole� Setting Style to whole

insures that the inverted list for any word will always be a single contiguous chunk and thus query

time is minimized� We expect that the update time for this organization will be high� due to the

amount of moving of lists that must be done� To ameliorate this situation� we can let Limit � z

and Alloc � proportional with a constant of� say� ��� �i�e�� reserved space that is ��� of the size of

the long list
� With each move of the long list� the reserved space will grown by ���� permitting

more and more in�place updates of in�memory lists�

Finally� we consider a policy that attempts a trade�o�� to minimize query time and keep the

cost of updates low by organizing inverted lists into chunks that never move once they are full� Let

Limit � z and Style � fill with an extent e size� say� � �blocks
� With this policy� each inverted

list will grow until it reaches the limit of its chunk and then a new chunk will be started on a new

disk� We expect comparatively good query and update times for this policy� �Note that our model

of extents uses only one size for an extent� We do not model multiple �xed extent sizes since this

policy is approximated by the new style with a block allocation strategy�


So far our discussion has focused on the addition of documents to an index since typically

databases only grow in size� or deletion is infrequent enough that the entire index is rebuilt� The

addition of incremental deletion of documents poses some problems to the design of an index� One

method maintains an index of document identi�ers and all the words in the document �or the

words are extracted from the original document
� Given this index� each inverted list for a word in

the document would be fetched� the reference to the document deleted� and the new inverted list

rewritten to disk� However� the size of this index is the same as the size of the inverted index� To

avoid this cost� existing implementations typically maintain a list of deleted document identi�ers

and �lter any answer to a query through this list� This deletes the document from the point of

view of the user since a deleted document identi�er will never appear in an answer� To reclaim

the space taken by the deleted document identi�ers in the index� a background process sweeps the

lists in the index one list at a time� removing any deleted documents� After a sweep of the index�

the list of delete document identi�ers can be thrown away� Since this issue is orthogonal to the the

issues in this paper� we do not consider deletion further�

In summary� the parameters described in this section span an interesting range of approaches

to storing long lists� By varying these parameters� we can model schemes that keep the lists

sequential and those that break the lists into contiguous chunks� We can control the size of the

chunks allocated� either as �xed�length chunks or as chunks whose size is controlled by the frequency

of a word� Finally� we can control whether unused space at the end of a list is �lled in or not� The

choice of parameters permits trade�o�s between index build performance� query performance� and

index disk space consumption�

� Experiment Design

�



News Compute

Buckets

Batch

Updates

Long Lists StatisticsCompute

Disks

Exercise

Disks

TracesInvert

Index

Figure �� The �ow of data for the experiment design� Arrows represent data� Boxes represent the
transformation of data via a process�

for years� And it was a total flop� in all the years it was available

very few people ever took advantage of it so it was dropped�

�a


a advantage all and available dropped ever few flop for in it of

people so the took total very was years

�b


Figure �� �a
 A fragment of a document from November ��th� ����� �b
 the tokens �in sorted
order
 resulting from the document fragment�

Figure � diagrams the �ow of data for our experiments in building inverted indexes� Each arrow

represents a data set and each box represents a process that transforms data sets� The diagram

also serves as an outline for this section and we describe each part of the diagram in turn�

��� News

The source text document database is �� days of News articles gathered from November ��th�

����� to January ��st� ����� �December ��th is missing�
 See Table � for statistics on the database�

Once per day the the local server was scanned for new documents� News documents less than

���� characters in length were eliminated to increase the average document size to a more typical

range of about �K characters ���� Also� non�English language documents �e�g�� encoded binaries

and pictures
 were �ltered out�

Each day of documents is a batch and is processed separately from other days� �We do not

consider document deletions in this study�
 While the dual�structure index does not require periodic

updates� this arrangement is good for measuring activity at periodic intervals�

��� Invert Index

The invert index process accepts a sequence of document batches as input� processes them� and

abandons � abashed � abate �

abated � abatement � abb �

Table �� A part of the batch update for November ��th� ����� shown as pairs of words and the
number of documents the word occurs in�

��



Variable Value Description

Buckets ����� Number of buckets
BucketSize ����� Size of bucket
BucketTotal ��
� M Buckets �BucketSize

BlockPosting ��� Postings per Block
Disks � Number of Disks
BlockSize ����� Bytes per Block
Bu�erBlock ��� I�O bu�er memory

Table �� The experimental parameters and base case values�

� �

������ ����

�		��	 ���	

�
���� ��
�

���	�� 	�	�

	�	��� ����

Figure �� A part of the output of the compute buckets process� Each line is a word�occurrence pair�
The left column contains integers representing words� �Words are numbered alphabetically�
 The
right column contains the lengths of the corresponding in�memory lists� The line �� �� indicates
the end of a batch update�

generates a batch update for each batch� A batch update contains a list of words that appear in

the documents of the batch and the number of times each word occurs in the batch� A word and

its frequency of occurrence is termed a word�occurrence pair�

To generate a batch update� each document in the batch is lexically analyzed to produce a

token stream� Sequences of letters and sequences of number are tokens � all other characters are

ignored� Certain lines of a document �such as �Date� � lines
 are also ignored� Finally� duplicate

tokens for a document are dropped� After all documents for a batch are reduced to sets of tokens�

an inverted �le is constructed for the batch� Tokens are converted to words by converting upper

case letters to lower case� The batch update containing all the words and the lengths of the inverted

lists for each word is then constructed� Figure �a shows a fragment of a document and Figure �b

shows the resulting set of tokens from the document fragment� Table � shows a part of a batch

update� Note that the misspellings of words are part of the batch update as well� At this point all

words in batch updates are converted to unique integers to simplify the remaining computations�

An implementation of an information retrieval system proceeds in the same way we have de�

scribed here� except that it would keep� for each word� its complete inverted list� as opposed to

the simple word�occurrence pair we keep here� For our performance evaluation� we do not need to

know the contents of each inverted list� only its size� which is what the word�occurrence pair gives

us� Note� thus� that our batch update is our representation of the in�memory index of Section ��

��� Compute Buckets

��



update bucket disk � id � size ��
�

update bucket disk � id � size ��
�

update bucket disk � id � size ��
�

update chunk disk � id � size �

write word ������ posting ���� disk � id ��
� size �

write word �		��	 posting ���	 disk � id ��
� size �

write word �
���� posting ��
� disk � id ��
� size �

write word ���	�� posting 	�	� disk � id ���� size �

write word 	�	��� posting ���� disk � id ���� size �

Figure �� An I�O trace corresponding to the previous �gure�

The compute buckets process takes the sequence of batch updates as inputs� runs the bucket

algorithm described in Section � on the sequence �we use a modular arithmetic hash function for

h�w

� and generates a single trace �le of updates to long lists� Each update in the �le indicates

the word involved� and the number of postings to be add to the corresponding long list on disk�

�Note that the postings for an update can comes from the new postings in a batch or from previous

postings in a bucket�
 In addition� a marker for the end of each batch update is added to the trace�

Figure � shows a part of the output of the compute buckets process� For instance� in the second

line of this �gure� the number ������� is the unique identi�er for a particular word and the number

��
�� is the number of postings to be appended to the long list for that word�

Table � lists the variables that control the bucket computation and the base values used for

those variables in the experiments reported in the next section� Variable Buckets records the

number of buckets and variable BucketSize records the size of each bucket �we count � for each

word and posting placed in a bucket
� Variable BucketSize implicitly models the e	ciency of

the compression algorithm applied to in�memory inverted lists since computations are in terms of

postings instead of bytes� The remaining variables in this table we describe in the next section�

In comparing the compute bucket process and an implementation of the bucket data struc�

ture in an information retrieval system� we note that an implementation would perform a similar

computation using inverted�lists as the compute bucket process does using word�occurrence pairs�

A implementation would produce the same set of long lists� We assume that during the update

process the buckets are kept in memory since they are referenced much more frequently than the

long lists� At the end of each batch update� all buckets are �ushed to disk� Note that the cost of

maintaining all the buckets in memory during the update process can be avoided by sorting the

in�memory lists into bucket order and then merging the in�memory list with the buckets� requiring

only one bucket to be in memory at any single point in time�

��� Compute Disks

The compute disks process takes as input the trace �le of long list updates and computes the

sequence of I�O systems calls required to implement the policies described in Section �� In addition�

the write operations for saving the buckets and the directory are added at the end of each batch

update� Figure � shows a sample of a I�O trace �le� The �rst three lines indicate that the write

of the bucket data structure occurs on three disks starting at location � and continuing for ���


��



blocks� The next line writes an empty directory� �The directory is empty because this is the

beginning of the trace� i�e�� no long lists have been written to disk � no actual I�O is performed

for this line
� The following lines write inverted lists for each word� For instance� the �rst �write

word� line indicates that word ������� writes ��
�� postings on disk � starting at block ����
 for

a size of 
 blocks�

In addition to Table �� Table � lists the variables and values used for the compute disks pro�

cess� Note that the variables BlockPosting and BlockSize implicitly model the e	ciency of the

compression algorithm applied to long lists� A disk trace corresponds closely to the sequence of

system I�O calls an implementation would perform for a given policy�

��� Exercise Disks

The exercise disks process takes a trace of I�O operations as input and executes it on an IBM RS

���� Model ��� computer ��� MB memory� UNIX AIX ��� operating system with � disks �Seagate

ST�����NM� � GB capacity� ���� inch� SCSI�� standard
 and an I�O bus �SCSI�� standard
� Each

line of the trace generates a read or write system call request and after the update of the buckets

and the directory all system bu�ers are �ushed to disk�

Requests to each disk are issued by independent processes to achieve maximum parallelism�

Request are directed to �raw� partitions of the disk� bypassing the operating system�s �le system

and disk bu�er pool� Our algorithms do not revisit the same blocks within a single batch� thus

eliminating the advantage of a bu�er pool� In addition� we assume that relevant data will not

remain in bu�ers from one batch update to the next� Furthermore� bypassing the �le system saves

CPU overhead and results in slightly superior data rates� Finally� bypassing the operating system

isolates our experiment design from e�ects introduced by the �le system and thus experiments are

independent of any particular �le system implementation�

One drawback to using raw disk partitions is that the operating system obeys the disk requests

exactly and does not coalesce adjacent write requests into single disk I�O operation� For this

reason� the disk exerciser program does its own coalescing of I�O operations where possible without

reordering the execution trace� To be faithful to real systems with a �nite amount of bu�ering�

the disk exerciser will only coalesce up to Bu�erBlock blocks �each of size BlockSize
 in a single

request�

In summary� the experimental design presented here has many advantages� One of the most

important is the decoupling of each process from the subsequent process� which permits varying

parameters of a process to study the e�ects on the corresponding data transformation� However�

the design rests on the assumption that the CPU costs of each process do not dominate the total

computation time� To test this assumption� we tested an actual running IR system� We selected

the Rufus system ��� and built an inverted index for ��
 megabytes of documents from a collection

of IBM internal bulletin board articles� Our experiments ���� con�rm that I�O time dominates the

building of inverted indexes�

��



0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70
f
r
a
c
t
i
o
n

update

new words
bucket words

long words

Figure 
� The fraction of words per update in each category�

� Results

In this section we describe results for a set of experiments� An experiment is the execution of

the sequence of processes described in Section � over the �� days of collected data� using the

defaults values given in Table � and Table �� except as otherwise noted� The values of variables

are sometimes systematically varied to show the sensitivity of a variable to some measurement�

An update refers to the incremental batch update of the index� Some measurements apply only to

the update� Other measurements apply to the index which results from the sequence of updates�

In this case we refer to the index after update� For this section� the �nal index is the index which

is produced after all the updates have been processed� We describe the results for each process in

turn�

��� Compute Buckets

In this section we show the behavior of buckets and the generation of long lists� The issue of

tuning the size of the buckets and the number of buckets is a complex issue in itself� We describe

in detail the impact of tuning buckets and our approach in ����� For the issues presented in this

paper� essentially the tuning of the bucket data structure uniformly a�ects the results presented

here� Thus� while there are quantitative changes in the behavior of the system� the qualitative

di�erences remain the same�

To show the behavior of the buckets� we measure the number of long lists in an update� For

each word�occurrence pair in an update� we can categorize the word of the pair as one of three

types� a new word �a previously unseen word
� a bucket word �a word that is already in a bucket
�

or a long word �a word that has a long list
�

Figure 
 shows� for each update� the fraction of words belonging to each category� Observing

the �new words� curve� we see that initially all word�occurrence pairs contain new words since

the buckets are empty and there are no long lists� This behavior very rapidly drops o� as the

buckets �ll up with frequently appearing words� Eventually� after about �� updates� the fraction

�We explore larger data sets in ����

��



of new words per update stabilizes around ���� Observing the �bucket words� curve� we see that

the fraction of words in an update which are in buckets rapidly rises until about the ��th update�

Since the majority of words are the same in every update� this rise indicates that the buckets

are �lling up with words� The curve declines �roughly linearly
 after update �� as new words

�containing typically short in�memory lists
 �ll the buckets and cause words to over�ow into long

lists� Observing the �long words� curve� we see that initially� no word�occurrence pairs contain

long words because a few initial updates �t into the bucket data structure� The fraction of long

lists rises �roughly linearly
 after the buckets �ll up in the initial stage� �The spike at update �� is

due to a very small size of the update for that day introduced by an interruption in the gathering

of data�
 Finally� we note a periodic set of peaks spaced seven days apart on the �long words�

curve� Each peak corresponds to a Saturday when the corresponding update is smallest for the

week� Small updates have higher fractions of frequently appearing words�

��� Compute Disks

In this section we consider the e�ects of the various allocation strategies described in Section ��

As our unit of measurement for this section only we count I�O operations� Each I�O operation

corresponds to a call to the operating system that results in a disk seek and transfer of information�

Note however that counting I�O operations is only an estimate of the time taken for a sequence

of I�O operations� We consider the actual time taken for I�O operations when the exercise disk

results are presented in Section ���� We study I�O operations in addition to actual times because

they provide insights into the behavior of the long list policies� because a wider range of parameters

can be studied simply because each experiment takes less time� and because I�O operations closely

estimate actual times� To compare allocation strategies� �rst we compare the three styles with

zero reserved space to study the e�ect of in�place updates with respect to index build time� disk

space utilization and the query performance of the resulting long lists� Then allocation strategies

are added to study the e�ects of reserved space for the same issues�

����� Styles

The number of I�O operations needed for each of the three policies is shown in Figure �� In the

case that Limit � z� we use Alloc � constant with a constant of �� This removes the e�ect of the

allocation policies� However� in�place updates are still possible by �lling the empty space in the

block�s
 at the end of the list� The x�axis is the index after the given update� The y�axis is the

cumulative number of I�O operations needed to incrementally build the index�

The �rst observation is that all the curves in the graph have increasing slope� This means that

the time to run each update takes longer as the index grows in size� This is due to the increasing

number of long lists� Second� the bottom two lines have Limit � � and the next two lines have

Limit � z for the new and �ll styles� This means that in�place updates double the number of I�O

operations required� This is due to each in�place update needing a read and a write operation�

The graph shows that the whole style requires more I�O operations than either the �ll or new

style� regardless of the use of in�place updates� Since the whole style costs one read and one write

operation for each append of an in�memory list to a long list� whether an in�place update occurs

or not� the whole style is the upper bound in number of I�O operations for any style� From the

��



0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 10 20 30 40 50 60 70
c
u
m
u
l
a
t
i
v
e
 
I
/
O
 
o
p
e
r
a
t
i
o
n
s

index after update

whole 0 & whole z

fill z

new z

fill 0 new 0

Figure �� The cumulative number of I�O operations needed to build the �nal index� The x�axis is
the index after the given update� The y�axis is the cumulative number of I�O operations needed
to incrementally build the index� Each curve is label with the values of Style and Limit�

�gure� we see that value for the �nal index for the whole style and for the �ll and new styles with

in�place updates are within ��� of each other� Thus� these policies use approximately the same

time to build the �nal index�

Another measure of performance of a style is the long list utilization rate� namely the fraction of

space allocated in long lists disk blocks that have postings� Thus we measure the internal utilization

of the long lists� �The amount of external fragmentation is a consequence of the strategy taken

for managing the free blocks on disk �cf� Section �
 which we do not study here�
 Figure � shows

the long list utilization rate for the index� measured at the end of each update� for the same set

of policies as the previous �gure� The spike for all curves between update � and � is due to the

utilization rate of ��� when there are no long lists� We see that that utilization without in�place

updates for the new and �ll styles falls dramatically� This is due to the large amount of wasted

space for small in�memory lists for these styles� Adding in�place updates to the new and �ll style

permits blocks to be more e	ciently utilized as shown by the �gure� The whole style has good

utilization regardless of in�place updates since each list is stored contiguously�

Comparing the I�O performance of policies to the corresponding utilization rates� we see that

the two best performing policies in terms of I�O performance are unrealistic due to the resulting

extremely poor utilization rates� Thus� the doubling of the I�O operations for update cannot

realistically be avoided� In choosing among the remaining alternatives� if update performance is

crucial then the new style with in�place updates is best� and if utilization is crucial than either of

the whole policies is best�

Measuring query performance for a policy is di	cult since the typical workload depends on the

information retrieval model �IRM
� For a typical boolean IRM� a query contains a few words �less

than ��
 and the words tend to be the less frequently appearing words since frequently appearing

words do not discriminate strongly between documents� Thus we would expect many query words

to reside in buckets for this model� For a typical vector space IRM� a query may be derived from a

document� consequently the query often contains many words �more than ���
 and the words tend

to be frequently appearing words� We concentrate on the vector space IRM for this paper �see ����

��



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70
i
n
t
e
r
n
a
l
 
u
t
i
l
i
z
a
t
i
o
n

index after update

whole 0 & whole z

new z

fill z

new 0

fill 0

Figure �� The long list disk utilization of the various policies� The x�axis is the database after the
update� The y�axis is the fraction of space in the long lists which contain postings� Each curve is
label with the values of Style and Limit�

for results on the boolean IRM
�

For a vector space IRM� we assume the distribution of words in such a query to approximate

the frequency of words in documents� To measure query performance� we measure at the end of

each update the average number of read operations needed to read a long word� This is computed

by counting the total number of chunks in the index and dividing by the number of words with

long lists� Figure �� graphs this result for the various policies� The graph shows that in�place

updates are need for competitive query performance for the new and �ll styles� In the �nal index�

the whole style performs about ��� times better than the �ll style with in�place updates and about

� times better than the new style with in�place updates for this metric�

����� Allocation Strategies

There are several issues to consider with the allocation strategies� How is the constant value for an

allocation strategy selected� Given an allocation constant� is there some rule to select its constant�

independent of a policy� Given any style� is one of the allocation strategies best� Let us start

by focusing on a particular style� say the new style� �We assume in�place updates since allocation

strategies are not otherwise used�


For the new style� as the amount of reserved space for each list rises �by increasing k
� the

number of in�place updates rises and behavior converges towards a style where most updates long

lists are in�place� In addition� as the amount of reserved space rises the disk utilization falls and

the average number of reads for a long list approaches �� This presents a classical trade�o� between

disk utilization and query performance� Experiments described in ���� describe this trade�o� in

more detail� In�place updates also increase the update time for the new style� but the range of

update times for in�place updates is only ��� in terms of I�O operations �cf� Figure �
� Thus�

allocation strategies can only have a small impact on update time�

Table � compares various allocation strategies and constants for the new style� The �Read�

column is the average number of read operations required to read a long list� The �Util� column

is the internal utilization of the long lists� The �In�place� column is the total number of in�place

�




0

5

10

15

20

25

0 10 20 30 40 50 60 70

a
v
e
r
a
g
e
 
r
e
a
d
 
o
p
e
r
a
t
i
o
n
s
 
p
e
r
 
l
o
n
g
 
l
i
s
t

index after update

fill 0

new 0

new z

fill z

whole 0 & whole z

Figure ��� The average number of read operations to read a word with a long list� The x�axis is
the database after the given update� The y�axis is the average number of read operations to read
a long list�

New Style
Allocation k Read Util In�place Frac
constant 
�� ��
� ���� ����

 ����
constant ���� ��

 ���� ������ ����
block � ���
 ���� ����
� ����
block � ��
� ���� �����
 ����

proportional ��� ���� ���� ��
��� ����
proportional ��� ���� ���� ��
��
 ���


Table �� A comparison of allocation strategies with respect to the �nal index for the new styles�
The meaning of each column is described in the text�

Whole Style
Allocation k Util In�place Frac
constant � ���� ���
�� ����
constant 
�� ���� �����
 ����
constant ���� ���� ������ ����
block � ���� ������ ����
block � ���� ����

 ����
block 
 ��
� ��
��
 ���


proportional ��� ���� ���
�
 ����
proportional ���
 ���
 ������ ���

proportional ��� ��
� ������ ����

Table �� A comparison of allocation strategies with respect to the �nal index for the whole style�
The table is describe in the body of the text�

��



0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4
i
n
t
e
r
n
a
l
 
u
t
i
l
i
z
a
t
i
o
n

new
fill

whole

Figure ��� The impact of the constant k for the proportional allocation strategy on the utilization
of long lists in the �nal index� The �ll style �with the extent allocation strategy with extent size
�
 is include for comparison�

updates needed to incrementally build the �nal index� The �Frac� column is the fraction of in�place

updates of the total possible number of in�place updates� �The total possible number of in�place

updates which are possible is ��������
 �The �In�place� and �Fraction� columns are included only

for comparisons with Table ��
 The constant value for each strategy was chosen by increasing it

until long list utilization was at 
��� This utilization rate was chosen since it o�ered good read

performance� which was not available at higher long list utilization rates� Some additional values

of interest are also included in the table� The table suggests �and other results not shown here

con�rm
 that the new style with a proportional allocation strategy o�ers the best trade�o� by

having the best read performance at this level of utilization�

Let us now turn our attention to the whole style� There is also a space�time trade�o� for the

allocation strategies for this style� The space trade�o� is the utilization of long lists �as for the

new style
 but the time trade�o� is only update time� not query performance� since all allocation

strategies o�er the same query performance� To compare update time� we cannot count I�O

operations since this measure not distinguish between reading the tail of a list to append an in�

memory list and reading the entire list� To account for this� we directly compare the number of

in�place updates for each allocation strategy�

Table � shows statistics for various allocation strategies� The number of read operations for a

long list is always ��� with the whole style� The �Util� column is the internal long list utilization�

The �In�place� column is the total number of in�place updates needed to incrementally build the

�nal index� The �Frac� column is the fraction of in�place updates of the total possible number of

in�place updates� �The total possible number of in�place updates which are possible is ��������


The table shows that the proportional allocation strategy is the best overall strategy since it is the

only strategy to o�er at least ��� for both utilization and the fraction of in�place updates�

Turning to the �ll style� recall it has its own extent allocation strategy� The same space�time

trade�o� as with the new strategy exists� So as the number of extents e is increased� disk utilization

falls and query performance improves� We conducted the same analysis for this style as for the

others� increasing e until utilization falls to 
��� Our experiments show that a value of � for e

��



140000

150000

160000

170000

180000

190000

200000

210000

220000

1 1.5 2 2.5 3 3.5 4
c
u
m
u
l
a
t
i
v
e
 
i
n
-
p
l
a
c
e
 
u
p
d
a
t
e
s

proportional allocation constant

new
fill

whole

Figure ��� The impact of the constant k for the proportional allocation strategy on the cumulative
number of in�place updates which occur in building the �nal index� The �ll style �with the extent
allocation strategy with extent size �
 is include for comparison� Note that the y�axis starts at
��������

gives an average number of read operations for a long list of ����� and ����
�� in�place updates at

this utilization level� Both of these performance measures are worse than the best new style policy�

However� the �ll style as an advantage of limiting the maximum required contiguous region of disk

�in this case to � blocks� since e has a value of �
�

We have seen that the proportional allocation strategy is a good choice for the new and whole

styles� We now consider in greater depth the selection a good constant k for this allocation strategy�

Figure �� shows the impact of varying k on the utilization of long lists� The �gure shows that�

generally� as k rises� the utilization falls for both the new and whole styles �the �ll style does

not interact with the proportional allocation strategy and it is included for comparison
� However�

there is a cusp in the new style at a constant value of �� This is due to the fact that multiple updates

to the same word have approximately the same length� A constant value of � reserves space for one

additional in�place update� The simultaneous increase in in�place updates is shown in Figure ���

We see that only a marginal improvement from ��� of the in�place updates at a constant value of

��� to ���� of the in�place updates at a constant value of ��� is possible� Considering both �gures�

we see the the majority of gains are from constant values less or equal to ���� In summary� based

on the trade�o�s presented� we recommend the proportional allocation scheme a constant of ���

for the whole style and ��� for the new style�

��� Exercise Disks

In this section we compare the performance of the various allocation schemes by the actual times

taken to execute a trace by the execute disks process�

Figure �� shows the cumulative time taken to incrementally build the �nal index� The �ll style

without in�place updates ��ll �
 is not shown since our disks were not large enough to store the

long lists for this policy due to gross underutilization of disk space �cf� Figure �
� Notice that

the range of cumulative times for the �nal index vary by a factor of � as opposed to a factor of

� determined by comparing total I�O operations �cf� Figure �
� The very signi�cant di�erence

��



0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60 70
c
u
m
u
l
a
t
i
v
e
 
t
i
m
e
 
(
s
e
c
o
n
d
s
)

index after update

whole 0

whole z

fill z

new z

new 0

Figure ��� The cumulative time needed to build the �nal index� The x�axis is the index after the
given update� The y�axis is the cumulative time needed to build the index incrementally� Each
curve is labeled with the values of Style and Limit�

between the di�erent policies implies that a policy must be chosen with care�

Comparing Figure �� with Figure �� we see that measuring cumulative I�O operations produces

the same qualitative comparison of policies as measuring real execution time� That is� the ordering

of policies from best to worst is the same �accounting for the addition of whole with in�place

updates and the removal of �ll without in�place updates
� This con�rms our use of I�O operations

to compare policies�

We also see that the new style with limit of zero policy has an almost linear growth in the

cumulative time taken as opposed to a more steep increase in the cumulative number of I�O

operations� This is due to the coalescing of I�O operations by the exercise disk process� That is�

since for long list updates this policy only writes sequentially to the disk� all the write operations in

an update can be coalesced �up to the bu�er size imposed by the exercise disk process
� Figure ��

also shows that the whole style without in�place updates takes the longest cumulative time to build

the �nal index� This is due to the additional movement of long lists compared to in�place updates�

Figure �� shows the time taken to perform each update� That is� this �gure is the non�

cumulative version of the previous �gure� The update times grow over time as the number of long

lists in the index grows� However� the increase for new style without in�place updates is slight

because updates to di�erent long lists are coalesced into single I�O operations� A second e�ect

shown in the �gure is that the whole style with in�place updates �Limit � z
 is the only policy

whose per update time is sensitive to the variations in the size of the update� The average number

of in�place updates for this policy is sensitive to the average number of postings in a long list

update�

��� Bottom Line� What is the Best Policy�

This section has compared the performance of the various options for storing long lists� Generally�

the schemes that rewrite the unused space at the end of a long list before allocating more space take

considerably longer than the schemes that don�t rewrite the space� due to the extra read required

for each long list� However� the extra space consumed by not rewriting the tail of long lists makes

��



0

50

100

150

200

250

300

0 10 20 30 40 50 60 70
t
i
m
e
 
p
e
r
 
u
p
d
a
t
e
 
(
s
e
c
o
n
d
s
)

update

whole 0

whole z

fill z

new z

new 0

Figure ��� The time per update� The x�axis is the update number� The y�axis is the time to
execute the update by the exercise disk process� Each curve is labeled with values of Style and
Limit�

that option impractical for most applications�

While we have analyzed various situation� a designer of an IR system is faced with the issue of

chosing a policy� Is there a best policy� In general� no policy is best� Some policies favor update

time and others favor query time� We consider each policy in turn�

New style� The new style provides the best update performance� since only the last block of

each long list need ever be read during the updates� The new style without in�place updates is

the best if update time is critical� The policy o�ers a factor of � in update time over the next

best policy and a factor of � over the slowest policy� However� the policy exhibits very poor query

time and disk utilization� The new style with proportional allocation with constant � compensates

for the poor query time and disk utilization� This policy is best if update time is important with

reasonable query time� The policy is faster by a factor of � over the slowest policy and o�ers query

performance within a factor of � of the best query performance� Bottom Line� Use the new

style only if query performance is not critical� If you do use the new style� we recommend in�place

updates with a proportional allocation strategy with a constant of ����

Fill style� Essentially the �ll style o�ers no advantages over the new style except that the

maximum contiguous section of disk required is limited �it is unbounded in the new style
� This

requirement has an advantage in that long lists are automatically divided into sections of disks

which can be written to disk and read in parallel �e�g�� with a disk array
� The cost of satisfying

this requirement is small in the case of the �ll style with extent allocation with constant � since

this policy has slightly worse performance on all three metrics than the new style with proportional

allocation with constant �� Bottom Line� Performance is comparable to the new style� better for

disk arrays� If you do use the �ll style� we recommend � extent blocks�

Whole style� The major advantage of the whole style is its guarantee of � read operation for

any long list� Providing this guarantee has a cost in index build time� The penalty arises from

the costs of moving long lists to keep them sequential� However� this penalty is not as large as

might be expected� due the relative e	ciency of performing sequential disk reads and writes� The

whole style without in�place updates has an about ��� slower update time compared to the whole

��



style with a proportional allocation with constant ���� The latter policy has a long list utilization

rate of ���� Thus the latter policy is the best if query time is critical� Bottom Line� Use the

whole style if query performance is critical� For this style we recommend in�place updates with a

proportional allocation strategy with a constant value of ����

� Related Work

Cutting and Pedersen ��� consider incremental updates of inverted lists where a B�tree is used to

organize the vocabulary� Updates are optimized by storing short inverted lists directly in the B�tree�

In our framework this optimization can be represented by a very small bucket for approximately

each word in the text document database� However� in ���� we show that using fewer� larger�

buckets o�er better performance� In addition� our scheme dynamically determines if an inverted

list is stored in a �xed sized structure or a variable length one as opposed to a static division�

Cutting and Pedersen also described a buddy system for the allocation of long lists� This approach

deserves further experimental study since its expected space utilization is lower than the methods

presented here� however it may o�er better update performance than the methods presented here�

Faloutsos and Jagadish ��� extensively analyze the physical organization of long list� They study

three methods that correspond to our whole style with a proportional allocation scheme� our new

style with an adaptive allocation scheme �not studied here
� and an unique style that combines

bene�ts of the whole and new styles� Performance comparisons between our work and the schemes

presented there are di	cult since updates are not batched in that paper�

In another work� Faloutsos and Jagadish ��� extensively analyze a dual�structure scheme based

on signature schemes for long lists and inverted lists for short lists� The division in the structure

is static as opposed to a dynamic scheme presented here� In addition� the we believe that using

inverted lists for short lists is computationally expensive since many I�O operations� each containing

only a few postings� are required to update this structure�

Zobel� Mo�at and Sacks�Davis ���� consider several issues in inverted �le indexing� The com�

pression methods presented there complement this paper well� They also consider �xed size buck�

ets for storing inverted lists but do not discuss techniques for handling long lists� To compare

approaches� a linear scaling of the �� minutes update time of ��� MB of documents cited in the

paper to the ��� MB text document database used here gives an update time of about ��� minutes�

We halve this number to ��� minutes to account for improvements in processor performance� Our

study predicts a range of index build times from about �� minutes to �
� minutes depending on

the policy used�

An interesting and entirely di�erent approach� by Fox and Lee� based on preprocessing of

document representations and a merge update of inverted lists is described in ���� A non�incremental

update time of � minute �� seconds for ���� MB of documents appears in this article� Harman and

Candela ��� also describe an update method and cite an indexing time of ��� hours for ��� MB of

documents on a minicomputer with six Intel ����� processors� Finally� our own measurements for

freeWAIS version ����� on a DEC ���� Model ��� ��� MB memory
 with an external disk �Western

Scienti�c
 on a SCSI�I bus shows that to index ����MB of our experimental text document database

requires ���� minutes using ULTRIX V���A �Rev� �

 operating system�

��



� Conclusion

For dynamic� time critical text document databases� it is important to modify index structures

in place� as documents arrive� We have presented a dual structure index strategy to address this

problem� Comparing the results presented here with the literature� we have argued that the dual�

structure index has better performance than existing implementations with the added bonus of

providing incremental updates� The principle source of our improvement is the dynamic division

of postings into short and long inverted lists and the application of appropriate data structures to

each type of list� Our evaluation is based on using actual data and hardware and simulation of an

information retrieval system�

In studying our index� we found a classical trade�o� between update time and query time� That

is� more time spent incrementally updating the index is repaid with better query performance�

We explored algorithms that optimized the time to update and algorithms with optimized query

performance and determine various trade�o�s between these algorithms� Performance varies by a

factor of � in the time to build an index and a factor of �� in query performance�

Another classical trade�o� was found between space and time� As the amount of space wasted

in storing long inverted lists rises� the query performance to read those inverted lists falls� We

described three di�erent methods for allocating additional space on disk to improve query perfor�

mance and quantitatively describe the trade�o� for these methods� In addition� we quantitatively

compared overall performance�

In comparing update performance to query performance� if fast update performance is preferred�

we described a policy that o�ers fast incremental update times with reasonable query performance

�the new style with proportional allocation strategy with a constant value of ���
� Otherwise� if

fast query performance is preferred� we presented a policy that o�ers optimal read performance at

a cost of doubling the time to build an index �the whole style with proportional allocation strategy

with a constant value of ���
� We were surprised by this result� since the optimal read performance

policy requires extensive copying of long inverted lists�

We also studied an extent based allocation policy� This policy limits the size of a contiguous

region of disk to a �xed maximum amount� so it is easier to implement� However� this feature does

have an associated cost �about a ��� increase in query performance for the same disk utilization

as the new style
� This cost can be lowered by using multiple extent sizes� instead of our model of

only a single extent size�

We also studied the I�O subsystem extensively and determined that the time required to write

the bucket data structure to disk is dominated by the subsystem data rate� whereas the time to

incrementally update the long lists is dominated by the disk seek time� We quantitatively describe

the performance improvements due to speeding up disk or adding more disks� We also determine

the performance of updates on an optical disk�

The work we have presented here is limited in a variety of ways� but we have addressed some

of these limitations in the extended version of this paper ���� �a technical note available via FTP
�

One issue is that of selecting the right amount of space for buckets� as well as partitioning this

space into the right number of buckets� In ���� we illustrate the trade�o�s involved� but a more

detailed study is required� We also need to study how to dynamically grow the bucket space since�

unfortunately� as the size of the index grows from the addition of more documents� the performance

��



of the index degrades� This implies that we need a strategy to rebalance the division between short

and long lists for any number of incremental updates i�e�� periodically� as the buckets are read� they

can be expanded and written in a larger region of disk�

Our results are also limited because we only considered a relatively small database of ��� MB�

In ����� we generate synthetic databases with the same characteristics as our real database� The

results indicate that� given the correct parameters� our algorithms scale well to larger databases�

We also vary the number of disks and their speed and study the impact on performance�
Acknowledgements� Thanks to Mendel Rosenblum for discussions on �le system mechanisms

related to this paper�

References

��� Doug Cutting and Jan Pedersen� Optimizations for dynamic inverted index maintenance� In Proceedings
of Special Interest Group on Information Retrieval �SIGIR�� pages ��
����� �����

��� Samuel DeFazio� Full�text document retrieval benchmark� In Jim Gray� editor� The Benchmark Hand�
book for Database and Transaction Processing Systems� chapter �� Morgan Kaufmann� second edition�
�����

��� Christos Faloutsos and H� V� Jagadish� Hybrid index organizations for text databases� In A� Pirotte�
C� Delobel� and G� Gottlob� editors� Proceedings �rd International Conference on Extending Database
Technology � EDBT ���� Vienna� ����� Springer�Verlag�

��� Christos Faloutsos and H� V� Jagadish� On B�tree indices for skewed distributions� In Proceedings of
�	th International Conference on Very Large Databases� pages �
������ Vancouver� British Columbia�
Canada� �����

�
� William B� Frakes and Ricardo Baeza�Yates� Information Retrieval
 Data Structures and Algorithms�
Prentice�Hall� �����

�
� Donna Harman and Gerald Candela� Retrieving records from a gigabyte of text on a minicomputer
using statistical ranking� Journal of the American Society for Information Science� ������
���
��� �����

��� Donald E� Knuth� The Art of Computer Programming� Addison�Wesley� Reading� Massachusetts� �����

��� Katia Obraczka� Peter B� Danzig� and Shih�Hao Li� INTERNET resource discovery services� IEEE
Computer� �
���� September �����

��� K� Shoens� A� Luniewski� P� Schwarz� J� Stamos� and J� Thomas� The Rufus system� Information
organization for semi�structured data� In Proceedings of the ��th VLDB Conference� Dublin� Ireland�
�����

���� Anthony Tomasic� Hector Garcia�Molina� and Kurt Shoens� Incremental updates of inverted lists for
text document retrieval� Technical Note STAN�CS�TN������ Stanford University� ����� Available via
FTP db�stanford�edu��pub�tomasic�stan�cs�tn������ps�

���� George Kingsley Zipf� Human Behavior and the Principle of Least E�ort� Addison�Wesley� �����

���� Justin Zobel� Alistair Mo	at� and Ron Sacks�Davis� An e�cient indexing technique for full�text database
systems� In Proceedings of �	th International Conference on Very Large Databases� Vancouver� �����

��


