
DISTRIBUTED QUERIES AND INCREMENTAL

UPDATES IN INFORMATION RETRIEVAL SYSTEMS

Anthony Slavko Tomasic

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

June ����

c� Copyright by Anthony Slavko Tomasic ����

All Rights Reserved

ii

To Francis William Tomasic�s spirit� and the Road to Nowhere

iii

Well we know where we�re goin�

But we don�t know where we�ve been

And we know what we�re knowin�

But we can�t say what we�ve seen

And we�re not little children

And we know what we want

And the future is certain

Give us time to work it out

We�re on a road to nowhere

Come on inside

Takin� that ride to nowhere

We�ll take that ride

Lyrics by David Byrne of The Talking Heads from the album Little Creatures

iv

Abstract

The proliferation of the world�s �information highways� has renewed interest in e�	

cient document indexing techniques
 This thesis explores the architecture of informa	

tion retrieval systems for querying and indexing documents
 Distributed queries are

studied with analytical and trace	driven simulations
 We focus on physical index de	

sign� inverted index caching� and database scaling in a distributed system
 All three

issues in�uence response time and throughput
 Incremental updates of inverted lists

are studied using a new dual	structure index data structure
 This index structure sep	

arates long and short inverted lists dynamically and optimizes the retrieval� update�

and storage of each type of list
 To study the behavior of the index� engineering trade	

o�s are described that favor either update time or query performance
 We explore

these trade	o�s quantitatively by using actual data and hardware and simulation to

determine the best algorithm under a variety of criteria
 Finally� implementation of

our incremental update algorithms is compared to an existing information retrieval

system

v

Acknowledgments

Stanford Professor Hector Garcia	Molina� my thesis advisor� provided encouragement�

support� and guidance
 Thanks� we made a great team� hombre

Kurt Shoens of Teknekron Software Systems collaborated on the the running of

experiments described in Chapter � and on subsequent work described in reference

STGM���

Stanford graduate student Luis Gravano collaborated on the distributed database

selection problem described in reference
GGMT���

Bo Parker and Norman Roth of the Stanford Data Center made the INSPEC

traces available
 These traces made Chapter � possible

The Princeton thesis readers� Professors Kai Li and David Hanson� provided com	

ments and criticisms
 The thesis was much improved by their reading
 However� any

mistakes or omissions in this thesis are the author�s responsibility

Princeton University and the Department of Computer Science allowed me to

complete my thesis at Stanford University
 Stanford University and the Department

of Computer Science made my stay at Stanford University an easy one

Stanford students Yet	Fong Cheong� Brian Lent and John Petit participated in

studies of information retrieval systems

Thanks to Masahiko Saito� Mendel Rosenblum� Miron Livny� Sam DeFazio� Sergio

Plotkin� and Tak Yan for comments and suggestions on drafts of various papers

vi

Benjamin �Chi	Ming� Kao� o�ce mate of �ve years and fellow cross country ad	

venturer� provided the good times and the Cantonese philosophy

The research in Chapters � and � was partially supported by the Advanced

Research Projects Agency �ARPA� of the Department of Defense under Contract

No
 DABT��	��	C	����
 The research in Chapters � and � was sponsored by ARPA

under Grant No
 MDA���	��	J	���� with the Corporation for National Research Ini	

tiatives �CNRI�
 The views and conclusions contained in this document are those

of the authors and should not be interpreted as necessarily representing the o�cial

policies or endorsement� either expressed or implied� of ARPA� the U
 S
 Government

or CNRI

vii

Contents

Abstract v

Acknowledgments vi

� Introduction �

�
� Distributed Query Processing �

�
�
� Query processing �

�
� Incremental Updates �

�
� Thesis Organization �

� Previous Work ��

�
� Distributed Query Processing ��

�
� Incremental Updates ��

� Distributed Queries � Analytic Workload ��

�
� De�nitions and Framework ��

�
� Models ��

�
�
� Document Model ��

�
�
� Query Model ��

�
�
� Answer Set Model ��

�
�
� Inverted List Model ��

viii

�
� Simulation ��

�
�
� Hardware ��

�
�
� Inverted Lists and Answer Sets � � � � � � � � � � � � � � � � � ��

�
�
� CPU simulation ��

�
�
� Disk and I�O bus Simulation � � � � � � � � � � � � � � � � � � ��

�
�
� LAN simulation ��

�
�
� Query Simulation ��

�
�
� Simulation ��

�
� Simulation Results ��

�
� Conclusion ��

� Distributed Queries � Trace�based Workload ��

�
� Trace Data ��

�
� Query Processing ��

�
� Simulation ��

�
� Results ��

�
� Conclusion ��

� Incremental Updates � Actual Workload ��

�
� Dual	Structure Index ��

�
� Policies for Allocation of Long Lists ��

�
�
� Policies ��

�
� Experiment Design ��

�
�
� News ��

�
�
� Invert Index ��

�
�
� Compute Buckets ��

�
�
� Compute Disks ��

�
�
� Exercise Disks ��

ix

�
� Results ��

�
�
� Compute Buckets ��

�
�
� Compute Disks ���

�
�
� Exercise Disks ���

�
� Conclusion ���

	 An Alternative Storage Technology ��	

�
� Design of WAIS ���

�
� Design of the Alternative Storage Technology � � � � � � � � � � � � � ���

�
� Results ���

�
�
� Simulation vs
 Implementation � � � � � � � � � � � � � � � � � � ���

�
�
� WAIS vs
 AST ���

� Conclusion ���

A Derivation of the Probability Distribution Z ���

B Derivation of the e
ect of u ���

Bibliography ���

x

List of Tables

� The various inverted index organizations for Figure �
 � � � � � � � � � �

� Hardware con�guration parameter values and de�nitions
 � � � � � � � ��

� Parameters of the document model
 ��

� Parameters for the query model
 ��

� Hardware parameter values and de�nitions
 � � � � � � � � � � � � � � � ��

� Base case parameter values and de�nitions
 � � � � � � � � � � � � � � � ��

� Simulation parameter values and de�nitions
 � � � � � � � � � � � � � � ��

� Results of all metrics for the base case simulation experiment �P I is

Prefetch I� P II is Prefetch II and P III is Prefetch III�
 � � � � � � � � ��

� Breakdown of raw trace and simulation trace
 � � � � � � � � � � � � � ��

�� Statistical properties of the simulation trace
 � � � � � � � � � � � � � � ��

�� The inverted indexes and associated statistics
 The mean and median

columns apply to the number of postings per word
 � � � � � � � � � � ��

�� Hardware con�guration parameter variables� values and de�nitions
 � ��

�� Hardware parameter values and de�nitions
 � � � � � � � � � � � � � � � ��

�� Base case parameter values and de�nitions
 � � � � � � � � � � � � � � � ��

�� Base case parameter values and de�nitions
 � � � � � � � � � � � � � � � ��

�� Enumeration of variable values
 ��

�� Enumeration of variable values for �xed resources
 � � � � � � � � � � � ��

�� Statistics for a News abstracts text database
 � � � � � � � � � � � � ��

xi

�� The variables and values that determine a policy for the allocation

of long inverted lists to disks
 The values in parenthesis are for each

allocation strategy or style
 ��

�� A part of the batch update for November ��th� ����� shown as pairs

of words and the number of documents the word occurs in
 � � � � � � ��

�� The experimental parameters and base	case values
 � � � � � � � � � � ��

�� A comparison of allocation strategies with respect to the �nal index

for the new styles
 ���

�� A comparison of allocation strategies with respect to the �nal index

for the whole style
 ���

�� The �elds of the dictionary �or index� block of WAIS temporary �les
 ���

�� The �elds of the posting block of WAIS temporary �les
 � � � � � � � � ���

�� The �elds of the bucket format on disk
 � � � � � � � � � � � � � � � � � ���

�� The bucket disk data structure for two words
 � � � � � � � � � � � � � ���

�� The �elds of the extent table
 ���

�� The �elds of an extent description
 ���

�� The �elds of a record of a region of the inverted �le
 � � � � � � � � � � ���

xii

List of Figures

� A example set of four documents and an example hardware con�guration
 �

� Curve �t to vocabulary occurrence data
 � � � � � � � � � � � � � � � � ��

� The Expected Number of Documents in an Answer Set for any Query
 ��

� The sensitivity of response time to the maximum query keyword rank
 ��

� The sensitivity of response time to seek	time
 � � � � � � � � � � � � � ��

� The e�ect of the multiprogramming level
 � � � � � � � � � � � � � � � � ��

� The e�ect of striping
 ��

� The sensitivity of response time to the number of keywords in a query
 ��

� A good hardware con�guration for the prefetch algorithm
 � � � � � � ��

�� Some example data from the raw trace
 The �rst column is a unique

integer representing the user login
 ��

�� The number of postings for a sample set of words which appear in the

author portion of the documents
 ��

�� Queries � through �� of the trace input to the simulation
 � � � � � � � ��

�� The cumulative distribution of occurrences of inverted indexes of a

given length which appear in queries
 Simple keywords do not use

wild	cards
 ��

�� The sensitivity of response time to disk seek	time
 � � � � � � � � � � � ��

�� The e�ect of the multiprogramming level on throughput
 � � � � � � � ��

�� A �k factor experiment of three variables
 � � � � � � � � � � � � � � � � ��

xiii

�� Scaling the database up to a �	second response time for the best index

organization
 ��

�� Increasing the number of hosts with a scaled database
 � � � � � � � � ��

�� The sensitivity of mean query response time to LAN bandwidth
 � � � ��

�� The mainframe vs
 workstation trade	o�
 � � � � � � � � � � � � � � � � ��

�� The improvement in the cache hit rate as the cache grows in size
 � � ��

�� The impact of the cache size on throughput
 � � � � � � � � � � � � � � ��

�� A running example of the behavior of the update algorithm
 � � � � � ��

�� An animation of the behavior of bucket � for the �rst � updates for a

system with ��� buckets
 ��

�� The algorithm for updating long lists
 � � � � � � � � � � � � � � � � � � ��

�� The �ow of data for the experiment design
 Arrows represent data

Boxes represent the transformation of data by a process
 � � � � � � � ��

�� �a� A fragment of a document from November ��th� ����� �b� the

tokens in sorted order
 ��

�� A part of the output of the compute buckets process
 Each line is a

word	occurrence pair
 ��

�� An I�O trace corresponding to the previous �gure
 � � � � � � � � � � � ��

�� The fraction of words per update in each category
 � � � � � � � � � � � ���

�� The cumulative number of I�O operations needed to build the �nal

index
 ���

�� The long list disk utilization of the various policies
 � � � � � � � � � � ���

�� The average number of read operations to read a word with a long list
 ���

�� The impact of the constant k for the proportional allocation strategy

on the utilization of long lists in the �nal index
 The �ll style �with the

extent allocation strategy with extent size �� is include for comparison
 ���

xiv

�� The impact of the constant k for the proportional allocation strategy

on the cumulative number of in	place updates that occur in building

the �nal index
 The �ll style �with the extent allocation strategy with

extent size �� is include for comparison
 � � � � � � � � � � � � � � � � � ���

�� The cumulative time needed to build the �nal index
 � � � � � � � � � ���

�� The time per update
 ���

�� The WAIS pseudocode for building inverted indexes
 � � � � � � � � � ���

�� The AST pseudocode for building inverted indexes
 � � � � � � � � � � ���

�� The data structure layout for two long list words �cat� and �mouse
� ���

�� The cumulative time to build inverted index for the month of December

for WAIS and AST with the new policy
 � � � � � � � � � � � � � � � � ���

xv

Chapter �

Introduction

Full	text document databases of newspaper articles� journals� legal documents etc
 are

readily available
 These databases are increasing in size rapidly as the cost of digital

storage drops� as more source documents appear in electronic form� and as optical

character recognition becomes commonplace
 At the same time� there is a rapid

increase in the number of users and queries submitted to such text retrieval systems

One reason is that more users have computers� modems� and communication networks

available to reach the databases
 Another is that as the volume of electronic data

grows� it becomes more important to have e�ective search capabilities

As the data volume and query processing loads increase� companies that provide

information retrieval services are turning to distributed storage and searching
 The

goal of this thesis is to study distributed query processing� various distributed index

organizations for information retrieval� and the incremental update of index organi	

zations used in information retrieval

�

CHAPTER �� INTRODUCTION �

D�

d � d � d � d �

D�

D� D�

a b a b

a a b
c d

BUS � BUS �

CPU � CPU �

LAN

Figure �� A example set of four documents and an example hardware con�guration

��� Distributed Query Processing

A simple example helps motivate the issues that are addressed
 The left hand side of

Figure � shows four sample documents� D�� D�� D�� D�� that could be stored in an

information retrieval system
 Each document contains a set of words �the text�� and

each of these words �maybe with a few exceptions� are used to index the document

In Figure �� the words in our documents are shown within the document box� e
g
�

document D� contains words a and b

To �nd documents quickly� full	text document retrieval systems traditionally build

inverted lists
Fed��� Knu��� on disk �see reference
Fal��� for a survey of access

methods for text�
 For example� the inverted list for word b would be b� �D�����

�D����� �D����
 Each pair in the list is a posting and indicates an occurrence of the

word �document id� position�
 Position can be word position or byte o�set
 To �nd

documents containing word b� the system needs to retrieve only this list
 To �nd

documents containing both a and b� the system could retrieve the lists for a and

b and intersect them
 The position information in the list is used to answer queries

involving distances� e
g
� �nd documents where a and b occur within so many positions

of each other

Suppose that we wish to store the inverted lists on a multiprocessor like the one

CHAPTER �� INTRODUCTION �

Index Disk Inverted Lists in word� �Document� O�set� form

Disk d � a� �D�� ��� b� �D�� ��

d � a� �D�� ��

d � a� �D�� ��� b� �D�� ��

d � a� �D�� ��� b� �D�� ��� c� �D�� ��� d� �D�� ��

Host� I�O bus d � a� �D�� ��� �D�� ��

d � b� �D�� ��

d � a� �D�� ��� �D�� ��� c� �D�� ��

d � b� �D�� ��� �D�� ��� d� �D�� ��

System d � a� �D�� ��� �D�� ��� �D�� ��� �D�� ��

d � b� �D�� ��� �D�� ��� �D�� ��

d � c� �D�� ��

d � d� �D�� ��

Table �� The various inverted index organizations for Figure �

shown on the right in Figure �
 This system has two processors �CPUs�� each with

a disk controller and I�O bus
 �Each CPU has its own local memory
� Each bus has

two disks on it
 The CPUs are connected by a local area network
 Table � shows four

options for storing the lists
 The host and I�O bus organizations are identical in this

example because each CPU has only one I�O bus

In the system index organization� the full lists are spread evenly across all the disks

in the system
 For example� the inverted list of word b discussed above happened to

be placed on disk d�

With the disk index organization� the documents are logically partitioned into four

sets� one for each disk
 In our example� we assume document D� is assigned to disk

d�� D� to d�� and so on
 In each partition� we build inverted lists for the documents

CHAPTER �� INTRODUCTION �

that reside there
 To answer the query �Find all documents with word b� we must

retrieve and merge � lists� one from each disk
 Since disk d� contains no documents

with word b� its b list is empty

In the host index organization� documents are partitioned into two groups� one

for each CPU
 Here we assume that documents D�� D� are assigned to CPU �� and

D�� D� to CPU �
 Within each partition we again build inverted lists
 The lists are

then uniformly dispersed among the disks attached to the CPUs
 For example� for

CPU �� the list for a is on d�� the list for b is on d�� and so on

The I�O bus index organization follows the same partitioning principal as the

other index organizations� except at the I�O bus level
 Documents are partitioned

into two groups� one for each I�O bus
 Within each partition inverted lists are built

and uniformly dispersed among the disks attached to the I�O buses
 In our example�

this organization results in the same as the host index organization since each host

has exactly one I�O bus
 If a host has more than one I�O bus� then the host index

organizations and I�O bus index organizations would di�er

����� Query processing

Query processing under each index organization is quite di�erent
 For example� con	

sider the query �Find documents with words a� c�� and say the query initially arrives

at CPU �
 Under the system index organization� CPU � would have to fetch the list

for a� while CPU � would fetch the c list
 CPU � would send its list to CPU �� which

would intersect the lists
 With the host index organization� each CPU would �nd the

matching documents within its partition
 Thus� CPU � would get its a and c lists and

intersect them
 CPU � would do likewise
 CPU � would send its resulting document

list to CPU �� which would merge the results
 With the disk index organization� CPU

� would retrieve the a and c lists from disk d�� and would also retrieve the a� c lists

from disk d�
 CPU � would obtain two lists of matching documents �one for each

CHAPTER �� INTRODUCTION �

disk�� would merge them� and then merge the combined list with the list from CPU

�

There are many interesting trade	o�s among these storage organizations
 With

the system index organization� there are fewer I�Os
 That is� the a list is stored in

a single place on disk
 To read it� the CPU can initiate a single I�O� the disk head

moves to the location� and the list is read
 �this may involve the transfer of multiple

blocks�
 In the disk index organization� on the other hand� the a list is actually

stored on four di�erent disks
 To read these list fragments� � I�Os must be initiated�

four heads must move� and four transfers occur
 However� each of the transfers is

roughly a fourth of the size� and they can take place in parallel
 So� even though we

are consuming more resources �more CPU cycles to start more I�Os� and more disk

seeks�� the list may

The system index organization may save disk resources� but it consumes more

resources at the network level
 Notice that in our example� the entire c list is trans	

ferred from CPU � to CPU �� and these inverted lists are usually much longer than

the document lists exchanged under the other schemes
 However� the long inverted

list transfers do not occur in all cases
 For example� the query �Find documents

with a and b� �system index organization� does not involve any such transfers since

all lists involved are within one computer
 Also� it is possible to reduce the size

of the transmitted inverted lists by moving the shortest list
 For example� in our

�Find documents with a and c�� we can move the shorter list of a and c to the other

computer

The performance of each strategy depends on many factors� including the expected

type of queries� the optimizations used for each query processing algorithm� whether

throughput or response time is the goal� the resources available �e
g
� how fast is

the network� how fast are disk seeks�
 In this thesis� we discuss the options for

index organization and parallel query processing
 We also present results of detailed

CHAPTER �� INTRODUCTION �

simulations and attempt to answer some of the key performance questions
 Under

what conditions are each index organization better� How does each index organization

scale up to large systems �more documents� more processors�� What is the impact of

key parameters� For instance� how would a system with optical disks function� How

well do the algorithms and hardware scale as the database size grows� As mentioned

above� current data collections are growing rapidly� and it is unclear what index

organization scales best� or whether it is more important to add disk or processor

or communication resources as the database grows
 What is the impact of caching

inverted lists in main memory� Is there enough locality of reference between queries

to make caching worthwhile�

��� Incremental Updates

Traditional information retrieval systems� of the type used by libraries �e
g
� Stanford

University�s Socrates or the University of California�s MELVYL� or information ven	

dors �e
g
� Dialog Inc
 or Mead Data Central Inc
�� assume a relatively static body of

documents
 Given a body of documents� these systems build the inverted list index

from scratch� laying out each list sequentially and contiguously to others on disk

They also built a B	tree that maps each word to the locations of its list on disk

Periodically� e
g
� every weekend� new documents are added to the database and a

brand new index is built
 Rebuilding the index is a massive operation� but its cost is

amortized over multiple days of operation

In many of today�s environments� such full index reconstruction is infeasible
 One

reason is that text document databases are more dynamic
 For instance� if one is

indexing news articles� electronic mail� or stock information� the latest information is

required
 Thus� one would like to update the index in place� as new documents arrive

Updating the index for each individual arriving document is ine�cient� as we discuss

CHAPTER �� INTRODUCTION �

in Chapter �
 Instead� the goal is to batch together small numbers of documents

for each in	place index update
 To maintain access to the batch� it can be searched

simultaneously with the larger index

A second reason why in	place updates are of interest is that they eliminate �or at

least postpone� resource consuming reorganizations
 Massive reorganizations may be

acceptable in conventional systems where user load is minimal over weekends� but in

today�s world of � days a week� �� hours a day continuous operation� degradation of

service for prolonged periods is unacceptable

A third reason why in	place updates may be desirable is that the index may

simply be too massive for reorganization
 As the volume of documents grows in some

applications� it may be better to have a dynamic index that can grow and migrate to

new disk drives without ever being fully reorganized

In spite of the natural attractiveness of in	place index updates� little is known

about their implementation options or their performance
 As far as we know� systems

that implement in	place updates typically use relatively naive strategies that may be

ine�cient
 For example� any time a Wide Area Information Server �WAIS�
KMD����

index needs to grow an inverted list� it copies the whole list to a new disk area� leaving

no free space at the end for future updates
 Perhaps it would be more e�ective to

leave some space� and to make additions that �t in that space� If multiple disks

are available� can we stripe large lists across multiple disks to improve performance�

Inverted lists vary tremendously in size� the ones for frequently occurring words can

be huge� but there may be many that have only a few postings
 What is the most

e�ective layout of these lists to make their updates e�cient� Which layouts lead to

less disk space utilization� To better query performance�

Although we do not answer all these questions fully� this thesis makes the following

contributions

� A new dynamic dual	structure data structure for inverted lists
 Lists are initially

CHAPTER �� INTRODUCTION �

stored in a �short list� data structure� as they grow they migrate to a �long list�

data structure
 Our proposed algorithm selects lists to migrate dynamically

� A family of disk allocation policies for long lists
 Each policy dictates� among

other things� where to �nd space for a growing list� whether to try to grow a

list in place or to migrate all or parts of it� how much free space to leave at the

end of a list� and how to partition a list across disks

� A detailed performance evaluation of the dual	structure lists and the various

allocation policies
 The evaluation is based on a collection of �� days worth

of NetNews that are indexed according to our algorithms
 Our experimental

system generates the exact sequence of disk block updates that each policy

produces� this sequence is then executed on an IBMRisc System ���� Model ���

computer with � disks to measure the update time
 Based on the resulting disk

layout� we also compute disk space utilization and estimate query performance

We do not consider fault tolerance
 We assume that the hardware is reliable

However� to be fair in estimating and comparing the I�O costs of various policies� we

periodically �ush to disk all the data and directory information for each policy
 In

addition� the algorithms and data structures are constructed so that the incremental

update of the index can be restarted if it is aborted
 Fault tolerance is an important

area for future research

Finally� we construct an implementation of the update algorithms of Chapter �

Our implementation is termed an alternative storage technology �AST�
 The imple	

mentation modi�es the underlying storage technology of an implementation of the

information retrieval system WAIS
KMD���� known as freeWAIS
FRE���
 The

modi�cations retain the document parsing part of WAIS and replace the inverted

index of WAIS with our data structures and algorithms
 From the point of view of a

user of WAIS� the two implementations are identical since they return the exact same

CHAPTER �� INTRODUCTION �

set of answers and the answers take essentially �if the correct update policy is used�

the same amount of time to compute
 From the point of view of an administrator of

a WAIS database� AST provides �exibility of update algorithms

��� Thesis Organization

Chapter � reviews previous work
 In Chapter �� we study full	text retrieval using

an analytic workload model
 Section �
� describes our hardware scenario� query

processing algorithms� and physical index organization in more detail
 To study

performance we need to model various key components such as the inverted lists� the

queries� and the answer sets
 Although there has been much work on information

retrieval systems� models that are appropriate for studying parallel query execution

have not been developed
 Section �
� de�nes simplemodels for these and other critical

components� Section �
� describes the simulation� and Section �
� presents our results

and comparisons
 Part of the work in this chapter also appears in reference
TGM��b�

Chapter � studies an abstracts database as opposed to a full	text system
 In a

full	text system� every word occurrence is indexed
 In an abstracts system� only the

abstract is indexed
 If we compare two systems with the same number of documents�

the index in the full	text case will be much larger
 Even if the volume of raw data

is equal the inverted lists for the abstracts case will still be smaller because repeated

words are indexed in the full	text case only
 For instance� if a word appears �� times

in a document� there will be �� index entries �pointing to each occurrence� in the

full	text case� and only one entry in the abstracts case
 As we will see� the fact that

inverted lists are shorter for abstracts dramatically changes the relative performance

of the various organizations
 Part of the work in this chapter also appears in reference

TGM��a�

CHAPTER �� INTRODUCTION ��

Our evaluation in Chapter � is based on query traces from the FOLIO library in	

formation retrieval system at Stanford University� run against a detailed event	driven

simulation of the hardware and query processing
 This study represents the �rst time

that an actual user query trace drives the evaluation of a distributed architecture in

information retrieval
 Furthermore� the traces also give the result sizes� so we can use

that in our simulation
 In Chapter �� we model queries probabilistically� assuming

query terms were picked at random from a vocabulary
 This model gives us �exibility

and a rapid method for preliminary results
 Clearly� using traces yields more realistic

results at the expense of �exibility and speed in determining results
 It also lets us

study caching issues

In Chapter �� we describe the dynamic dual	structure for inverted lists
 We de	

scribe a model for the various allocation policies of inverted lists that reside on disk

and evaluate these policies in an experimental design
 Part of the work in this chapter

also appears in reference
TGMS���
 In addition� we have extrapolated our results

to larger synthetic text document databases and describe the results in reference

TGMS���

In Chapter �� we describe our implementation of an information retrieval system

The implementation is based on modi�cations to an existing information retrieval

system
 Our modi�cations are based on our work in Chapter �
 We compare the two

implementations for various scenarios and show that incremental updates are faster

than the other implementation

Chapter �

Previous Work

For an introduction to full	text document retrieval and information retrieval systems�

the reader is referred to reference
Sal���
 An information retrieval model �IRM�

de�nes the interaction with an information retrieval system and consists of three

parts� a document representation� a user need and a matching function
 For this

thesis� we consider the boolean IRM and the vector IRM

The boolean IRM is provided by most existing commercial information retrieval

systems
 Its document representation is the set of words that appear in each docu	

ment
 Typically� each word is also typed to indicate if it appears in the title� abstract�

or some other �eld of the document
 The boolean IRM user need is represented by a

boolean query
 A query consists of a collection of pairs of words and types structured

with boolean operators
 For example the query title information and title retrieval

or abstract inverted contains three pairs and two operators
 The matching function

of a query in the boolean IRM is boolean satis�ability of a document representation

with respect to the query

The vector IRM is popular in academic prototypes for information retrieval sys	

tems and has recently gained commercial acceptance
 Its document representation is

the set of words that appear in each document and an associated weight with each

��

CHAPTER �� PREVIOUS WORK ��

word
 The weight indicates the �relevance� of the corresponding word to the doc	

ument
 Thus� a document is represented as a vector
 A vector IRM user need is

represented by another vector �this vector can be extracted from a document or a set

of words provided by a user�
 The matching function computes the similarity between

the user need and the documents
 Thus� all the documents can be ranked with re	

spect to the similarity
 Typically� the topmost similar documents are returned to the

user as an answer
 There is much research on the assignment of weights to words and

on the e�ectiveness of various matching functions for information retrieval
 However�

both the boolean IRM and the vector IRM and associated variation of these models

can be computed e�ciently with inverted lists
 Reference
TC��� surveys information

retrieval models

The focus of information retrieval research is to develop IRMs that provide the

most e�ective interaction with the user
 Our focus is to provide the most e�cient

interaction with the user in terms of response time� throughput and other measures�

regardless of which IRM is used

In the design of full	text document retrieval systems� there is a basic trade	o�

between the time to process the document database and the time to process queries

Broadly speaking� the more time spent processing the document database �i
e
 build	

ing indexes� the less time is spent processing queries
 In some scenarios �such as gov	

ernment monitoring of communication�� a tremendous amount of information must

be queried by only a few queries
 In this case� time spent indexing is wasted and

linear searching of documents is more e�cient
 Work in this area concentrates on

hardware processors for speeding up the scanning of text
Hol���
 More typically�

indexing the documents is worthwhile because the cost can be amortized across many

queries
 We consider only these latter systems in this thesis

Emrath�s thesis
Emr��� explores this trade	o� between query and update time by

providing a data structure that can be tuned in the amount of information indexed

CHAPTER �� PREVIOUS WORK ��

Essentially� the database is partitioned into equal sized �pages
� A page is a �xed

number of words located together in a document
 Duplicate occurrences of words

are dropped within a page
 If the page is large� many duplicates are dropped from

the index� speeding up indexing time
 If the page is small� few duplicate words are

dropped� slowing down indexing time
 For certain applications this tuning of the

data structure works well �we use this technique in a simple form in Chapter ��
 We

explore the trade	o� between query and update time in Chapter �

Much research has gone into designing data structures for indexing text
 Faloutsos

Fal��� is a survey of this issue
 One approach is the use of signature schemes �also

known as superimposed coding�
Knu���
 Here� each word is assigned a random

�hashed� k	bit code of an n	bit vector � for example the word �information� might

correspond to bit positions �� and �� of a � kilobyte vector
 Each document is

represented by an n	bit vector containing the union of all the k	bit codes of all the

words in the document
 Queries are constructed by producing an n	bit vector of the

k	bit codes of the words in the query
 Matching is performed by comparing a query

against the document vectors in the database
 This scheme is because the signatures

of documents can be constructed in linear time
 Unfortunately� the matching process

produces �false drops� where di�erent words or combinations of words are mapped

into the same k	bit codes
 One approach is to ignore false drops and inform the

user that some additional documents may be returned
 We do not consider this

approach further
 Otherwise� each document in the result of the matching process

must be checked for false drops
 While the number of false drops can be statistically

controlled for the average case� the worst	case behavior of this data structure implies

checking every document in the database for some queries� which is prohibitively

expensive for large document collections
 Lin
Lin��� describes a signature scheme

where multiple independent signatures are used to control false drops and to improve

parallel performance
 In this thesis we always insure that queries can be answered

CHAPTER �� PREVIOUS WORK ��

without examining the text of any documents

Another data structure is PATRICIA trees and PAT arrays
FBY��� GBYS���

Here� the database is represented as one database string by placing documents end	

to	end
 A tree is constructed that indexes the semi	in�nite strings of the database

string
 A semi	in�nite string is a substring of the database string starting at some

point and proceeding until it is a unique substring
 This data structure has been used

in practice for the constructed of the New Oxford English Dictionary
 The query time�

indexing time� and storage e�ciency are approximately the same as inverted lists
 The

techniques described in this thesis can be applied to this data structure

For commercial full	text retrieval systems� inverted �les or inverted indexes
Fed���

Knu��� are typically used
 An example of inverted lists is provided in Chapter �
 Note

that the information represented in each posting �each element of an inverted list�

varies depending on the type of information retrieval system
 For a boolean IRM

full	text information retrieval system� the posting contains the document identi�er

and the position �as a byte o�set or word o�set from the beginning of the document�

of the corresponding word
 For a boolean IRM abstracts text information retrieval

system� the posting contains the document identi�er without a positional o�set �since

duplicate occurrences of a word in a document are not represented in these systems�

For a vector IRM full	text or abstracts information retrieval systems the posting

contains the document identi�er and a weight
 All of the above systems can be

typed
 In this case� the type system can be encoded by setting aside extra bits in each

posting to indicate which �elds the word appears in the document
 Other methods of

representing the type information are also used
 As the information retrieval model

becomes more complicated� more information is typically placed in each posting
 We

accommodate various sizes of inverted lists in our models

The inverted index for a full	text information retrieval system is very large �

typically equal in size to the raw text
 The original documents �minus punctuation�

CHAPTER �� PREVIOUS WORK ��

can be reconstructed from the inverted index
 Inverted lists are a prime candidate

for compression
Wei��� ZMSD���
 We accommodate compression of inverted lists in

our models and study the impact of various compression ratios on the performance

of query processing

In reference
BCCM���� several experiments are reported on the performance of

an information retrieval system built on top of a persistent object store
 The IRM

for this system is a probabilistic one based on Bayesian inference
 Essentially� a stan	

dard B�	tree implementation is compared to a persistent object store
 Performance

improvement is due to the caching of objects
 We study the caching issue in detail in

Chapter �

A general interest in the performance of text document retrieval systems has led

to a standardization e�ort for benchmarking of commercial systems
DeF���
 This

standardization was developed independently of this thesis and o�ers another model

for the generation of a query workload
 This model is complementary to the analytic

model of Chapter �� the trace	based model of Chapter �� and the synthetic model of

Chapter �

��� Distributed Query Processing

Various distributed and parallel hardware architectures can be applied to the prob	

lem of information retrieval
 A series of papers by Stan�ll studies this problem for

a Connection Machine
 In reference
SK���� signature schemes are used
 A com	

panion paper by Stone
Sto��� argues that inverted lists on a single processor are

more e�cient
 In reference
STW���� inverted lists are used to support parallel query

processing
 The algorithm presented there is similar to our system index organiza	

tion in that keywords are assigned to processors
 Finally� in reference
Sta���� an

improvement of the previous paper based on the physical organization of inverted

CHAPTER �� PREVIOUS WORK ��

lists is described
 The improvement essentially improves the alignment of processors

to data

An implementation of vector IRM full	text information retrieval is described in

reference
AS��� for the POOMA machine
 The POOMA machine is a ���	node�

�	d mesh communication network where each node has �� MB of memory and a

processor
 One out of �ve nodes has an ethernet connection and one half of the

nodes have a local disk
 The implementation partitions the documents among the

processors and builds a local inverted index of the partition
 This approach is similar

to the disk index organization of this thesis� however there are two processors per

disk
 In our architecture processors never outnumber disks
 This paper cites a �
���

second estimated query response time for a ���	term query on a database of �������

documents with a ��	node machine

Some preliminary experimental results are reported in reference
CEMW��� for

a �� processor farm �Meiko Computing Surface�
 The vector IRM is used here and

a signature scheme is used as the data structure
 Unfortunately� the database has

only ����� documents and the query workload only �� queries
 This experimental

framework is too small to produce reliable results

The performance of some aspects of query and update processing of an implemen	

tation of a boolean IRM full	text information retrieval is discussed in reference
DH���

for a symmetric shared	memory multiprocessor �Sequent�
 We use some of the �gures

cited in this paper� such as the number of instructions in the inner loop of an inverted

list intersection algorithm� as a bases for some parameter values in our experimental

work
 The physical index organization of this paper corresponds to the host index

organization of this thesis
 In addition� we use statistics published in reference
CD���

as the basis for our analytic model of Chapter �

The work on document retrieval in multiprocessor shared	memory systems consid	

ers physical index organization issues for those architectures
 While some issues for

CHAPTER �� PREVIOUS WORK ��

these systems are not considered here� the issue of physical organization is an impor	

tant one and that the prefetch algorithms presented in Chapter � probably perform

well on shared	memory architectures

In the analysis of query processing� a query can be divided into three parts� parsing

the query� matching the query against the database� and retrieving the documents

in the answer
 Parsing consumes few resources and is typically the same for all

information retrieval systems
 Retrieving of documents o�ers some interesting issues

�such as placement of the documents� but again few resources are needed
 We do not

consider parsing or document retrieval in this thesis
 Burkowski
Bur��� examines

the performance problem of the interaction between query processing and document

retrieval and studies the issue of the physical organization of documents and indices

His paper models queries and documents analytically and simulates a collection of

servers on a local	area network� as we do in Chapter �
 Our work is complementary

to this paper

In reference
JO���� independently from our work� an analytic comparison of

the disk index organization and system index organization is described for share	

everything multiprocessors
 There are several di�erences between this paper and the

work in Chapter �
 One issue is the modeling of the B	tree look up� which maps

each word in a query to its associated inverted list
 The modeling of this paper an	

alytically computes the disk cost of this lookup� whereas in this thesis we assume

that the lookup is an in	memory operation
 This di�erence can account for a dif	

ference of about � I�O operation per query word
 A second di�erence is the skew

in the distribution of query terms
 Reference
JO��� assumes the skew is the same

as the occurrence of words in documents
 In some special situations in information

retrieval� where documents are used as queries in the vector IRM� this assumption

is valid
 However� it does not apply in general to vector or boolean IRMs
 A third

di�erence is the distribution of words in documents
 The referenced paper assumes

CHAPTER �� PREVIOUS WORK ��

a uniform distribution� even the authors admit this assumption is simplistic
 We

measure the distribution of terms directly in Chapter �
 Finally� this paper models

the document fetching stage of processing a query� which we do not consider

The reference
MMN��� presents a discussion of the architecture issues in im	

plementing the IBM STAIRS information retrieval system on a network of personal

computers
 The index organization is the host index organization
 However� this

paper argues for the physical distribution of inverted lists across multiple machines

when the size of a single database is larger than the storage capacity of a node on

the network
 This idea is essentially a special case of striping of inverted lists
 We

consider striping in detail in Chapter �

Schatz
Sch��� describes the implementation of a distributed information retrieval

system
 Here� performance improvements come from changing the behavior of the

interface to reduce network tra�c between the client interface and the backend in	

formation retrieval system
 These ideas are complementary to this thesis
 Three

improvements are o�ered
 First� summaries of documents �or the �rst page� are re	

trieved instead of entire documents
 This scheme reduces the amount of network

tra�c to answer an initial query and shortens the time to present the �rst result

of a query� but lengthens the time to present the entire answer
 Second� �related�

information such as document structure de�nitions are cached to speed up user navi	

gation through a set of documents
 Third� the contents of documents �as opposed to

summaries� are prefetched while the user interface is idle

��� Incremental Updates

Cutting and Pedersen
CP��� consider incremental updates of inverted lists where a

B	tree is used to organize the vocabulary
 Updates are optimized by storing short

inverted lists directly in the B	tree
 In our framework� this optimization can be

CHAPTER �� PREVIOUS WORK ��

represented by a very small bucket for approximately each word in the text document

database
 However� using fewer� larger� buckets o�er better performance
TGMS���

In addition� our scheme dynamically determines if an inverted list is stored in a �xed	

size structure or a variable length one as opposed to a static division
 Cutting and

Pedersen also described a buddy system for the allocation of long lists
 This approach

deserves further experimental study

Faloutsos and Jagadish
FJ��b� analyze the physical organization of long list

They study three methods that correspond to some schemes presented in Chapter �

Performance comparisons between our work and the schemes presented there are

di�cult since updates are not batched in that paper

In another work� Faloutsos and Jagadish
FJ��a� extensively analyze a dual	

structure scheme based on signature schemes for long lists and inverted lists for short

lists
 The division in the structure is static as opposed to a dynamic scheme presented

here
 In addition� using inverted lists for short lists is computationally expensive since

many I�O operations� each containing only a few postings� are required to update this

structure

Zobel� Mo�at and Sacks	Davis
ZMSD��� consider several issues in inverted �le

indexing
 The compression methods presented there complement this thesis
 They

also consider �xed	size buckets for storing inverted lists but do not discuss techniques

for handling long lists
 To compare approaches� a linear scaling of the �� minutes

update time of ��� MB of documents cited in the paper to the ��� MB text document

database used here gives an update time of about ��� minutes
 Halving this number to

��� minutes accounts for improvements in processor performance
 Our study predicts

a range of index build times from about �� minutes to ��� minutes depending on the

policy used

Fox and Lee
FBY��� describe an interesting and entirely di�erent approach based

on preprocessing of document representations and a merge update of inverted lists

CHAPTER �� PREVIOUS WORK ��

A non	incremental update time of � minute �� seconds for �
�� MB of documents

appears in this article
 Harman and Candela
HC��� also describe an update method

and cite an indexing time of ��� hours for ��� MB of documents on a computer

with six Intel ����� processors
 Finally� our own measurements for freeWAIS version

�
��� on a DEC ���� Model ��� ��� MB memory� with an external disk �Western

Scienti�c� on a SCSI	I bus shows that to index ��
� MB of our experimental text

document database requires ��
� minutes using ULTRIX V�
�A �Rev
 ��� operating

system

Chapter �

Distributed Queries � Analytic

Workload

In this chapter we study full	text information retrieval
 Section �
� describes our

de�nitions and framework
 Section �
� describes analytic workload� an inverted list

model based on experimental data� and a probabilistic model of query processing

Section �
� describes the simulation of query processing and hardware
 Section �
�

describes the results

��� De�nitions and Framework

Documents contain words
 The set of all words occurring in the database is the

vocabulary
 For convenience� we name words by their occurrence rank� e
g
� word �

is the most frequently occurring word� word � is the next most frequent� and so on

In the example of Figure �� the vocabulary is f a� b� c� d g� word � is a� word � is b�

etc
 We use the word and the rank of the word interchangeably

A query retrieves documents satisfying a given property
 In this chapter� we

concentrate on �boolean and� queries of the form a�b�c � � �� which �nd the documents

��

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

Parameter Value Description

Hosts � Number of Hosts

I�OBusesPerHost � Number of Controllers and I�O Buses per Host

DisksPerI�OBus � Number of Disks for each I�O bus

Table �� Hardware con�guration parameter values and de�nitions

containing all the listed words
 The words appearing in a query are termed keywords

Given a query a � b � � � the document retrieval system generates the answer set for

the document identi�ers of all the documents that match the query
 A match is a

document that contains the words appearing in the query

We focus on boolean	and queries because they are the most primitive ones
 For

instance� a more complex search such as �a � b� OR �c � d� can be modeled as two

simple and	queries whose answer sets are merged
 A distance query �Find a and b

occurring within x positions� can be modeled by the query a�b followed by comparing

the positions of the occurrences

Hardware Con�guration We consider hardware organizations like the one in Fig	

ure � but we vary the number of CPUs or hosts� the number of I�O controllers per

host� and the number of disks per controller
 Table � lists the parameters that deter	

mine a con�guration
 The column �Value� in the table refers to the �base case� used

in our simulation experiments �Section �
��
 That is� our experiments start from a

representative con�guration and explores the impact of changing the values
 The base

case does not represent any particular real system� it is simply a convenient starting

place

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

Physical Index Organization The inverted index can be partitioned and frag	

mented in many ways
 We study a single natural division by hardware
 This di	

vision does not require any unusual hardware or operating system features
 The

documents are uniformly distributed across all disks d in the system� d � Hosts �

I�OBusesPerHost �DisksPerI�OBus
 The disks are numbered from � to d � � as

in Figure �

The inverted index organization is compared for four mutually exclusive cases

In the disk index organization� an inverted index is constructed for all words in the

documents residing on each disk
 Thus� for a given word� there are d inverted lists

containing that word
 In the I�O bus index organization� an inverted index is con	

structed for all the documents on the disks attached to the same I�O bus
 In the

host index organization� an index is constructed for all the documents on a single

host
 Lists are distributed by host in a similar manner
 Finally� in the system index

organization a single index is constructed for all documents
 Table � illustrated these

index organizations� but note that in that example the I�O bus and host index or	

ganizations are identical because hosts have a single I�O bus
 The same amount of

data is stored in the system regardless of the index organizations and for any query

the same amount of data is read from disk

In any of the organizations� if an index spans x disks� we assume the lists are

dispersed over the x disks
 In particular� the list for word w is placed on the disk

i� �w mod x�� where i is the �rst disk in the group
 For example� for the host index

organization in Table �� one of the indices spans disks d�� d�� the second spans d��

d�
 For the second index� the list for a �word �� goes to d�� the list for b �word ��

goes to d�� the list for c �word �� goes to d�� and so on

Algorithms For all con�gurations except the system one� queries are processed as

follows
 The query a � b��� is initially processed at a home site
 That site issues

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

subqueries to all hosts� each subquery contains the same keywords as the original

query
 A subquery is processed by a host by reading all the lists involved� intersecting

them� and producing a list of matching documents
 The answer set of a subquery�

termed the partial answer set� is sent to the home host� which concatenates all the

partial answer sets to produce the answer set

In the system index organization� the subquery sent to a given host contains only

the keywords that are handled by that host
 If a host receives a query with a single

keyword� it fetches the corresponding inverted list and returns it to the home host
 If

the subquery contains multiple keywords� the host intersects the corresponding lists�

and sends the result as the partial answer set
 The home host intersects �instead of

concatenates� the partial answer sets to obtain the �nal answer

As mentioned in Chapter �� the algorithm for the system index organization can

be improved
 Here we describe three optimizations� called Prefetch I� II and III

These are heuristics� in some cases they may not actually improve performance

In the Prefetch I algorithm� the home host determines the query keyword k that

has the shortest inverted list
 We assume that hosts have information on keyword

frequencies� if not� Prefetch I is not applicable
 In phase �� the home host sends a

single subquery containing k to the host that handles k
 When the home host receives

the partial answer set� it starts phase �� which is the same as in the un	optimized

algorithm� except that the partial answer set is attached to all subqueries
 Before a

host returns its partial answer set� it intersects it with the partial answer set of the

phase � subquery� which reduces the size of the partial answer sets that are returned

in phase �

The Prefetch II algorithm is similar to Prefetch I� except that in phase � we send

the subquery with the largest number of keywords
 We expect that as the number of

keywords in a subquery increases� its partial answer set decreases in size
 Thus� the

amount of data returned by the one host that processes the phase � subquery should

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

be small
 If two or more subqueries have the same number maximum of keywords�

Prefetch II selects one of them at random

Prefetch III combines the I and II optimizations
 That is� the �rst subquery

contains the largest number of keywords� but if there is a tie� the subquery with the

shortest expected inverted lists is selected
 Intuitively� one would expect Prefetch III

to perform the best
 However� we chose to study all three techniques �Section �
��

to understand what each optimization contributes
 In particular� Prefetch I and

III require statistical information on inverted list sizes
 Our results tell us if it is

worthwhile to keep such information� i
e
� if the improvement of Prefetch III over II�

which does not require this information� is signi�cant

To illustrate these optimizations� consider the query a � b � c � d in the example

of Figure � �system index organization�
 With Prefetch I� the subquery d would be

sent to host CPU � in phase �
 �Of the four keywords� d occurs less frequently in the

database� and it is stored in host CPU �
� In phase �� the subquery a � b would be

sent to CPU �� together with the list for d from phase �
 CPU � would receive the

query c together with the d list
 With Prefetch II� the �rst subquery would be either

a � b �to CPU �� or c � d �to CPU ��� selected at random
 Prefetch III would select

c � d as the �rst subquery because it involves shorter lists

Striping Striping
PGK��� is a method to decrease the response time and increase

the throughput to read an inverted list by allocating the blocks of an inverted list

horizontally across several disks �by using modular arithmetic� and reading the blocks

in parallel
 For example� suppose we have four blocks b�� b�� b�� b� that store an

inverted list for a word z located on the disk d� of three disks d�� d�� d�� In the

normal case� all four blocks would be vertically allocated and would reside on disk

d�
 Striping word z across these three disk places b� on d�� b� on d� �since the blocks

are allocated horizontally�� b� on d� and b� on d�

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

We can stripe an inverted list under any index organization
 In the host index

organization� the inverted list would be striped across all the disks on the host
 In

Table � suppose the inverted list for word a was striped with one entry per block

�This assumption simpli�es the example� in practice� many entries are stored per

block
� For CPU �� the entry �D���� would be on d� and the �D���� would be on d�

Similarly for CPU �� �D���� would be on d� and �D���� would be on d�

In the I�O bus index organization� the inverted list would be striped across all the

disks on the I�O bus
 In the disk index organization� striping has essentially no e�ect�

since there is only one disk for each index so vertical and horizontal block allocation

result in the same physical allocation for any inverted list

In the system index organization� the natural approach would be to stripe across

all the disks
 However� this approach complicates query processing� the blocks of an

inverted list must be fetched from multiple hosts and assembled at some particular

host before processing on that list can continue
 Thus� we choose to stripe a system

index organization inverted list only across the disks on the host that the inverted

list resides
 In Table �� the inverted list for word a in the system index organization

would be striped across all the disks on CPU �
 Thus� d� would hold �D�����D����

and d� would hold �D�����D����
 This method avoids the complications and still

provides the advantage that the inverted list for a word is located in only one host

Striping does not always improve response time for reading an inverted list
 To

understand the circumstances in which striping is an advantage� suppose s is the disk

overhead time for a read and l is the time needed for the read of an inverted list

Ignoring any queuing delays or contention� the response time to read a list from disk

is s � l
 If the list is striped over k disks� the response time ranges roughly from

s� l�k best	case to sk� l worst case when the reads are processed sequentially
 Thus�

under best	case conditions� striping improves response time when s� l�k � s� l
 The

additional work required for a striped read is s�k � ��� which must be kept small to

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

minimize the impact of striping on throughput
 Given the range of values for these

variables in our model� short inverted lists generally do not bene�t from striping

Section �
� reports the e�ect of striping the longer inverted lists for all the index

organizations
 This case is studied by varying the fraction of the vocabulary that

have striped inverted lists

Suppose we added ������� documents to Figure �
 First� in the disk organization�

the lengths of the inverted list for a word a would vary slightly from disk to disk� due

to the variation in the number of times that the word occurs in the documents for each

disk
 �This variation is ignored in this study
� Second� internal fragmentation occurs

for each inverted list for the word a on each disk
 In the host index organization� all

the inverted lists on that host for the word a are collected together and striped across

the disk
 Thus internal fragmentation occurs only at the end of that single inverted

list

The additional internal fragmentation that appears in the disk organization has

a small impact on response time and throughput
 Thus� controlling the number of

striped inverted lists is similar to controlling the number of inverted lists that have a

disk index organization
 As the number of words with striped inverted lists approachs

the entire vocabulary� performance for any index organization should approach the

performance of the disk index organization

��� Models

There are two choices for representing documents and queries in a simulation
 One

is to use a real document base and an actual query trace
 The second is to generate

synthetic databases and queries� from probability distributions that are based on

actual statistics
 Using a particular database and query trace is more realistic� but

limits one to a particular application and domain
 Using synthetic data o�ers more

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

Parameter Value Description

D ������ the number of documents

W ����� words per document

V the set of words appearing in documents�

the vocabulary

T ������� total words in V i
e
 j V j � T

Z�j� Z�j� Pr�word � j�� a probability distribution

Table �� Parameters of the document model

�exibility for studying a wide range of scenarios
 Here we use synthetic data because

it is better for exploring options and tradeo�s
 We study a particular application in

Chapter �

����� Document Model

A document is modeled by the parameters in Table �
 The database is a collection

of D documents
 Conceptually� each document is generated by a sequence of W

independent and identically distributed trials
 Each trial produces one word from

the vocabulary V
 Each word is represented uniquely by an integer w in the range

� � w � T where T � j V j
 The probability distribution Z describes the probability

that any word appears
 For convenience� the distribution is arranged in non	increasing

order of probability i
e
 Z�w� � Z�w � i�� �i � �
 The �Value� column in Table �

represents the base case
 In this case� the values are from a legal document base

described in reference
CD���

To construct a speci�c probability distribution Z of Z� we �t a curve to the

rank�occurrence distribution of the vocabulary of a legal documents database
CD���

and then normalized it to a probability distribution
 Figure � shows the log�log graph

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

Parameter Value Description

K � number of keywords in a query

Q�j� Q�j� Pr�word � j�� a probability distribution

u �� fraction of T �in rank order of V � appearing

in a query

V � the u fraction of V

S V �K set of possible queries
 S � V � � � � � � V �

Table �� Parameters for the query model

of two curves that have been �t to some of the ���� ��� most frequently occurring

words
 The X axis is the distinct words in the database� ranked by the number

of occurrences in non	increasing order
 The Y axis is the number of occurrences of

each word
 A diamond symbol marks the number of occurrences of a word
 The

curve labeled �linear� is the result of �tting a linear equation and the curve labeled

�quadratic� is the �t of a quadratic equation
Wol���

Given the quadratic �t curve� the form of the probability distribution Z is derived

in Appendix A as

Z�j� �
j����������ln j���������e���	���

������� � ���
���

where the denominator is a normalization constant
 Although our distribution is

similar to Zipf�s
Zip���� ours matches the actual distribution better
 See Appendix A

����� Query Model

A query is a sequence of words �w�� � � � � wK� generated from K independent and

identically distributed trials from the probability distribution Q�j�
 See Table � for

a list of the parameters and base values chosen

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1 10 100 1000 10000 100000

n
u
m
b
e
r

o
f

o
c
c
u
r
r
e
n
c
e
s

o
f

a

w
o
r
d

rank of words in order by number of occurrences

occurrences
linear

quadratic

Figure �� Curve �t to vocabulary occurrence data

We now construct a speci�c probability distribution Q
 There is little published

data on this distribution� and there is no agreement on its shape �see reference
DeF���

for a di�erent model�
 It does not follow the same distribution as the vocabulary �Fig	

ure �� because relatively infrequent words are often used in queries� so the uniform

distribution was chosen for Q
 This distribution makes it easy to understand of the

impact of the distribution on performance
 However� we found that the uniform

distribution across the entire vocabulary gave far too much weight to the most infre	

quently occurring words �the tail of Figure ��
 For example� these tail words are often

misspellings that only appear once in the entire database and never appear in queries

Thus� in the Q distribution we cut o� the most infrequent words by introducing a

parameter u that determines the range of the distribution�

Q�k� �

���
��

�
uT

� � k � uT

� otherwise

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

As u decreases� the probability of choosing a word of low rank in a query in	

creases
 Words of low rank occur often in the database
 Thus� the expected number

of documents to match a query increases since each word of the query occurs often

in the database
 Hence� if u is too small� queries tend to have answer sets that are a

large fraction of the database
 On the other hand� if u is too large� answer sets are

unrealistically small
 To estimate a good value for u� in Appendix B we compute the

expected number of documents that match a query of length K for various values of

u
 The Q distribution has two other advantages
 Since the distribution is simple� the

impact of the distribution and consequently the impact of the work load on the system

can be readily understood
 �Section �
�� for example� varies u and shows the impact

on performance
� Secondly� this distribution may favor very long inverted lists since

common words �such as �for�� are part of the distribution
 Thus� this simulation is

a worst	case scenario

Using the parameter values in Table � and Equation �� Figure � show the function

Z for the various values of K and u
 In the base case� the number of keywords in a

query is �� so we examine the graph at the X axis value of �
 The value of u � ����

was chosen as the base value since it indicates about �� documents on the average

are found per query
 In this case the fraction uT of the vocabulary includes ��
��

of the cumulative keyword occurrences in reference
CD���
 Section �
� details the

response time sensitivity to uT of the various index organizations

����� Answer Set Model

At various points in the simulation we need to know the expected size of a query

answer set or partial answer set
 Consider a particular query �or subquery� with

keywords w�� � � � � wK
 Say this query is executed on a body of documents of size

Documents
 Under the system index organization Documents � D where D is

the total number of documents
 But� for the other organizations� Documents is

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

1

10

100

1000

10000

100000

1e+06

2 4 6 8 10 12 14 16 18 20

e
x
p
e
c
t
e
d

n
u
m
b
e
r

o
f

d
o
c
u
m
e
n
t
s

i
n

t
h
e

a
n
s
w
e
r

s
e
t

number of keywords in a query

u = 0.050
u = 0.010
u = 0.007
u = 0.004

Figure �� The Expected Number of Documents in an Answer Set for any Query

the number of documents covered by the index �or indexes� used by the particular

subquery
 The expected number of documents that match the query is

Documents �
�� e�WZ
w��� � � �
�� e�WZ
wK��� ���

The term
�� e�WZ
w��� is the probability that a document contains keyword w�

Equation � is similar to Equation � in Appendix B� except that here we are looking

at a speci�c query instead of averaging over all possible queries

����� Inverted List Model

The inverted list contains a sequence of elements each of which describes a single

appearance of the word
 Each element contains a document identi�er and a word

o�set of the word in the document
 Thus� the inverted index is essentially a one	to	

one mapping to the documents

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

Parameter Value Description

DiskBandwidth ��
� Mbits�sec Bandwidth of the disk

DiskBu� ����� Size of a disk bu�er in bytes

BlockSize ��� Number of bytes per disk block

SeekTime �
� Disk seek	time in ms

Bu�erOverhead �
� Cost to seek one track in ms

I�OBusOverhead �
� Cost of each I�O bus transfer in ms

I�OBusBandwidth ��
� Mbits�sec Bandwidth of the I�O bus

LANOverhead �
� Cost of each LAN transfer in ms

LANBandwidth ��
� Mbits�sec Bandwidth of the LAN

Table �� Hardware parameter values and de�nitions

The expected number of occurrences of a word in a document is Z�w� �W
 Thus�

the expected number of entries of the corresponding inverted list is

Z�w� �W �Documents ���

where Z�w� is the value of Equation � for the word w

��� Simulation

To study the index organizations and query algorithms� we implemented a detailed

event	driven simulation using the DeNet
Liv��� simulation environment
 In this

section we describe important aspects of the simulation
 Tables � and � describe the

base parameters used

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

����� Hardware

The system model consists of several hosts each with a CPU and memory� several

I�O buses per host and several disks per I�O bus
 The hosts are connected by a

local	area network
 See Table � for the parameters and base values that describe the

the hardware con�guration
 The values for the disk and I�O bus portions of this

table are from reference
Che���
 The hosts have parameter values that correspond

to a typical workstation
 Figure � shows an example hardware con�guration

����� Inverted Lists and Answer Sets

In our simulation� we do not generate a synthetic document base a priori
 Instead�

when we require the length of the inverted list for a word w� we use the expected

length of the list
 Thus� the length in disk blocks of an inverted list is

InvertedList�w� � d
�Z�w� �W �Documents � EntrySize � Compress�����

BlockSize
e

where Z�w� �W �Documents is from Equation �� EntrySize is the average number of

bits used to represent an entry in the inverted list� ��� converts from bits to bytes�

BlockSize is a parameter representing the size of a block on disk and Compress mod	

els the e�ciency of the inverted list compression scheme
 This compression scheme

model assumes a linear reduction in the size of the inverted list
 One simple way to

accomplish an approximately linear reduction is use delta encoding
 A list is sorted

the di�erence between an two consecutive entries stored in a packed format
 More

sophisticated compression schemes
ZMSD��� result in better� nonlinear� compression

ratios
 The BlockSize parameter permits studying the e�ect of internal fragmentation

If the inverted list for a word is striped� the predicate

w � Stripe � u � T

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

Parameter Value Description

CPUSpeed � Relative speed of each CPU

Multiprogram � Multiprogramming level per Host

QueryInstr ����� Query start up CPU cost

SubqueryInstr ����� Subquery start up CPU cost

SubqueryLength ���� Base size of subquery message

FetchInstr ���� Disk fetch start up CPU cost

MergeInstr �� Merge CPU cost per byte of a

decompressed inverted list

UnionInstr � Concatenation CPU cost per byte of

an answer set

Decompress �� Decompression CPU cost per byte of

inverted list on disk

AnswerEntry � Bytes to represent an entry in an

answer set

EntrySize �� Bits to represent an inverted list

entry on disk

Compress �
� Compression Ratio

Stripe �
� Fraction of query words that have a

striped inverted list

Table �� Base case parameter values and de�nitions

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

is true
 Thus� if Stripe � ��� then no words have striped lists and if Stripe � ��� all

words �which can appear in a query� have striped lists

To fetch the inverted list for a word w in the unstriped case� one disk fetch corre	

sponds to the read of one invert list and each fetch request has a length determined

by InvertedList�w�
 In the striped case� the total length is the same� but one fetch is

issued for each disk that contains part of the striped list
 In both cases� processing

for the query waits until all the fetches have completed for all the words appearing

in the subquery on a host

The length of an answer set� in bytes� is determined by multiplying Equation �

by the length of an element of an inverted lists� AnswerEntry �see Table ��

����� CPU simulation

The relative weight of all CPU parameters is controlled by the single parameter

CPUSpeed
 Thus� the rate of the CPU can be varied independently of individual

factors contributing to the length of various CPU requests
 The CPU is simulated

by a FCFS in�nite length queue server
 The number of CPU instructions needed by

each request is determined by the type of request

�
 Query start up is determined by QueryInstr�

�
 Subquery start up is determined by SubqueryInstr�

�
 Disk fetch is determined by FetchInstr�

�
 Uncompression and merge of inverted lists is determined by

MergeInstr �
X
w

InvertedList�w��

�
 The union of subquery answer sets is determined by

UnionInstr �AnswerList�w�� � � � � wk��

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

The amount of CPU time required by each request is scaled by CPUSpeed

����� Disk and I�O bus Simulation

A disk services fetch requests from a CPU and sends the results to an I�O bus
 The

disk is a FCFS in�nite length queue
 An I�O bus is simulated by a FCFS in�nite

length queue that services request from disks
 The disk service time for a request

is determined by four factors� the constant seek	time overhead� the track	to	track

seek	time and overhead to load the disk bu�er� the transfer time o� of the disk�

and the time needed to gain access to the I�O bus
 The seek	time overhead for the

read is determined by the parameters SeekTime and includes the average rotational

delay
 Every read has a �xed overhead determined by the the initial seek and the

track	to	track seeks and overheads
 This overhead is modeled by

SeekT ime� �InvertedList�w��DiskBuff� �BufferOverhead

After the simulation of the seek and the seeks between bu�er loads� the disk negoti	

ates access to the bus by sending a BUS REQUEST message to the I�O bus node

The function transmit�x� y� gives the time in milliseconds required to transmit y at

bandwidth x
 If

a � transmit�DiskBandwidth� InvertedList�w��

b � transmit�I�OBusBandwidth� InvertedList�w���� I�OBusOverhead�

then the BUS REQUEST messages is sent after max����� a � b� units of time
 This

model simulates the overlap of the disk loading its track bu�er and the transfer of

data to the I�O bus
 The disk then waits for a BUS GRANTED message
 Then both

the disk and the I�O bus are busy for b units of time
 The disk and I�O bus are then

both freed to service the next request in each respective queue

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

Since an I�O bus services requests one at a time in the order of their arrival� all

the disks attached to an I�O bus compete for access to it
 In the case of a striped

inverted list� the blocks of the inverted list that reside on disks of an I�O bus are read

in parallel but must be transmitted through the I�O bus sequentially
 However� if the

inverted list spans more than one I�O bus� some of the blocks are transmitted to the

host entirely in parallel� since the operations of di�erence I�O buses are independent

����� LAN simulation

The system contains a single LAN that is simulated by a single FCFS in�nite length

queue that services subquery requests and answers Subquery requests have a length

determined by parameter SubQueryLength and any additional answer set appended

to the query �as is the case with the prefetch algorithms�
 Answer sets lengths are

described in Section �
�
�
 The service time for a request is determined by

transmit�LanBandwidth�RequestLength� � LANOverhead

where LanBandwidth is a parameter
 Subquery start up requests contend with answer

set transmission� whereas disk fetch requests do not contend with fetch answers in

I�O bus
 Disk fetch requests are of a short� constant length and consume an insignif	

icant fraction of the I�O bus bandwidth
 However� subquery requests have variable

length and consume a signi�cant fraction of the network bandwidth when partial an	

swer sets are transmitted
 A request with identical source and destination hosts is

not transmitted through the local	area network
 Note that for simplicity� broadcast

messages are not modeled and thus the query algorithms do not use this feature
 In

an implementation� broadcast messages could be used to reduce the cost of transmis	

sion of subqueries by a factor of the number of hosts because the transmission of the

prefetch subquery to each individual host would be replaced by a single broadcast

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

����� Query Simulation

A query� consisting of a set of words� is issued to a host
 The parameterMultiprogram

determines the number of simultaneous queries per host in the simulation
 The host

processes the query with the following steps

�
 A CPU burst computes query parsing and start	up

�
 Subqueries are sent to some or all hosts

�
 The process blocks and waits for the subqueries to �nish

�
 A CPU burst merges the results of the subqueries

Subqueries are transmitted to hosts by inserting the subquery in the LAN queue

When a subquery arrives at a host� it is processed by the following steps

�
 A CPU burst starts	up the parses the subquery

�
 A fetch request is issues for an inverted list to one or more disks for each word

in the subquery

�
 The subquery blocks and waits for the fetches to �nish

�
 A CPU burst computes the intersection of the fetched inverted lists

�
 The answer set is sent back to the query

The answer is transmitted to the host cpu by inserting it in the LAN queue

����� Simulation

The simulation tracks the system response time and when the con�dence interval

is less than Con�denceInterval for a con�dence level of Con�denceLevel of this value

over batches of size BatchSize� the simulation terminates
 Otherwise� the simulation

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

Parameter Value Description

SimulateTime ������ Maximum time of an experiment

Con�denceInter �� The size of the con�dence interval

Con�denceLevel ��� The con�dence level used with the

t statistic

BatchSize ��� The batch size of response time values

Table �� Simulation parameter values and de�nitions

Index Organization
Metric Disk I�O bus Host System P I P II P III

query response time �sec� ���� ���� ���� 	�
	 ���
 ���	 ��		
response time error �sec� ����� ����� ���	� ��
�� ����� ��

 ��
	�
throughput �query�sec� ��
� ���� ���� ��	�
��

���
���

disk utilization ��� 	
�� �
�� ���
 �
�� ���� ���
 �
��
I�O bus utilization ��� �	�� �	��
��� ����
��� �	��
���

CPU utilization ��� �
��
��� �	�	 ����
���
���
���
LAN utilization ��� �
�
 ���� ���
 ���� ���� �
�� ����

Table �� Results of all metrics for the base case simulation experiment �P I is Prefetch

I� P II is Prefetch II and P III is Prefetch III�

terminates after SimulateTime
 The values of these variables are shown in Table �

This method of terminating the simulation usually shortens the time taken for any

simulation run
 These features are provided by the DeNet simulation programming

language

��� Simulation Results

Table � presents the data collected from a simulation run on the base case �Tables �

� ��
 The metrics of query processing response time� the error in response time ����

con�dence interval�� query throughput� disk� I�O bus� CPU and LAN utilization were

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

monitored for every simulation experiment
 The amount of error in the response time

was controlled to prevent misinterpretation of results
 To avoid clutter� we omitted

error bars on the graphs

The table reveals that the disk� I�O bus� and host index organizations have com	

parable performance
 Of the three� the disk organization performs somewhat worse

because it has the highest disk utilization� leading to longer I�O delays
 The I�O bus

index organization has the best response time and throughput in this case
 However�

the host organization has the most balanced use of resources which leads to better

performance under more stressful scenarios

The system index organization� as well as the prefetch optimizations� perform

poorly
 The main reason why this index organization �without prefetch� does so

poorly is that it saturates the LAN by transmitting many long inverted lists
 The

prefetch organizations reduce the amount of data sent over the LAN� and indeed

the LAN utilization is much lower in these cases �see Table ��
 Thus� the prefetch

strategies perform substantially better than the simple system index organization

The saturation of the LAN depends heavily on the ratio of the bandwidth of the LAN

to the average length of an inverted list
 Other work
TGM��a� describes scenarios

where the prefetch index organizations perform better than the disk� I�O bus� or host

index organizations

However� the prefetch strategies still perform substantially worse than the disk�

I�O bus� and host organizations
 The main reason is that there is less parallelism

in the prefetch strategies than in the others
 The �rst phase of the prefetch requires

waiting for one part of the query to be completed
 Furthermore� since lists are not split

across disks� it takes longer to read them
 These delays lead to lower throughputs in

our closed systemmodel
 That is� in our model� each computer runs a �xed number of

queries
 If they take longer to complete� less work is done overall
 The main advantage

of the prefetch strategies is that less work is done per query �i
e
� fewer disk seeks�

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

0

2000

4000

6000

8000

10000

12000

5000 10000 15000 20000 25000 30000 35000 40000

q
u
e
r
y

r
e
s
p
o
n
s
e

t
i
m
e

(
m
s
)

maximum keyword rank

disk
I/O bus

host
system

prefetch I

Figure �� The sensitivity of response time to the maximum query keyword rank

I�O starts�
 However� in this scenario� these resources are not at a premium� so the

advantages of prefetch do not show

To our surprise� prefetch II and III actually preform essentially the same as

prefetch I �see Table ��
 Section �
� predicted that prefetch II and III would re	

duce the amount of data sent over the LAN� which is true as shown by the LAN

utilization
 However� the additional work done in phase one of prefetch II and III is

preformed sequentially with respect to the rest of the processing of the query� leading

to longer response times
 Thus� only in cases where the LAN is a bottleneck would

prefetch II and III pay o�
 So we show only the prefetch I results

We now study how some of the key parameters a�ect the relative preformance of

the index organizations
 �We report only the more interesting results� many more

experiments were performed than what can be reported here
� Figure � shows the

sensitivity of response time to the value of uT
 In this �gure and in the rest of the

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100

q
u
e
r
y

r
e
s
p
o
n
s
e

t
i
m
e

(
m
s
)

disk seek time (ms)

disk
I/O bus

host
system

prefetch I

Figure �� The sensitivity of response time to seek	time

thesis� we connect our data points by lines as a visual aid to the reader
 Recall

that T is the size of the vocabulary and u is the fraction of the vocabulary that can

appear in a query
 Each line graphs the behavior of a di�erent index organization

The line labeled prefetch is the prefetch I processing algorithm with a system index

organization
 The response times for each index organization decrease as uT increases

because the number of word occurrences in the database for an average query word

decreases
 That is� as uT decreases� the inverted lists that have to be read increase in

size
 The disk and I�O bus organizations are relatively insensitive to uT because they

distribute lists across many disks� i
e
� the list fragments that need to be read grow

at a slower rate
 The system and prefetch curves are more sensitive to uT because

entire inverted lists are read
 The curve for the host organization is an intermediate

case
 Although not shown here� the e�ect of uT on throughput is similar

A graph of the response time of the various con�gurations vs
 the seek	time of

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

a disk in Figure � shows that the disk and I�O bus index organizations are most

sensitive to the seek	time of the storage device
 The disk index organization must

retrieve for each query more inverted lists than any other organization
 This same

overhead is incurred by the I�O bus index organization to a lesser extent
 The host

index organization is insensitive to seek	time since only a few inverted lists must be

retrieved per query

Figure � indicates some potential for the host and prefetch index organizations if

the storage devices are relatively slow �e
g
 optical disks or a jukebox�
 It is important

to note that our disk seek	time parameter captures the seek	time and other �xed I�O

costs
 For example� to get to the head of the inverted list� the system may have to

go through a B	tree or other data structure
 These additional I�O costs are modeled

in our case by the �seek time
� Furthermore� we are assuming that inverted lists �or

fragments� are read with a single I�O
 For longer lists there may be several I�Os in

practice and hence multiple seeks
 Thus� the higher seeks times shown in Figure �

may occur in practice even without optical devices
 In these cases� the disk and I�O

organizations may not be advisable

Figure � shows the e�ect of the multiprogramming level on throughput for the var	

ious index organizations
 As the multiprogramming level rises� various bottlenecks in

each index organization occur
 Other collected data shows that the disk index organi	

zation has a disk utilization rate of ��
�� for a multiprogramming level of �
 The I�O

bus index organization has a disk utilization of ��
�� for a multiprogramming level of

� that rises to ��
�� at a multiprogramming level of �
 The host index organization

has low disk and CPU utilization at a multiprogramming level of � �about ��
��

and ��
��� and thus has more spare resources to consume as the multiprogramming

level rises
 At a multiprogramming level of �� ���� total simultaneous queries using �

hosts� the disk utilization has risen to over ��
�� and CPU utilization to over ��
��

for this index organization

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35

t
h
r
o
u
g
h
p
u
t

(
q
u
e
r
i
e
s

p
r
o
c
e
s
s
e
d
/
s
e
c
)

multiprogramming level (per host)

disk
I/O bus

host
system

prefetch I

Figure �� The e�ect of the multiprogramming level

The system organization has a LAN bottleneck even a low multiprogramming

loads ���
�� at a multiprogramming level of �� and thus does not improve as the

multiprogramming level increases
 With a multiprogramming load of ��� additional

data shows that the response times for the disk� I�O bus� host� system and prefetch

I index organizations are ��
�� ��
�� ��
�� ��
�� and ��
� seconds

Figure � shows the e�ect of striping on throughput
 The horizontal axis� the

variable Stripe� is the fraction of words that have striped inverted lists
 The number

of words that have striped inverted lists is Stripe�u�T
 Striping �� of the query words

has a dramatic e�ect on the host index organization� giving a roughly ��� increase in

throughput �with a similar decrease in response time�
 The system index organization

shows no improvement due to the LAN bottleneck� however other collected data shows

that with a ��� Mb�sec LAN the system index organizations shows an approximately

��� increase in throughput
 The disk index organization curve is �at indicating

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

0

2

4

6

8

10

12

14

16

0 0.05 0.1 0.15 0.2 0.25

t
h
r
o
u
g
h
p
u
t

(
q
u
e
r
i
e
s

p
r
o
c
e
s
s
e
d
/
s
e
c
)

fraction of query words which are striped

disk
I/O bus

host
system

prefetch I

Figure �� The e�ect of striping

that this organization is independent of striping
 Other collected data shows that if

the horizontal axis is extended� the host and I�O bus index organizations approach

the throughput of the disk index organization as the fraction of striped query words

approaches �
 This graph con�rms the explanation of the e�ect of striping

The e�ect of large partial answer sets is shown clearly in Figure �� which graphs

response time as a function of the number of keywords
 This graph shows a counter	

intuitive result� in some situations� the response time of a query decreases as the

number of keywords in a query increases
 The sharp drop of the disk� I�O bus�

and host lines from one keyword per query to two keywords per query is due to the

reduced size of partial answer sets
 That is� since the base case parameter set has

four hosts� a query containing one keyword under the disk� I�O bus and host index

organizations will transmit ��� of the answer set across the local area network for

these three index organizations
 In the case of a two	word query� again ��� of the

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30

q
u
e
r
y

r
e
s
p
o
n
s
e

t
i
m
e

(
m
s
)

number of keywords per query

disk
I/O bus

host
system

prefetch I

Figure �� The sensitivity of response time to the number of keywords in a query

answer set is transmitted
 However� the total answer set size is much smaller since

each partial answer set is the intersection of two inverted lists
 This e�ect explains the

sharp drop in the response time for these organizations from � to � keywords
 As the

number of keywords increases beyond �� the additional work per keyword dominates

the response time

In the system index organization� the size of the partial answer sets transmitted

depends on the hosts in which the particular words in the query reside
 A subquery

containing a single word has a large partial answer set
 For � keywords� the probability

of a single	word subquery at some host is high� thus leading to a large response

time due to the transmission of these partial answer sets
 At � keywords per query�

the probability of a large partial answer sets is reduced and thus response time is

correspondingly improved
 With more than �� keywords per query the probability of

a large partial answer set is small and the response time for these queries is large due

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

0

2

4

6

8

10

12

14

16

10 20 30 40 50 60 70 80

t
h
r
o
u
g
h
p
u
t

(
q
u
e
r
i
e
s

p
r
o
c
e
s
s
e
d
/
s
e
c
)

disk seek time (hosts = 16, I/O buses per host = 1, LAN bandwidth = 90)

disk
I/O bus

host
system

prefetch I

Figure �� A good hardware con�guration for the prefetch algorithm

to the work required for query processing

After �� keywords per query� prefetch I performs worse that the simple system

organization because the probability of a single word answer set being transmitted

is tiny
 Thus� the additional cost of the prefetch I algorithm is counterproductive

�This discrepancy can be eliminated by switching from the prefetch I algorithm to the

system organization algorithm when the answer set of a subquery is expected to be

small
� However� for small numbers of keywords� the prefetch I algorithm performs

as expected and avoids transmitting large partial answers sets characteristic of the

system level organization

So far� the system organization� with or without prefetch� has performed poorly

To determine under what circumstances a prefetch algorithm performs well� we re	

move the LAN bandwidth bottleneck and increase the number of hosts to �� while

keeping the number of disks and I�O buses constant
 Figure � shows the rise in

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

query throughput as the seek	time increases for this con�guration
 Again� the disk

organization is sensitive to the increase in seek	time for the same reasons as Figure �

The host and I�O bus index organizations are identical since each host has one I�O

bus
 The �gure shows that the large number of hosts makes the these two index

organizations sensitive to seek	time
 The prefetch I algorithm performs well �with a

disk seek	time above �� ms� because an individual query �with � keywords� involves

at most � hosts� which frees the other hosts to process other subqueries
 Given the

arguments for considering disk seek	time as a model of all �xed computation that

consumes disk resources� �� ms is not an unreasonable amount of time for a disk to

be busy per inverted list fetch
 For a disk seek	time of �� ms� the disk� I�O bus� host�

system� and prefetch I response times are ��
�� ��
�� ��
�� ��
�� and ��
� seconds

��� Conclusion

The choice of an index organization depends heavily on the access time of the storage

device and the bandwidth of interprocessor communication
 Somewhat unexpectedly�

as the size of a query increases� its response time may drop� and the fancier prefetch

optimizations are usually counterproductive

In general� our results indicate that the host index organization is a good choice�

especially if long inverted lists are striped
 It uses system resources e�ectively and

can lead to high query throughputs in many cases
 When it does not perform the

best� it is close to the best strategy

Our results also indicate that the system organization� even with the prefetch

organization� is not good unless disk seeks are high and network bandwidth is high

However� four factors that may be unfair to this approach
 We are not modeling

document fetches from disks
 If the documents were stored on the same disks as the

CHAPTER �� DISTRIBUTED QUERIES � ANALYTIC WORKLOAD ��

indexes� then disk utilizations would be higher� which would make the system orga	

nization more attractive since it reduces the I�O load
 Second� we are not modeling

pipelining of prefetching� I�O and CPU processing within a query
 This can reduce

query response time� allow users to abort partially �nished queries� and would be

more bene�cial to the system organization since it deals with longer inverted lists

Third� early termination of the intersection algorithm can reduce response time if the

inverted lists are sorted
 The intersection algorithm can terminate after reading only

a fraction of the inverted lists
 Finally� we use a closed simulation model where larger

response times penalize throughput

Chapter �

Distributed Queries � Trace�based

Workload

This chapter studies distributed queries with a simulation system similar to the previ	

ous chapter
 The workload in this chapter is based on actual user queries
 We extend

the simulation system to handle traces and to study several new issues
 The chapter

discusses the trace data� query processing� the simulation� and various results

��� Trace Data

Stanford University provides on	campus access to its information retrieval system

FOLIO from terminals in libraries and from workstations via telnet
 FOLIO gives ac	

cess to several databases� one of these is INSPEC� an abstracts database for technical

documents in disciplines such as physics� electrical engineering� and computer science

A trace of all user commands for the INSPEC database was collected from ������� to

�������
 In addition� the number of postings of every word in the INSPEC database

inverted index was also collected

Each INSPEC abstract is divided into �elds� such as title and author	 One of these

��

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

�� �������� 	�
��
�� CMD
 fin a citrin and s exafs

�� �������� 	�
��
�� SEA
 CPU
���� Res
�� Find AUTHOR citrin and

SUBJECT exafs

�� �������� 	�
��
�� CMD
 �DISPLAY 	

Figure ��� Some example data from the raw trace
 The �rst column is a unique

integer representing the user login

�elds is abstract	 To avoid confusion between the �eld and the complete record name�

we refer to the complete abstract as the document
 In a query� a user speci�es the

�eld where each word should appear
 This speci�cation is called the �eld designation

An example of the raw trace is shown in Figure ��
 The �rst column is the user

identi�cation�� the second and third columns are the date and time of the command�

and the fourth column speci�es the type of data
 The �rst line of the �gure shows

that user �� issued a query for author citrin and the subject exafs
 The user types

�n as shorthand for �nd� a for author� and s for subject
 The second and third lines

show that six documents are the result for the query in the �rst line
 �The trace

repeats the query here
� The fourth line reports that the result of the query �short

descriptions of each document in this case� where shown to the user

To drive the simulation� only a subset of the raw trace is considered
 Queries that

have terms with no associated inverted list ���
��� �e
g
 misspellings� are ignored

since the FOLIO query parser rejects these queries
 Thus� they have no impact on

performance beyond a small CPU overhead for parsing
 Queries consisting of boolean

AND operations on terms or wild	cards are simulated
 We also simulate queries that

are continuations of previous queries or are subject queries �discussed below�
 We do

not consider �
�� of the queries that are errors in the log� phrase queries� boolean

�To insure privacy� user login identi�cations have been replaced by unique integers�

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

Total Raw Trace Queries ���� ���
� �

Discarded Queries ��� �
� �

Nonexistent Terms ���� ��
� �

Simulation Experiment Queries ���� ��
� �

Table �� Breakdown of raw trace and simulation trace

OR queries� boolean NOT queries� or queries on chemical compounds
 These queries

have little impact on the performance results
 The raw trace contained ���� query

commands
 The remaining queries used to drive the simulation constitute ��� of the

original queries �or ��
�� of the queries not caught as an error by the parser�

One important feature of FOLIO is the designation of the subject �eld in query

matching
 This �eld designation is a syntactic shorthand for matching the union of the

�eld designations abstract� conference� freeterm� document organization� thesaurus�

and title
 Thus� the query �nd subject theory is conceptually a shorthand for the query

�nd abstract theory or conference theory or freeterm theory or document organization

theory or thesaurus theory or title theory
 The subject �eld designation constitutes

��
�� of all �eld designations
 Subject queries are handled by our simulation �see

Section �
��

Two other features of FOLIO handled by our simulation are wild	card matching

and continuation queries
 A wild	card match is a keyword containing a � � that

matches zero or more characters
 The addition of wild	cards can introduce perfor	

mance problems and we discuss a speci�c data structure to handle them in Section �
�

A continuation query adds extra conditions to the current query by using the com	

mand and instead of the command �nd
 For example� the query �nd subject exafs

produces ���� answers
 This query can be re�ned with the continuation query and

author citrin� which produces the same � results as the query �nd author citrin

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

and subject exafs
 The simulation of this feature is discussed in Section �
�

Some statistics of the traces help interpret the results of the simulation
 Table ��

summarizes some properties of the query traces
 The mean number of keywords per

query is less than two and the median is two
 However� each use of the subject �eld

designation is a shorthand for a query with multiple keywords
 The mean size of the

result of a query is large �over seven hundred�� but the median is small at ��
 We

suspect that the queries with large results are immediately re�ned to produce smaller

results

Issuing multiple queries to re�ne an answer set is common in information retrieval

systems
 This query re�nement behavior is an opportunity to cache inverted lists
 Of

all the keywords appearing in the traces� ��
�� of them are duplicate appearances

Thus� if caching every read of an inverted list we would achieve a cache hit ratio of

��
�� over the entire trace
 While this �gure is not a high as those reported in the

�le	system literature� Section �
� shows that caching does have a signi�cant impact

on mean throughput

The INSPEC database holds ��������� documents
 The number of bytes per

document is roughly �����
 The total database size can be �roughly� estimated at �
�

Gigabytes

For the matching of queries� the total of lengths of the inverted lists �i
e
 total

number of postings� read determines the amount of work done in the matching pro	

cess
 We scanned the actual INSPEC inverted lists recording the number of postings

and their �eld designations
 For example� Figure �� shows a sample of the �le con	

taining the number of postings for words with the abstract �eld designation
 Table ��

lists some statistics on the postings for each �eld designation

To drive our simulation� we combine the information from the trace and postings

�les into a single trace �le that is easy to use
 Figure �� shows a sample of this

�le
 For example� the �rst line of the example shows query number �� where user ��

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

Description Value

Total Keywords �����

Number of Subject Field Keywords ����

Percent Subject Field of All Fields ��
�

Number of Wild	Card Keywords ���

Unique Keywords ����

Maximum Cache Hit Percent ��
�

Description Mean Median

Keywords per Query �
�� �

Result Size per Query ���
� ��

Matches per Keyword �����
� ����

Matches per Wild	Card Keyword �����
� ����

Postings per Keyword �����
� ����

Postings per Wild	Card Keyword �����
� �����

Words Matched per Wild	Card Keyword ��
� ��

Table ��� Statistical properties of the simulation trace

Count
 � Key
 CITRENBAUM

Count
 �� Key
 CITRIN

Count
 � Key
 CITRINI

Count
 	 Key
 CITRINOVITCH

Count
 � Key
 CITROEN

Figure ��� The number of postings for a sample set of words which appear in the

author portion of the documents

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

Description Words Postings Mean Median

Abstract �	���� �������� ����� �
Author
��

� ����	�� �
�� �
Classi�cation ��
� �����

 ������

�
Conference ���
� ���
���
���� ��
Free Term
��	
� �	������ 	��	 �
ISBN et� al� ��

� ����	�	 ��
�� ��
Author Org� ����
 	��	��� �
	�� �
Document Org� ���� ������� �����
�
Report ���	 �	

 ��� �
Thesaurus

�� ��
	�
��
�	��
 ��	
Publication �	���
������

��� �
Title ����
� �����
��
��� �

Total ������� ��	��
�	� ����� n�a

Table ��� The inverted indexes and associated statistics
 The mean and median

columns apply to the number of postings per word

issued a query that had � results
 The query referred to the author citrin and the

subject bromine
 The value ������ is a unique value of the keyword citrin and is

used to determine the on which disks the inverted lists reside for the various index

organizations
 The next number� ��� is the number of posting for citrin that have the

author �eld designation
 The �nal number� ��� is the total number of posting entries

for citrin� i
e
� the total number of documents in which citrin appears regardless

of the �eld designation
 The number of postings for a subject �eld designation is the

total of the postings for the constituent parts
 This number is typically much higher

than the number of documents that match because of the duplication of matches in

the various �eld designations
 For this sample trace �le� two cache hits would occur

�one for author citrin and one for subject exafs� assuming that the cache is initially

empty

The distribution of the lengths of the inverted lists that appear in the trace char	

acterizes the work required to process the queries
 Figure �� shows the cumulative

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

� �� �
 CITRIN author ������ �� �� �
 BROMINE subject ������ 		��

		�� �

� �� �
 CITRIN author ������ �� �� �
 EXAFS subject ������ ����

���� �

	� �� �	
 EXAFS subject ������ ���� ���� �
 CHLORINE subject ��	��	

�	�� �	�� �

Figure ��� Queries � through �� of the trace input to the simulation

distribution of list lengths
 The steep slope on the left	hand side of the �gure shows

that almost all of the inverted lists have less than ������� postings� and the �at slope

shows that there are few long lists
 These observations are con�rmed by the following

statistics� There are ������ inverted lists
 The mean length of an inverted list is a

little more than ������ postings
 The median inverted list has ���� postings
 From

the �gure we see that the mean length is much larger because of the few long lists

��� Query Processing

Information retrieval systems may partition their indexes by �eld designator or may

build a combined index
 In the partitioned case� all occurrences of a word in a title

�eld are listed in one index� all author occurrences in another� and so on
 In the

combined case� a single index is built� and for each entry in an inverted list� a type

annotation indicates the �eld where the word was used
 The main advantage of the

combined index is that a subject query such as �nd subject art can be answered

by fetching a single inverted list
 On the other hand� a query �nd title art can be

processed faster with partitioned indexes� since only the relevant postings need to be

processed
 Since ��
�� of our queries involve subject searches� we assume a single

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

0

2000

4000

6000

8000

10000

12000

14000

0 200000 400000 600000 800000 1e+06 1.2e+06

c
u
m
u
l
a
t
i
v
e

n
u
m
b
e
r

o
f

o
c
c
u
r
r
e
n
c
e
s

length of inverted list (postings)

all keywords
simple keywords

Figure ��� The cumulative distribution of occurrences of inverted indexes of a given

length which appear in queries
 Simple keywords do not use wild	cards

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

combined index
 Section �
� returns to this issue

The use of a combined index allows a simple model of wild	card queries
 We

assume that the posting lists are allocated sequentially and alphabetically
 Thus�

the matching inverted lists can be read with a single disk access and the number of

postings to read is the sum of the postings of the individual matching words
 For the

keyword yak
� the inverted lists for keywords yak� yakube� etc
 cost only a single disk

access
 �FOLIO does not allow wild	cards of the form yak
� The assumption of this

data structure re�ects a realizable data structure and is the �best case� for wild	card

processing with inverted lists
 Furthermore� we assume the system organization can

be tuned so that words with the same alphabetical pre�x reside on the same host

Our simulation results demonstrate that �with a proper data structure� wild	card

processing has negligible impact on performance

We model continuation queries through a dummy index called user
 To illustrate�

suppose user � issues the query �nd subject A and its returns ��� results
 The con	

tinuation query and author B would be simulated as the query �nd user � and author

B where user � is an inverted list with ��� postings

As discussed in the introduction� four physical index organizations are considered

We found in Chapter � that the LAN may be the bottleneck for the system index

organization
 To ameliorate this problem we adopt the �prefetch I� query processing

optimization

As in Chapter �� to simulate the processing of a query� we consider �ve stages

The �rst stage covers the initial CPU processing for parsing the query and generating

subqueries
 Second� the subqueries are queued at the LAN for transmission to other

hosts
 Third� the process blocks� waiting for the subqueries to complete
 When all the

answers are returned the process wakes and simulates another CPU processing stage

for intersecting the inverted lists
 Finally� the process terminates� indicating that the

query is complete
 If the prefetch algorithm is used� several additional stages are

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

added to account for the two phases

A subquery goes through �ve stages also
 First� initial start	up CPU processing is

simulated
 Second� the cache is checked for the words that appear in the query
 For

cache misses� reads are issued to the disks for the inverted lists
 The process blocks�

waiting for the disk reads to be returned through the I�O bus subsystem
 When all

the reads have returned� the subquery process wakes and simulates intersecting the

inverted lists by a CPU processing stage
 The answer is then queued at the LAN and

the subquery terminates

From our trace data� we can determine how many inverted lists have to be fetched

to answer a given query� and how large the lists are
 However� our simulation also

requires the sizes of the intermediate results� and we estimate them by calculating

the expect number of answers as follows
 In the case of the disk� I�O bus and host

index organizations� we make the assumption that the answers are distributed in

equal proportion across all hosts
 Thus� to compute the size of the subquery answer

we simply divide the result size reported in the trace by the number of hosts
 For

the system organization� however� each subquery generally contains a subset of the

keywords in the query
 The following example illustrates how the expected answer

size is calculated
 Say the subquery is �nd title A author B
 The full lists for A and

B are fetched from disk� however� only the postings of the appropriate type �title for

A� author for B� are used
 The number of A postings with title designation is given

in the trace� call it n�A�� the number of B author postings is n�B�
 The expected

size of the intersection of these lists is n�A�n�B��D� where D is the total number of

documents in the database
 This estimate assumes that each word is equally likely

to appear in any of the D documents and that the words occur independently
 If an

additional C word were in the query� the expected size would be n�A�n�B�n�C��D�

For the disk� I�O bus and host index organizations� the model is accurate
 For the

system index organizations� this model is reasonably accurate for a small number of

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

query terms �it is exact for single keyword subqueries�
 Emrath
Emr��� reports some

measurements that support this model
 However� as the number of keywords in the

query increases� the expected number of answers approaches zero
 To compensate for

this e�ect� we use the result size �for the overall query� in the trace as a lower bound

to the expected number of documents in a subquery
 The size of the �nal answer

to the match is bounded from above by the minimum of the sizes of the subquery

answers in the system index organization

Since the date and time of each query issued is reported in the trace� it is possible to

simulate the exact sequence of query arrivals in the system in an open system type of

queuing model
 We have chosen a closed queuing systemmodel that permits studying

the e�ects of varying the multiprogramming level �the number of simultaneous queries

in the system�
 At the start of a simulation run� a number of queries at the beginning

of the trace equal to the multiprogramming level are started and then the next query

is started whenever a query �nishes in the system
 This method maintains a constant

number of queries in the system

This approach concurrently simulates queries that are from the same user and

thus could not have been requested simultaneously
 This situation introduces a race

condition for two queries that access the same inverted list
 If the queries are executed

sequentially� the second query will always be a cache hit
 But if the queries are

executed concurrently� both queries may simultaneously check the cache and both

may miss
 The negative impact of this loss in practice is minor and is outweighed

by the advantages of studying the e�ect of the multiprogramming level on response

time and throughput �cf
 Section �
��
 Our cache hit results are slightly pessimistic

due to the race condition

To study the e�ects of scaling the database� the parameter DatabaseScale was

added to the simulation
 This variable linearly scales the number of postings for each

inverted list� the number of answers to a query and the number of documents in the

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

database
 While scaling the number of postings and documents in the database is

probably reasonable� scaling the number of answers is not
 If a query matches ��

documents� a user will simply read all �� documents to �nd those of interest
 Faced

with ���� documents in a result� a user would probably issue a continuation query

to prune the answer
 As the database grows in size �say� linearly� the mean result

size grows more slowly as users continue to construct queries with manageable result

sizes
 However� we did not incorporate this feature into the database scaling model

��� Simulation

In this section� we use the same hardware organization as in Chapter � expect that we

have as a default a single host
 As before� every hardware organization consists of a

LAN connecting several hosts together
 Each host has a CPU and memory� a number

of I�O buses� and a number of disks
 Every host has the same number of I�O buses

and every I�O bus has the same number of disks
 In this chapter� each host also has

a cache
 Table �� lists the variables that determine the hardware organization
 The

�Value� column in the table shows the base case value of each variable used in the

experiments described in Section �
�
 Typically an experiment systematically varies

one or more of the values to determine the e�ect of the variables
 A con�guration is the

total collection of variable	value pairs used in an experiment
 The base con�guration

is the collection of variable	value pairs given in the tables in this section

Table �� shows the base con�guration variables for the hardware
 The values for

this table were taken from reference
Che���
 These values are better than� say� the

theoretical maximumperformance values available from the manufacturer�s literature

The disks and I�O buses are simulated in the same way as Chapter �
 Requests for a

disk read arrive from the CPU �after determining that they are cache misses�
 Each

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

Parameter Value Description

Hosts � Hosts

I�OBusesPerHost � Controllers and I�O Buses

per Host

DisksPerI�OBus � Disks for each I�O bus

Table ��� Hardware con�guration parameter variables� values and de�nitions

read has a speci�ed length in bytes
 The reads are queued at the disk �rst	come	

�rst	served �FCFS�
 Each request is �rst serviced by the disk by waiting an initial

SeekTime milliseconds
 The disk loads its track bu�er at DiskBandwidth speed
 When

it �nishes� the disk requests access to its I�O bus� only one disk at a time may occupy

the I�O bus
 When the I�O bus grants access both the I�O bus and disk are occupied

for the transfer at I�OBusBandwidth speed
 If multiple tracks must be loaded then

the initial seek	time is extended by the TrackToTrack seek time

The LAN handles the transmission of subquery and answer messages
 Messages

are serviced FCFS �except for messages that have the same source and destination

� these are immediately returned to the host� simulating software loop	back�
 Each

subquery has a length determined by SubqueryLength and each answer has a length

determined by AnswerEntry times the number of postings in the answer
 The service

time for each message is LANOverhead plus the time taken to transmit the message

at the given LANBandwidth

Table �� shows the parameters that a�ect the CPU and the time taken to process

a query
 The overall speed of a CPU is determined by CPUSpeed
 Varying this

value varies the rate at which instructions are executed
 The number of instructions

needed to execute various stages of the matching process are listed in the table
 The

multiprogramming level of the system is on a per host basis

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

Parameter Value Description

DiskBandwidth ��
� Mbits�sec bandwidth per disk

DiskBu� ����� Size of a disk bu�er in bytes

BlockSize ��� Bytes per disk block

SeekTime ��
� Disk seek	time in ms

TrackToTrack �
� Cost to seek one track in ms

I�OBusOverhead �
� I�O bus transfer in ms

I�OBusBandwidth ��
� Mbits�sec bandwidth I�O bus

LANOverhead �
� LAN transfer in ms

LANBandwidth ���
� Mbits�sec bandwidth LAN

Table ��� Hardware parameter values and de�nitions

Parameter Value Description

CPUSpeed �� Relative speed in MIPS

Multiprogram � Multiprogramming per Host

QueryInstr ������ Query start up CPU cost

SubqueryInstr ������ Subquery start up CPU cost

SubqueryLength ���� Base size of subquery message

FetchInstr ����� Disk fetch start up CPU cost

InterInstr �� Intersection CPU cost per byte

of a decompressed inverted list

Decompress �� Decompression CPU cost per

byte of inverted list on disk

Table ��� Base case parameter values and de�nitions

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

Parameter Value Description

EntrySize �� Bits to represent an inverted list

entry on disk �uncompressed�

Compress �
� Compression Ratio

CacheSize �
� Inverted list cache �in postings�

ConcatInstr � Concatenation CPU cost per

byte of an answer set

AnswerEntry � Bytes to represent an entry

in an answer set

Documents ������� Number of documents

DatabaseScale �
� Database scale factor

Table ��� Base case parameter values and de�nitions

Finally� Table �� lists the variables used to determine the size of the inverted lists

EntrySize determines the number of bits needed to record a posting in an inverted list

Compress determines the reduction in bytes in the inverted list due to compression

To illustrate the use of the variables in Tables �� and ��� consider a subquery

that intersects two inverted lists with � and �� postings
 The initial subquery CPU

processing would be ������� instructions �SubqueryInstr�� �FetchInstr� since each

inverted list read is charged a start	up cost of FetchInstr instructions
 The length of

one list is ��� bits �postings�EntrySize�Compress�
 The length of the other list is ���

bits
 The read length for both lists is ��� bytes �rounded up due to BlockSize�
 After

the disk data is fetched� only the bits in the actual lists are used for subsequent com	

putations
 The number of instructions to process the intersection combines the costs

of decompression and intersecting the lists
 The size of the uncompressed inverted

lists is ��� bits or �� bytes �postings �EntrySize�
 Then the number of instructions

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

for this part of the subquery processing is ����� ����� �Decompress��� �InterInstr�

The size of the inverted list cache in postings is determined by CacheSize� which

is measured in number of postings
 The policy for the cache is least	recently	used

When an inverted list read is a cache miss� it is read from disk and the number of

postings in the list is checked to determine if it will �t in the cache
 If the inverted

list is smaller or equal in size to the cache� the cache removes �in a least recently used

fashion� enough inverted lists to make room for the new list and adds the new list

If the list is larger than the cache� the list is not placed in cache and no other lists

are �ushed
 Both of these cases are cache misses
 When an inverted list is a cache

hit� it is moved to the end of the list of the least recently used inverted lists
 �A

possible improvement would be to also cache the intermediate and �nal results from

the intersection computations
� For wild	card keywords� a cache hit occurs only if

exactly the same wild	card keyword is used

The number of bytes needed to represent a document in an answer is given in An�

swerEntry
 The instructions needed to concatenate the answers from the subqueries

is given by ConcatInstr
 The number of documents in the database is given by Doc�

uments and is equal to the number of abstracts in the INSPEC database
 Finally�

DatabaseScale permits scaling of the database as described in Section �
�

��� Results

In this section we present selected results of a set of experiments performed by the

simulation
 In conducting these experiments sensitivity analysis of all the variables

in Section �
� were performed
 An experiment is the execution of the simulation for

the entire trace with a given con�guration

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

Figure �� shows the mean response time of queries under the various index orga	

nizations as disk seek	time increases �the other simulation parameters for this con�g	

uration are given in Tables �����
 The seek values on the left of the graph �around ��

ms� represent a typical magnetic disk
 Values on the right could compare to optical

disks
 The graph shows that the disk index organization is most sensitive �i
e
� has the

largest slope� to the change in seek	time� followed by the I�O bus� host� system and

prefetch index organizations
 The host and system index organizations are identical

because the base con�guration has � host
 This ordering of the index organizations

is in decreasing number of inverted lists reads done by each organization
 For a given

query� the disk index organization does the largest number of reads� followed by the

I�O bus index organization� etc
 The increase in the number of reads leads to a

higher disk utilization and increased queuing delays at every disk
 The seek	time of

the disk must thus dominate the cost of accessing an inverted list as opposed to the

bandwidth limitations of the I�O subsystem
 The host and system index organiza	

tions perform identically in the base con�guration because there is only � host in the

base con�guration
 The prefetch I index organization performs slightly worse than

the host and system index organization because the prefetch of an inverted list is

performed sequentially with respect to the processing of the remainder of the query

This slightly decreases the amount of parallelism in the processing of the query
 �Re	

call that prefetch I index organizations was designed to reduce LAN tra�c� which is

not an issue in a one host con�guration
�

Figure �� shows the e�ect of the rise in the multiprogramming level on the mean

throughput of queries processed
 The graphs shows that the disk and I�O bus index

organizations are relatively insensitive to the change in the multiprogramming level

Other collected data shows that I�O is the bottleneck in these two organizations
 As

the multiprogramming level rises� the same number of queries can be processed per

second� but each query takes longer and longer
 The host� system and prefetch I index

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100

m
e
a
n

q
u
e
r
y

r
e
s
p
o
n
s
e

t
i
m
e

(
m
s
)

disk seek time (ms)

disk
I/O bus

host
system

prefetch I

Figure ��� The sensitivity of response time to disk seek	time

organizations continue to improve across the range of the multiprogramming level in

the graph because the resources are more evenly balanced
 For a multiprogramming

level of ��� the response times for the disk� I�O bus� host� system and prefetch I index

organizations are ��
��� �
��� �
��� �
�� and �
�� seconds
 Thus good response times

are still available on a heavily loaded system

Intuitively� experiments that vary the value of one variable in a con�guration ex	

amine the change in a function along a single dimension
 In some cases it is necessary

to change the value of multiple variables in a systematic fashion in a �k factor ex�

periment
Jai���
 For three variables� this experiment can intuitively be viewed as

examining the values of a function at the corners of a three	dimensional cube� each

axis of the cube corresponds to a variable

To determine a reasonable base con�guration� some of the values of the variables

are provided by existing hardware� but other variables� such as DisksPerI�OBus�

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

m
e
a
n

t
h
r
o
u
g
h
p
u
t

(
q
u
e
r
i
e
s

p
r
o
c
e
s
s
e
d
/
s
e
c
)

multiprogramming level (per host)

disk
I/O bus

host
system

prefetch I

Figure ��� The e�ect of the multiprogramming level on throughput

are less easily determined
 We conducted a �k factor experiment on BlockSize�

I�OBusesPerHost and DisksPerI�OBus to determine the con�guration with the best

response time
 Table �� lists the enumeration of the values of the variables

The result of this experiment is shown in Figure ��
 The data points for each

index organization have been connected by lines to aid the reader in understanding

the graph
 The line connecting two points may represent the changing of the values of

several variables
 We see that the left	hand half of the graph �values �	�� is the same

shape as the right	hand half �values �	��
 This means that BlockSize has little e�ect

on the response time� since it is the only variable to change value when comparing the

halves of the graph
 Next� examining each sequential pair of values ������ ����� etc

shows no change in the response time for the disk and I�O bus index organizations

For each pair� only I�OBusesPerHost changes from � to �
 Thus� adding I�O buses

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

Experiment BlockSize DisksPerI�OBus I�OBusesPerHost

� ��� � �

� ��� � �

� ��� � �

� ��� � �

� ��K � �

� ��K � �

� ��K � �

� ��K � �

Table ��� Enumeration of variable values

�and implicitly� disks� does not improve the performance of these two index orga	

nizations
 However� the response time for host� system� and prefetch organizations

improve when more I�O buses are added because the total resources of the system

are increased
 Finally� consider the transition from the con�guration in Experiment

� to the con�guration in Experiment �
 Here� the total number of disks is �xed at �

but the arrangement of the disks changes because the number of I�O buses goes from

� to �
 We see that disk index organization response time increases due to contention

for the I�O bus �disk transfers on the same I�O bus are processed serially by the I�O

bus�
 I�O bus index organization response time decreases because there are fewer

inverted lists to read per keyword �since there are fewer I�O buses�

This graph shows the best combination of these variables for response time� Block�

Size of ���� DisksPerI�OBus of � and I�OBusesPerHost of �
 This the worst con�g	

uration for the disk index organization

To study database scaling� we �rst maximize the size of the database that can be

processed with the base con�guration
 A �	second mean response time is chosen as

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7

m
e
a
n

q
u
e
r
y

r
e
s
p
o
n
s
e

t
i
m
e

(
m
s
)

experiment number

disk
I/O bus

host
system

prefetch I

Figure ��� A �k factor experiment of three variables

the limit for an e�ective information retrieval system
 We scale the database on the

base con�guration �as described in Section �
�� until the best response time increases

to the threshold of � seconds
 This graph is shown in Figure ��
 From this graph the

value of ��
� is chosen for the maximum scaling of the database for a single host

We now wish to observe the e�ciency of the system as the number of hosts is

increased
 Increasing the number of hosts also increases the total number of I�O buses�

disks� and queries �since the number of queries in the entire system is determined by

Multiprogram � Hosts�
 In Figure �� the increase in response time is shown as the

number of hosts is expanded
 The increase in response time is due to two factors

First� the total load of the system is increasing in proportion to the number of hosts

Second� as the number of hosts increases the tra�c across the LAN increases
 We

see this e�ect appear at � hosts where the prefetch I index organization slightly

outperforms the system index organization
 Thus� the prefetch I organization scales

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25

m
e
a
n

q
u
e
r
y

r
e
s
p
o
n
s
e

t
i
m
e

(
m
s
)

database scale

disk
I/O bus

host
system

prefetch I

Figure ��� Scaling the database up to a �	second response time for the best index

organization

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8

m
e
a
n

q
u
e
r
y

r
e
s
p
o
n
s
e

t
i
m
e

(
m
s
)

hosts, database scale (10.0)

disk
I/O bus

host
system

prefetch I

Figure ��� Increasing the number of hosts with a scaled database

well as the number of hosts increases

However� the performance of the system organization depends strongly on the

speed of the LAN
 Figure �� shows the impact of this variable on mean query response

time
 This �gure does not show the data for the disk index organization since its mean

query response time is approximately �� seconds
 The left hand side of the graph

represents a Ethernet	type network at maximum bandwidth and the right hand side

of the graph represents an FDDI network
 The graph shows that the system response

time is sensitive to the LAN bandwidth and that a su�ciently fast network eliminates

the disadvantages of the system organization
 The prefetch I organization performs

more poorly at a high bandwidth with four hosts due to the sequential nature of the

two	phased approach
 Note that the prefetch I organization is relatively �at in this

graph
 Thus� even with a fast network� this organization would be preferable if the

network cannot be used to its maximum capacity
 In addition� any of a number of

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

0

5000

10000

15000

20000

10 20 30 40 50 60 70 80 90 100

m
e
a
n

q
u
e
r
y

r
e
s
p
o
n
s
e

t
i
m
e

(
m
s
)

LAN bandwidth (Mb/s), hosts (4), database scale (10.0)

disk
I/O bus

host
system

prefetch I

Figure ��� The sensitivity of mean query response time to LAN bandwidth

other variables can make prefetching attractive e
g
� the number of hosts� or a larger

database

Given that an index organization does well as the number of hosts increases� we

can compare the base con�guration of a single host to con�gurations with more hosts

but the same total resources in terms of CPU speed� number of disks and I�O buses

This variation in parameters is essentially the trade	o� between buying a single large

mainframe processor or several slower workstations
 Table �� shows a enumeration

of con�gurations that explore this trade	o� under a �xed total system load
 The

main di�erence between a single host and multiple hosts is that the fast CPU has

been replaced by several slower CPUs interconnected by a LAN
 Figure �� shows

that the best index organization �system� has a response time of �
��� �
��� and �
��

seconds for �� � and � hosts� indicating about a tenth of a second loss in response

time when split among multiple hosts
 Throughput for the system index organization

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

Hosts I�OBusesPerHost Multiprogramming CPU Speed Database Scale

� � � �� ��
�

� � � �� ��
�

� � � � ��
�

Table ��� Enumeration of variable values for �xed resources

0

1000

2000

3000

4000

5000

6000

7000

8000

1 1.5 2 2.5 3 3.5 4

m
e
a
n

q
u
e
r
y

r
e
s
p
o
n
s
e

t
i
m
e

(
m
s
)

hosts (fixed resources), database scale (10.0)

disk
I/O bus

host
system

prefetch I

Figure ��� The mainframe vs
 workstation trade	o�

is �
�� queries�sec
� �
�� queries�sec
� and �
�� queries�sec
 for �� � and � hosts

Thus a minimal performance loss is incurred by using the multiple host organization

The results indicates that a �mainframe� is slightly more e�ective� but the small

improvement has to be evaluated in light of the potentially higher mainframe cost

Figure �� shows the increase in the cache hit ratio as the size of the cache increases

for a four	host system �database scale �
��
 Since the total cache size is the same

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

regardless of the index organization� it is surprising that the cache hit rates vary

depending on the organization
 However� the behavior of the caches under the various

organizations is quite di�erent
 For the system and prefetch I index organizations an

inverted list is cached in only one place in the system
 Thus� there are e�ectively

Hosts number of independent caches
 Also� suppose a list slightly larger in size than

the cache is read from disk
 In the system and prefetch I organization� the list does

not �t in the cache and thus the caches would remain unchanged
 In the disk� I�O

bus� and host organizations� however� all four caches would hold a list of quarter the

size� requiring some other lists to be removed from the cache
 The �gure shows that

for the base con�guration even a small cache has a good hit rate � achieving almost

��� where the maximum possible cache hit rate is about ��
�� �see Table ���
 The

cache hit rates for the disk� I�O bus� and host index organizations are the same since

they access exactly the same lists on each host and so the cache contents are changed

in the same way over the course of the simulation

Figure �� shows that the e�ect of caching is to free the I�O subsystem resources

to speed up query processing for the system and prefetch I index organizations
 The

cache does not have a dramatic e�ect on throughput for the disk organization because

it remains bottlenecked on the disks

��� Conclusion

Our main result is that inverted lists referenced by queries in such systems tend to be

relatively short and it does not pay to split them across hosts� much less across I�O

subsystems or disks
 Either system index organization� or the system index organi	

zation with the prefetch I optimization� performs best over wide ranges of parameter

values
 Prefetch I is especially good as the database size scales up
 However� the

system organization does use the LAN or processor interconnect more heavily� so it

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 200000 400000 600000 800000 1e+06 1.2e+06

c
a
c
h
e

h
i
t

r
a
t
i
o

cache size (postings), hosts (4)

disk, I/O bus, host
system

prefetch I

Figure ��� The improvement in the cache hit rate as the cache grows in size

0

10

20

30

40

50

60

70

80

90

0 200000 400000 600000 800000 1e+06 1.2e+06

m
e
a
n

t
h
r
o
u
g
h
p
u
t

(
q
u
e
r
i
e
s

p
r
o
c
e
s
s
e
d
/
s
e
c
)

cache size (postings), hosts (4)

disk
I/O bus

host
system

prefetch I

Figure ��� The impact of the cache size on throughput

CHAPTER �� DISTRIBUTED QUERIES � TRACE�BASED WORKLOAD ��

is inappropriate for systems with slow networks

Our conclusion is di�erent from that of Chapter �
 In that case� inverted lists are

much longer� and breaking them up �e
g
� striping them� does pay o�
 In particular�

the host organization was superior

We also explored the impact of wild	card queries and found only a slight perfor	

mance improvement and therefore have not included results on these experiments

Two factors contributed to this result
 First� wild	card keywords are a small fraction

of all the keywords that appear
 Second� the data structure used to model wild	card

queries is e�cient� since the performance impact is restricted to simply reading longer

inverted lists �about twice as long on average�

Our caching results indicate that a relatively small cache can improve performance

signi�cantly
 For our INSPEC database that has an index size of ��� MB ���� mil	

lion postings compressed� a cache of about �
� MB �������� postings uncompressed�

� about �
�� of the index � can improve throughput by about ���� for the prefetch

strategy
 For the other strategies� improvements are smaller
 Although not reported

here� we also experimented with various cache policies
 For example� in one case� lists

above a given threshold were not cached� even if they �t in the cache� on the pre	

sumption that they would �ush out too many useful lists� we observed no signi�cant

improvement with this variation

Chapter �

Incremental Updates � Actual

Workload

In this chapter� we assume that the postings in a new document are inserted into

an in	memory inverted index
 At some point� this index must be written to disk

Our objective is to update the disk incrementally as e�ciently as possible
 Collecting

many documents into an in	memory index amortizes the cost of storing a posting

��� Dual�Structure Index

The lengths of the inverted lists for a database of text documents have a roughly

exponential distribution �see Figure ��
 This distribution presents a dilemma for the

in	place update of inverted lists since some inverted lists �corresponding to frequently

appearing words� expand rapidly with the arrival of new documents while others

�corresponding to infrequently appearing words� expand slowly or not at all
 In

addition� new documents contain previously unseen words
 Table �� shows some

statistical properties of a database of News articles �see Section �
� for a complete

description of the database�
 Abstracts databases index general information about a

��

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ��

Text Document Database News

Total Raw Text ��� MB

Total Words �������

Total Postings ����������

Documents �������

Average Postings per Word ��

Frequent Words �top ��� ������

Infrequent Words �������

Postings for Frequent Words ��
��

Postings for Infrequent Words �
��

Table ��� Statistics for a News abstracts text database

document such as author names� title� the set of words in the abstract� etc
 A frequent

word for this table ranks in the top �� of all words �in order of frequency�
 Postings for

frequent words are given as the percentage of all postings in the database
 Infrequent

words are all words that are not frequent
 For example� if the frequently appearing

words are those that rank in the top �
�� of all words �in order of frequency� the

postings for these words account for ��
�� of the postings

There are two data structures for lists
 We place short inverted lists �of infre	

quently appearing words� in a �xed	size region of disk �where the region contains

postings for multiple words�
 These lists are short lists and the �xed	size regions are

buckets
 The idea is that every inverted list starts o� as a short list� when a bucket

�lls up with inverted lists� the longest inverted list becomes a long list
 We place the

long lists �of frequently appearing words� in variable length contiguous sequences of

blocks on disk
 Each block of a long list contains postings for only one word
 Given

a word w� we examine a directory that determines if the word has a long inverted

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ��

list
 If the word does not have a long list� it has a short list or no list
 In this case�

a function h�w� �e
g
� a hash function or a tree search� returns the bucket that holds

the short list for the word

At some point� an in	memory list L for word w must be moved to disk
 First� if w

already has a long list� L is appended to the long list as discussed in the next section

Otherwise� we assume L is a short list and insert it into bucket h�w�
 If the bucket is

not already in memory� it is read in� and L is inserted
 If a list for w already existed

in the bucket� L is added to it� else a new short list is created in the bucket
 If the

bucket over�ows� we then pick the longest short list� in block� say M � remove it� and

make M a long list
 Once M is removed� the bucket will be partially empty
 The

updated bucket h�w� is written to disk �eventually�� and list M is written to disk as

discussed in the next section
 A word w never has both a short list and a long list

The buckets dynamically determine which words have inverted lists containing only a

few postings� since these words are unlikely to grow enough to over�ow i
e assuming

that the bucket data structure is large enough to hold all the infrequent words

Figure �� illustrates the four di�erent situations for our dual structured index

For this example �and for this example only�� we use two simpli�cations� a single

bucket holds all words and one posting �ts exactly in one disk block
 The bucket has

a capacity of �� postings
 Each row� labeled �a� through �d� is an example of the dual

structure index
 The in	memory column represents the new inverted lists generated

by a batch of documents
 The old	state column represents the state of the disk before

the new lists are added� the new	state column is the result after insertion

In Figure �� �a�� two words with seven postings are inserted into the empty bucket

Postings are represented by small empty squares
 In Figure �� �b�� six postings for

two words are inserted into the bucket
 The bucket now contains �� postings� so

a word must over�ow since the bucket capacity is �� postings
 The longest short

�If there are multiple longest short lists� we choose one arbitrarily�

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ��

A

B

In-Memory

(a)

(b)

(c)

(d)

A

A

A

B

B

B

B

A

B A

B A

Old State

Long Lists

A

B

B

B

B x

A

A

Long Lists

New State

A

Bucket (10) Bucket (10)

Figure ��� A running example of the behavior of the update algorithm

list is chosen� thus the word �A� with seven postings is chosen over the word �B�

with six postings
 The short list over�ows into the long list and it is written to disk

with a ��� reserved space� which is one posting �the free posting is represented by

a shaded square�
 In Figure �� �c� two words with a single posting each are added

The posting for the word �B� is added to the short inverted list for �B� in the bucket

The posting for the word �A� is added as an in	place update to the long inverted list

for the �A� word
 Finally� in Figure �� �d� two words with a single posting each are

added
 The posting for the word �B� is again added to the short inverted list for

�B� in the bucket
 The posting for �A� cannot �t in the reserved space� so the long

inverted list is moved to a new location with both the extra posting appended to the

end and with new reserved space
 The old long list for �A� is freed for subsequent

reuse by any word� as indicated by the �x� label

Figure �� shows an animation of the behavior of buckets
 We choose bucket � as

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ��

0

1000

2000

3000

4000

5000

6000

7000

8000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

w
o
r
d
s

a
n
d

p
o
s
t
i
n
g
s

(
1

u
n
i
t

p
e
r

w
o
r
d

o
r

p
o
s
t
i
n
g
)

time (1 unit per change to bucket)

words + postings (top)
postings (middle)

words (bottom)

Figure ��� An animation of the behavior of bucket � for the �rst � updates for a

system with ��� buckets

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ��

an example bucket and run the bucket algorithm for a short time on a small system

Data is from a News� as explained in Section �
�
 The bucket has a size of ����

units� where each posting is charged � unit and each word is charged one unit
 For

each inverted list in the bucket� we need to store the word it represents plus all of

its postings
 Each time step on the x	axis corresponds to a change in the bucket�

inserting a new word with its postings� appending the postings to an existing word�

or the removing a word and its postings from the bucket
 The y	axis measures the

combined number of words and postings
 The top line in the �gure is the total number

of words and postings� the middle line is the total number of postings and the bottom

line is the total number of words in the bucket
 For the total number of words in

the bucket� we see a slow rise in the number of words in the bucket as new words

are continuously inserted into the bucket
 For the number of postings in the bucket

�the middle line�� we see a steep climb as the bucket �lls up and two leaps where a

long in	memory list is inserted into the bucket at approximately time ��� and time

���
 The second insertion of the long in	memory list causes an over�ow and the list is

removed from the bucket� shown as a downward spike in the graph
 After the spike�

the bucket continues to �ll to about time ��� where it over�ows and again the longest

short list is removed

In summary� the dual	structure index allows us to apply di�erent storage struc	

tures to the huge number of infrequent words and to the relatively few frequent

words
 Through the use of �xed	size buckets� this approach dynamically discovers

the frequent words that require their own long list
 Updates to the large number

of infrequent words are amortized into a relatively small number of disk operations�

since the buckets are small enough to �t in memory
 In addition� coalescing infrequent

words reduces wasted disk space due to allocation of complete disk blocks to short

lists

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ��

��� Policies for Allocation of Long Lists

Information retrieval systems merge inverted lists to compute the answer to a boolean

query
 This merging is possible because the document identi�ers appear in sorted

order in inverted lists
 We assume that new documents are numbered with identi�ers

in increasing order and that all long lists are updated by appending new postings to

them
 With these assumptions� the merge operation can be used to compute answers

to boolean queries with our long list data structure

Long lists are created initially by bucket over�ow
 Once a word has a long list on

disk� subsequent in	memory lists for that word are appended to that long list
 In this

section� we consider only long lists and refer to them as lists

In allocating lists to disk� there are two extreme policies
 One extreme policy

optimizes the time to update incrementally
 L is the list for a word w and M is the

in	memory list to be appended to L
 If M is written to disk sequentially on disk�

irrespective of L� then update performance is optimized because the disk head never

seeks during a sequence of updates
 The other extreme policy optimizes the reading

of a list during query processing
 To update a word w� we read L from disk� append

M to it� and write the new combined list to a new location on disk
 This policy

optimizes query performance because exactly one seek is required to read any list

However� query performance for the update optimized policy is poor because the list

for a word will be spread over the disk and the update performance for the query

optimized policy is poor because reads are intermixed with writes

Between these two extremes� there are intermediate policies that move lists and

allocate new space for them in a variety of ways
 This section presents a framework

for describing some of these intermediate policies

The �rst issue is to compose lists from disk blocks
 We use the term chunk for

variable sized contiguous regions of disk and reserve the term extent for �xed	sized

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ��

contiguous regions of disk
 Multiple chunks for an inverted list may be allocated
 The

pointers to all chunks are recorded in the directory
 The directory entries for a word

may point to chunks on multiple disks
 The directory resides in memory at all times

Periodically� the directory is written to disk

The second issue is to assign a disk unit to a new word or chunk
 When the list

for a new word w is added to the directory or a new chunk of a list for a word w is

allocated� a disk is chosen
 Let there be n disks� numbered from � to n � �� and let

i be the disk chosen when the last new word or chunk was allocated �i is initially ��

The strategy considered here choses disk i�� mod n
 Other strategies� not considered

here� could be to look for the most empty disk or a disk where the list has the fewest

chunks

The third issue is to combine in	memory lists with long lists
 We have an in	

memory list M that we wish to append to a long list L
 Both lists are for a word w

Let x be the size �in postings� of the long list� let y be the size �in postings� of the

in	memory list� and let z be the size �in postings� of the space remaining in the chunk

that can accommodate new postings
 As described below� when a chunk is allocated

to disk� it may have reserved space at the end of the chunk where future postings may

be append
 Variable z may be zero or positive and x and y are always positive
 Our

strategies for appending use the following basic operations� which operate on long list

L
 The RELEASE list is used to delay the deallocation of long lists while they are

copied

UPDATE
a� reads the last block containing postings for word w of in	memory list

a� appends a to it� and then writes the result back as an in	place update

b �� READ
a� reads all the postings for long list a� places a on the RELEASE list�

and returns the postings read as in	memory list b

WRITE
a�b� writes up to e blocks worth of postings from in	memory list a and

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ��

Variable Value Description

Limit � Never update in	place

z Update in	place if enough space

Style �ll �e � �� Fill in �xed	size extents

new Write a new chunk when appropriate

whole Long lists are single whole chunks

Alloc constant �k � ��� Constant extra postings reserved

block �k � �� Multiple of a �xed	sized block reserved

proportional �k � ���� Proportional extra postings reserved

Table ��� The variables and values that determine a policy for the allocation of long

inverted lists to disks
 The values in parenthesis are for each allocation strategy or

style

returns the remaining postings as in	memory list b
 The global parameter e is

the extent size
 The �ll style� below� breaks up in	memory lists into extent size

chunks
 If a contains less than e blocks worth of postings� e blocks are still

allocated on disk

WRITE RESERVED
a� writes the a in	memory list to disk with reserved space

at the end of the list

A strategy for appending an in	memory to a long lists is speci�ed by two variables�

Limit and Style
 Limit is either � or z
 Style is �ll� new� or whole
 Table ��

summaries the variables and values governing policies

Figure �� shows the algorithm for updating long lists
 The �rst three lines check

if the existing chunk can and should be extended with the in	memory postings
 If

extension isn�t possible or desirable �Limit � ��� lines �	� �whole� copy the old

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ��

�
 if y � Limit then

�
 UPDATE�M� update long list in	place with the in	memory list

�
 else

�
 if Style � whole then

�
 b �� READ�L� read long list

�
 WRITE RESERVED�M and b� write with reserved space

�
 if Style � fill then

�
 while �M not empty� in	memory postings remain

�
 WRITE�M�M� write in	memory postings

��
 if Style � new then

��
 WRITE RESERVED�M� write in	memory postings with reserved space

Figure ��� The algorithm for updating long lists

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ��

postings to a new location with the in	memory postings appended
 Lines �	� ��ll�

write out multiple extents
 Lines ��	�� �new� write a new chunk with reserved space

One consequence from lines �	� is that an in	memory inverted list is never split into

two di�erent chunks for an in	place update

Periodically� the buckets and the directory are written to disk
 At this time�

the disk blocks for the previous buckets and directory are returned to free space for

the disks
 In addition� in the case of the whole strategy� the old long lists on the

RELEASE list are returned to free space for the disks

The fourth and �nal issue is to allocate space on a disk for a chunk
 Given a

request for a chunk of size f and a disk� we need a contiguous region of free space

on the disk to satisfy the request
 We use a �rst	�t strategy by scanning the free

list for the disk from the beginning of the disk
 Upon �nding a contiguous sequence

of f or more blocks� the chunk is placed at the beginning of the free blocks and the

remaining free blocks are returned to free space

In addition� the WRITE RESERVED call reserves space at the end of every list for

future growth
 That is� additional space is allocated to a chunk to hold postings which

will appear in subsequent updates
 Let x be the size �in postings� of the inverted list

being written to disk and let f�x� be the allocated space �list plus reserved space�

The resulting size �in blocks� of a chunk is the number of blocks needed to hold f�x�

For the new style x is typically the size of an in	memory list
 For the whole style x

is typically the size of the entire long list for a word

We consider three choices for the de�nition of f�x�
 The constant strategy adds a

constant number k of postings to the end of the inverted list� i
e
� f�x� � x� k
 The

block strategy insures the chunk is of constant multiple of size k� i
e
� f�x� � k � dx
k
e

�In practice� we specify k for this strategy in terms of blocks instead of postings
�

Finally� the proportional strategy allocates a chunk in proportion to the number of

postings being written to disk� i
e
� f�x� � kx
 The variable Alloc equals constant�

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ��

block� or proportional� for the corresponding choice of strategy

����� Policies

A policy is determined by the values of the variables Style� Limit and sometimes

Alloc
 If Limit � �� then any reserved space for a chunk is never used� so we

automatically set Alloc � constant with k � �
 If Style � fill then the allocation

strategy is irrelevant since it is never considered

The update optimized policy described above can be achieved by setting Limit � �

and Style � new
 This policy minimizes update time by simply writing out the

update list blocks as fast as possible
 No reading is done because no in	place updates

occur
 We expect that this policy will have the best update time and that the query

time for the resulting index will be poor

The policy for fast queries sets Limit � � and Style � whole
 Setting Style to

whole insures that the inverted list for any word will always be a single contiguous

chunk and thus minimizing query time
 We expect that the update time for this

organization will be high� because lists must be moved
 To ameliorate this situation�

we can let Limit � z and Alloc � proportional with a constant of� say� �
� �i
e
�

reserved space that is ��� of the size of the long list�
 With each move of the long

list� the reserved space grows by ���� permitting more in	place updates of in	memory

lists

Finally� we consider a policy that attempts a trade	o�� to minimize query time

and keep the cost of updates low by organizing inverted lists into chunks that never

move once they are full
 Let Limit � z and Style � fill with an extent e size� say�

� blocks
 With this policy� each inverted list grows until it reaches the limit of its

chunk and then a new chunk is started on a new disk
 We expect comparatively good

query and update times for this policy
 Our model of extents uses only one size for an

extent
 We do not model multiple �xed extent sizes since this policy is approximated

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ��

by the new style with a block allocation strategy

So far our discussion has focused on the addition of documents to an index since

typically databases only grow in size� or deletion is infrequent enough that the en	

tire index is rebuilt
 The addition of incremental deletion of documents poses some

problems to the design of an index
 One method maintains an index of document

identi�ers and all the words in the document �or the words are extracted from the

original document�
 Given this index� each inverted list for a word in the document

would be fetched� the reference to the document deleted� and the new inverted list

rewritten to disk
 However� the size of this index is the same as the size of the in	

verted index
 To avoid this cost� existing implementations typically maintain a list of

deleted document identi�ers and �lter any answer to a query through this list
 This

approach deletes the document from the point of view of the user
 To reclaim the

space taken by the deleted document identi�ers in the index� a background process

sweeps the lists in the index one list at a time� removing any deleted documents

After a sweep of the index� the list of delete document identi�ers is discarded
 Since

this issue is orthogonal to the the issues in this thesis� we do not consider deletion

further

In summary� the parameters described in this section span range of approaches

to storing long lists
 By varying these parameters� we can model schemes that keep

the lists sequential and those that break the lists into contiguous chunks
 We can

control the size of the chunks allocated� either as �xed	length chunks or as chunks

whose size is controlled by the frequency of a word
 Finally� we can control whether

or not unused space at the end of a list is used
 The choice of parameters permits

trade	o�s between index build performance� query performance� and index disk space

consumption

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ��

News Compute

Buckets

Batch

Updates

Long Lists StatisticsCompute

Disks

Exercise

Disks

TracesInvert

Index

Figure ��� The �ow of data for the experiment design
 Arrows represent data
 Boxes

represent the transformation of data by a process

��� Experiment Design

Figure �� shows the �ow of data for our experiments in building inverted indexes

Each arrow represents a data set and each box represents a process that transforms

data sets
 The diagram also serves as an outline for this section

����� News

The source text document database is �� days ofNews articles gathered fromNovem	

ber ��th� ���� to January ��st� ����
 �December ��th is missing
� See Table �� for

statistics on the database
 Once per day the the local server was scanned for new

documents
 News documents less than ���� characters in length were eliminated

to increase the average document size to a more typical range of about �K char	

acters
 Also� non	English language documents �e
g
� encoded binaries and pictures�

were �ltered out
TGMS���

Each day of documents is a batch and is processed separately from other days

While the dual	structure index does not require periodic updates� this arrangement

is good for measuring activity at periodic intervals

����� Invert Index

The invert index process accepts a sequence of document batches as input� pro	

cesses them� and generates a batch update for each batch
 A batch update contains a

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ��

for years� And it was a total flop� in all the years it was available

very few people ever took advantage of it so it was dropped�

�a�

a advantage all and available dropped ever few flop for in it of

people so the took total very was years

�b�

Figure ��� �a� A fragment of a document from November ��th� ����� �b� the tokens

in sorted order

abandons 	 abashed � abate 	

abated 	 abatement 	 abb �

Table ��� A part of the batch update for November ��th� ����� shown as pairs of

words and the number of documents the word occurs in

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ��

list of words that appear in the documents of the batch and the number of times each

word occurs in the batch
 A word and its frequency of occurrence is a word�occurrence

pair

To generate a batch update� each document in the batch is analyzed lexically to

produce a token stream
 Sequences of letters and sequences of numbers are tokens

! all other characters are ignored
 Certain lines of a document �such as �Date� �

lines� are also ignored
 Finally� duplicate tokens for a document are dropped
 After

all documents for a batch are reduced to sets of tokens� an inverted �le is constructed

for the batch
 Tokens are converted to words by converting upper case letters to

lower case
 The batch update containing all the words and the lengths of the inverted

lists for each word is then constructed
 Figure ��a shows a fragment of a document

and Figure ��b shows the resulting set of tokens
 Table �� shows a part of a batch

update
 Note that the misspellings of words are part of the batch update as well
 At

this point� all words in batch updates are converted to unique integers to simplify the

remaining computations

An implementation of an information retrieval system proceeds in the same way

we have described here� except that it would keep� for each word� its complete inverted

list� as opposed to the simple word	occurrence pair we keep here
 For our performance

evaluation� we do not need to know the contents of each inverted list� only its size�

which is what the word	occurrence pair gives us
 Thus� our batch update is our

representation of the in	memory index of Section �
�

����� Compute Buckets

The compute buckets process takes the sequence of batch updates as inputs� runs

the bucket algorithm described in Section �
� on the sequence and generates a single

trace �le of updates to long lists
 Each update in the �le indicates the word involved�

and the number of postings to be add to the corresponding long list on disk
 Postings

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ��

Variable Value Description

Buckets ����� Number of buckets

BucketSize ����� Size of bucket

BucketTotal �
�� M Buckets �BucketSize

BlockPosting ��� Postings per Block

Disks � Number of Disks

BlockSize ����� Bytes per Block

Bu�erBlock ��� I�O bu�er memory

Table ��� The experimental parameters and base	case values

� �

	��	�� ����

	����� �	��

	����	 ����

	����� ����

�	���� ����

Figure ��� A part of the output of the compute buckets process
 Each line is a

word	occurrence pair

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ��

for an update can come from the new postings in a batch or from previous postings

in a bucket
 In addition� a marker for the end of each batch update is added to the

trace
 Figure �� shows a part of the output of the compute buckets process
 The left

column contains integers representing words
 �Words are numbered alphabetically
�

The right column contains the lengths of the corresponding in	memory lists
 The line

�� �� indicates the end of a batch update
 For instance� in the second line of this

�gure� ������� is the unique identi�er for a particular word and ����� is the number

of postings to be appended to the long list for that word

Table �� lists the variables that control the bucket computation and the base values

used for those variables in the experiments reported in the next section
 Buckets

records the number of buckets� BucketSize records the size of each bucket �we count

� for each word and posting placed in a bucket�
 BucketSize implicitly models

the e�ciency of the compression algorithm applied to in	memory inverted lists since

computations are in terms of postings instead of bytes
 The remaining variables in

this table are described in the next section

An information retrieval system would perform a similar computation using in	

verted lists as the compute bucket process does using word	occurrence pairs
 An

implementation would produce the same set of long lists
 We assume that during

the update process the buckets are kept in memory since they are referenced much

more frequently than the long lists
 At the end of each batch update� all buckets

are �ushed to disk
 The cost of maintaining all the buckets in memory during the

update process can be avoided by sorting the in	memory lists into bucket order and

then merging the in	memory list with the buckets� requiring only one bucket to be in

memory at any single point in time

����� Compute Disks

The compute disks process takes as input the trace �le of long list updates and

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ��

update bucket disk � id � size 	���

update bucket disk 	 id � size 	���

update bucket disk � id � size 	���

update chunk disk � id � size �

write word 	��	�� posting ���� disk 	 id 	��� size �

write word 	����� posting �	�� disk � id 	��� size �

write word 	����	 posting ���� disk � id 	��� size �

write word 	����� posting ���� disk 	 id 	��� size �

write word �	���� posting ���� disk � id 	��� size �

Figure ��� An I�O trace corresponding to the previous �gure

computes the sequence of I�O system calls required to implement the policies de	

scribed in Section �
�
 In addition� the write operations for saving the buckets and

the directory are added at the end of each batch update
 Figure �� shows a sample

of a I�O trace �le
 The �rst three lines indicate that the write of the bucket data

structure occurs on three disks starting at location � and continuing for ����� blocks

The next line writes an empty directory
 �The directory is empty because this sam	

ple is the beginning of the trace� i
e
� no long lists have been written to disk ! no

actual I�O is performed for this line�
 The following lines write inverted lists for each

word
 For instance� the �rst �write word� line indicates that word ������� writes

����� postings on disk � starting at block ����� for a size of � blocks

����� Exercise Disks

The exercise disks process takes a trace of I�O operations as input and executes it on

an IBM RS ���� Model ��� computer ��� MB memory� UNIX AIX �
� operating sys	

tem� with � disks �Seagate ST�����NM� � GB capacity� �
�� inch� SCSI	� standard�

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ��

and an I�O bus �SCSI	� standard�
 Each line of the trace generates a read or write

system call request and after the update of the buckets and the directory all system

bu�ers are �ushed to disk

Requests to each disk are issued by independent processes to achieve maximum

parallelism
 Request are directed to �raw� partitions of the disk� bypassing the op	

erating system�s �le	system and disk bu�er pool
 Our algorithms do not revisit the

same blocks within a single batch� thus eliminating the advantage of a bu�er pool

In addition� we assume that relevant data will not remain in bu�ers from one batch

update to the next
 Furthermore� bypassing the �le system saves CPU overhead and

results in slightly superior data rates
 Finally� bypassing the operating system isolates

our experiment design from e�ects introduced by the �le system and thus experiments

are independent of any particular �le system implementation

One drawback to using raw disk partitions is that the operating system obeys the

disk requests exactly and does not coalesce adjacent write requests into single disk

I�O operation
 For this reason� the disk exerciser program does its own coalescing of

I�O operations where possible without reordering the execution trace
 To be faithful

to real systems with a �nite amount of bu�ering� the disk exerciser will only coalesce

up to Bu�erBlock blocks �each of size BlockSize� in a single request

One advantage of the experimental design is the decoupling of each process from

the subsequent process� which permits varying parameters of a process to study the

e�ects on the corresponding data transformation
 However� the design rests on the

assumption that the CPU costs of each process do not dominate the total computation

time
 To test this assumption� we tested an actual running information retrieval

system
 We selected the Rufus system
SLS���� and built an inverted index for ���

megabytes of documents from a collection of IBM internal bulletin board articles

These experiments con�rm that I�O time dominates

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ��

��� Results

An experiment is the execution of the sequence of processes described in Section �
�

over the �� days of collected data� using the defaults values given in Tables �� and ���

except as otherwise noted
 As in previous chapters� the values of variables are some	

times systematically varied to show the sensitivity of a variable to some measurement

An update refers to the incremental batch update of the index
 Some measurements

apply only to the update
 Other measurements apply to the index that results from

the sequence of updates� which we refer to as the index after update
 For this section�

the �nal index is the index produced after all the updates have been processed

����� Compute Buckets

Tuning the size of the buckets and the number of buckets is a complex issue in itself

For the issues presented in this thesis� tuning of the bucket essentially a�ects the

results presented here uniformly
 Thus� while there are quantitative changes in the

behavior of the system� the qualitative di�erences remain the same

To show the behavior of the buckets� we measure the number of long lists in an

update
 For each word	occurrence pair in an update� we can categorize the word of

the pair as one of three types� a new word� a bucket word �a word that is already in

a bucket�� or a long word �a word that has a long list�

Figure �� shows� for each update� the fraction of words belonging to each category

Initially� all word	occurrence pairs contain new words since the buckets are empty

and there are no long lists
 This behavior drops o� rapidly as the buckets �ll up

Eventually� after about �� updates� the fraction of new words per update stabilizes

around ���
 The fraction of words in an update that are in buckets rises rapidly until

about the ��th update
 Since the majority of words are the same in every update� this

�We explore larger data sets in reference �TGMS���

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ���

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70

f
r
a
c
t
i
o
n

update

new words
bucket words

long words

Figure ��� The fraction of words per update in each category

rise indicates that the buckets are �lling up with words
 The curve declines �roughly

linearly� after update �� as new words �containing typically short in	memory lists� �ll

the buckets and cause words to over�ow into long lists
 Initially� no word	occurrence

pairs contain long words because a few initial updates �t into the bucket
 The fraction

of long lists rises �roughly linearly� after the buckets �ll up in the initial stage
 The

spike at update �� is due to the small size of the update for that day introduced by

an interruption in the gathering of data
 Finally� the periodic peaks every seven days

on the �long words� curve occur because each peak corresponds to a Saturday when

the update is smallest
 Small updates have higher fractions of frequently appearing

words

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ���

����� Compute Disks

I�O operations are our unit of measurement for this section only
 Each I�O operation

corresponds to a call to the operating system that results in a disk seek and transfer of

information
 Counting I�O operations only estimates the time taken for a sequence of

I�O operations
 We consider the actual time taken for I�O operations in Section �
�
��

which presents the exercise disk
 We study I�O operations in addition to actual

times because they provide insights into the behavior of the long list policies� because

a wider range of parameters can be studied� and because I�O operations closely

estimate actual times
 To compare allocation strategies� �rst we compare the three

styles with zero reserved space to study the e�ect of in	place updates with respect to

index build time� disk space utilization� and the query performance of the resulting

long lists
 Then allocation strategies are added to study the e�ects of reserved space

for the same issues

Styles

The number of I�O operations needed for each of the three policies is shown in Fig	

ure ��
 When Limit � z� we use Alloc � constant with a constant of � which removes

the e�ect of the allocation policies
 However� in	place updates are still possible by

�lling the empty space in the block�s� at the end of the list
 The x	axis is the index

after the given update
 The y	axis is the cumulative number of I�O operations needed

to build the index incrementally
 Each curve is label with the values of Style and

Limit

All the curves in the graph have increasing slope� which means that the time to

run each update takes longer as the index grows in size
 This behavior is due to the

increasing number of long lists
 Second� the bottom two lines have Limit � � and the

next two lines have Limit � z for the new and �ll styles
 This behavior means that

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ���

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 10 20 30 40 50 60 70

c
u
m
u
l
a
t
i
v
e

I
/
O

o
p
e
r
a
t
i
o
n
s

index after update

whole 0 & whole z

fill z

new z

fill 0 new 0

Figure ��� The cumulative number of I�O operations needed to build the �nal index

in	place updates double the number of I�O operations required because each in	place

update reads and writes
 The graph shows that the whole style requires more I�O

operations than either the �ll or new style� regardless of the use of in	place updates

Since the whole style costs one read and one write for each append of an in	memory

list to a long list� whether an in	place update occurs or not� the whole style is the

upper bound in number of I�O operations for any style
 The values for the �nal index

for the whole style and for the �ll and new styles with in	place updates are within

��� of each other
 Thus� these policies use approximately the same time to build the

�nal index

Another measure of performance of a style is the long list utilization rate� namely

the fraction of space allocated in long lists disk blocks that have postings
 Thus

we measure the internal utilization of the long lists
 Figure �� shows the long list

utilization rate for the index� measured at the end of each update� for the same set

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ���

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70

i
n
t
e
r
n
a
l

u
t
i
l
i
z
a
t
i
o
n

index after update

whole 0 & whole z

new z

fill z

new 0

fill 0

Figure ��� The long list disk utilization of the various policies

of policies as the previous �gure
 The x	axis is the database after the update
 The

y	axis is the fraction of space in the long lists that contain postings
 Each curve is

label with the values of Style and Limit
 The spike for all curves between update

� and � is due to the utilization rate of � when there are no long lists
 Utilization

without in	place updates for the new and �ll styles falls dramatically because there

are large amounts of wasted space for small in	memory lists for these styles
 Adding

in	place updates to the new and �ll style permits blocks to be used more e�ciently

The whole style has good utilization regardless of in	place updates since each list is

stored contiguously

Comparing the I�O performance of policies to their corresponding utilization rates�

the two best performing policies have poor utilization rates
 Thus� the doubling of

the I�O operations for update cannot realistically be avoided
 In choosing among

the remaining alternatives� if update performance is crucial then the new style with

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ���

0

5

10

15

20

25

0 10 20 30 40 50 60 70

a
v
e
r
a
g
e

r
e
a
d

o
p
e
r
a
t
i
o
n
s

p
e
r

l
o
n
g

l
i
s
t

index after update

fill 0

new 0

new z

fill z

whole 0 & whole z

Figure ��� The average number of read operations to read a word with a long list

in	place updates is best� and if utilization is crucial then either of the whole policies

is best

Measuring query performance for a policy is di�cult since the typical workload de	

pends on the information retrieval model �IRM�
 For a typical boolean IRM� a query

contains a few words �less than ��� and the words tend to be the less frequently ap	

pearing words since frequently appearing words do not discriminate strongly between

documents
 Thus we would expect many query words to reside in buckets for this

model
 For a typical vector space IRM� a query may be derived from a document�

consequently the query often contains many words �more than ���� and the words

tend to be frequently appearing words
 We concentrate on the vector space IRM for

this chapter �see reference
TGMS��� for results on the boolean IRM�

For a vector space IRM� we assume the distribution of words in a query approx	

imates the frequency of words in documents
 To measure query performance� we

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ���

measure at the end of each update the average number of read operations needed

to read a long word� which is computed by counting the total number of chunks in

the index and dividing by the number of words with long lists
 Figure �� graphs

the results for the various policies and shows that in	place updates are needed for

competitive query performance for the new and �ll styles
 The x	axis is the database

after the given update
 The y	axis is the average number of read operations to read

a long list
 In the �nal index� the whole style performs about �
� times better than

the �ll style with in	place updates and about � times better than the new style with

in	place updates

Allocation Strategies

There are several issues to consider with the allocation strategies
 How is the constant

value for an allocation strategy selected� Given an allocation constant� is there some

rule to select its value independent of a policy� Given any style� is one of the allocation

strategies best� Let us start by focusing on a particular style� say the new style
 We

assume in	place updates since allocation strategies are not otherwise used

As the amount of reserved space for each list rises �by increasing k�� the number

of in	place updates rises and behavior converges towards a style where most updates

long lists are in	place
 In addition� as the amount of reserved space rises the disk

utilization falls and the average number of reads for a long list approaches �
 This

behavior presents a classical trade	o� between disk utilization and query performance

Experiments described in reference
TGMS��� describe this trade	o� in more detail

In	place updates also increase the update time for the new style� but the range of up	

date times for in	place updates is only ��� in terms of I�O operations �see Figure ���

Thus� allocation strategies can only have a small impact on update time

Table �� compares various allocation strategies and constants for the new style

The �Read� column is the average number of read operations required to read a long

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ���

Allocation k Read Utilization In	place Fraction

constant ��� �
�� �
�� ������ �
��

constant ���� �
�� �
�� ������ �
��

block � �
�� �
�� ������ �
��

block � �
�� �
�� ������ �
��

proportional �
� �
�� �
�� ������ �
��

proportional �
� �
�� �
�� ������ �
��

Table ��� A comparison of allocation strategies with respect to the �nal index for the

new styles

Allocation k Utilization In	place Fraction

constant � �
�� ������ �
��

constant ��� �
�� ������ �
��

constant ���� �
�� ������ �
��

block � �
�� ������ �
��

block � �
�� ������ �
��

block � �
�� ������ �
��

proportional �
� �
�� ������ �
��

proportional �
�� �
�� ������ �
��

proportional �
� �
�� ������ �
��

Table ��� A comparison of allocation strategies with respect to the �nal index for the

whole style

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ���

list
 The �Utilization� column is the internal utilization of the long lists
 The �In	

place� column is the total number of in	place updates needed to build the �nal index

incrementally
 The �Fraction� column is the fraction of in	place updates of the total

possible number of in	place updates
 �The total possible number of in	place updates

is �������
� The �In	place� and �Fraction� columns are included only for comparisons

with Table ��
 The constant value for each strategy was chosen by increasing it until

long list utilization was at ���
 This utilization rate was chosen because it o�ered

good read performance� which was not available at higher long list utilization rates

Some additional values of interest are also included in the table
 The table suggests

�and other results not shown here con�rm� that the new style with a proportional

allocation strategy o�ers the best trade	o� by having the best read performance at

this level of utilization

There is also a space	time trade	o� for the allocation strategies for the whole style

The space trade	o� is the utilization of long lists �as for the new style� but the time

trade	o� is only update time� not query performance� since all allocation strategies

o�er the same query performance
 To compare update time� we cannot count I�O

operations since this measure not distinguish between reading the tail of a list to

append an in	memory list and reading the entire list� so we compare the number of

in	place updates for each allocation strategy directly

Table �� shows statistics for various allocation strategies
 The number of read

operations for a long list is always � with the whole style
 The �Util� column is the

internal long list utilization
 The �In	place� column is the total number of in	place

updates needed to build the �nal index incrementally
 The �Frac� column is the

fraction of in	place updates of the total possible number of in	place updates
 The

table shows that the proportional allocation strategy is the best overall strategy since

it is the only strategy to o�er at least ��� for both utilization and the fraction of

in	place updates

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ���

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4

i
n
t
e
r
n
a
l

u
t
i
l
i
z
a
t
i
o
n

new
fill

whole

Figure ��� The impact of the constant k for the proportional allocation strategy on

the utilization of long lists in the �nal index
 The �ll style �with the extent allocation

strategy with extent size �� is include for comparison

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ���

140000

150000

160000

170000

180000

190000

200000

210000

220000

1 1.5 2 2.5 3 3.5 4

c
u
m
u
l
a
t
i
v
e

i
n
-
p
l
a
c
e

u
p
d
a
t
e
s

proportional allocation constant

new
fill

whole

Figure ��� The impact of the constant k for the proportional allocation strategy on

the cumulative number of in	place updates that occur in building the �nal index

The �ll style �with the extent allocation strategy with extent size �� is include for

comparison

Recall that the �ll style has its own extent allocation strategy
 The same space	

time trade	o� as with the new strategy exists
 So� as the number of extents e is

increased� disk utilization falls and query performance improves
 We conducted the

same analysis for this style as for the others� increasing e until utilization falls to

���
 Our experiments show that a value of � for e gives an average number of

read operations for a long list of �
��� and ������� in	place updates
 Both of these

performance measures are worse than the best new style policy
 However� the �ll style

as an advantage of limiting the maximum required contiguous region of disk �in this

case to � blocks� since e has a value of ��

We have seen that the proportional allocation strategy is a good choice for the new

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ���

and whole styles
 We now consider the selection a good constant k for this allocation

strategy
 Figure �� shows the impact of varying k on the utilization of long lists
 The

�gure shows that� generally� as k rises� the utilization falls for both the new and whole

styles �the �ll style does not interact with the proportional allocation strategy and

it is included for comparison only�
 However� there is a cusp in the new style at �

This cusp is because multiple updates to the same word have approximately the same

length
 A constant value of � reserves space for one additional in	place update
 The

simultaneous increase in in	place updates is shown in Figure ��
 The y	axis starts at

�������
 There is only a marginal improvement from ��� of the in	place updates at

a constant value of �
� to ���� of the in	place updates at a constant value of �
� is

possible
 Considering both �gures� we see the the majority of gains are from constant

values less or equal to �
�
 Based on the trade	o�s presented� we recommend the

proportional allocation scheme with a constant of �
� for the whole style and �
� for

the new style

����� Exercise Disks

Figure �� shows the cumulative time taken to build the �nal index incrementally

The x	axis is the index after the given update
 The y	axis is the cumulative time

needed to build the index incrementally
 Each curve is labeled with the values of

Style and Limit
 The �ll style without in	place updates ��ll �� is not shown since

our disks were not large enough to store the long lists for this policy due to gross

underutilization of disk space �see Figure ���
 The range of cumulative times for the

�nal index varies by a factor of � as opposed to a factor of � determined by comparing

total I�O operations �see Figure ���
 The signi�cant di�erence between the policies

implies that a policy must be chosen with care

Comparing Figure �� with Figure ��� we see that measuring cumulative I�O opera	

tions produces the same qualitative comparison of policies as measuring real execution

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ���

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60 70

c
u
m
u
l
a
t
i
v
e

t
i
m
e

(
s
e
c
o
n
d
s
)

index after update

whole 0

whole z

fill z

new z

new 0

Figure ��� The cumulative time needed to build the �nal index

time
 That is� the ordering of policies from best to worst is the same �accounting for

the addition of whole with in	place updates and the removal of �ll without in	place

updates�
 This result justi�es using I�O operations to compare policies

Also the new style with limit of � has an almost linear growth in the cumulative

time taken as opposed to a more steep increase in the cumulative number of I�O

operations
 This behavior occurs because the exercise disk process coalesces I�O

operations
 That is� since for long list updates this policy only writes sequentially

to the disk� all the write operations in an update can be coalesced �up to the bu�er

size imposed by the exercise disk process�
 Figure �� also shows that the whole style

without in	place updates takes the longest cumulative time to build the �nal index

This behavior is due to the additional movement of long lists compared to in	place

updates

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ���

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70

t
i
m
e

p
e
r

u
p
d
a
t
e

(
s
e
c
o
n
d
s
)

update

whole 0

whole z

fill z

new z

new 0

Figure ��� The time per update

Figure �� shows the time taken to perform each update� this �gure is the non	

cumulative version of the previous �gure
 The x	axis is the update number
 The

y	axis is the time to execute the update by the exercise disk process
 Each curve

is labeled with values of Style and Limit
 The update times grow over time as the

number of long lists in the index grows
 However� the increase for new style without

in	place updates is slight because updates to di�erent long lists are coalesced into

single I�O operations
 A second e�ect shown in the �gure is that the whole style with

in	place updates �Limit � z� is the only policy whose per update time is sensitive to

the variations in the size of the update
 The average number of in	place updates for

this policy is sensitive to the average number of postings in a long list update

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ���

��� Conclusion

In dynamic� time	critical text	document databases� it is important to modify in	

dex structures in place as documents arrive
 Our dual	structure index strategy to

addresses this problem
 Comparing the results presented here with the literature�

we have argued that the dual	structure index has better performance than existing

implementations and provides incremental updates
 The principle sources of the im	

provements are the dynamic dividing the postings into short and long inverted lists

and using appropriate data structures for each type of list

In studying our index� we found a classical trade	o� between update time and

query time
 That is� the time spent incrementally updating the index is repaid with

better query performance
 Performance varies by a factor of � in the time to build an

index and a factor of �� in query performance
 Another classical trade	o� was found

between space and time
 As the amount of space wasted in storing long inverted lists

rises� the query performance to read those inverted lists falls
 We described three

di�erent methods for allocating additional space on disk to improve query perfor	

mance and quantitatively describe the trade	o� for these methods
 In addition� we

quantitatively compared overall performance

Generally� the schemes that rewrite the unused space at the end of a long list

before allocating more space take considerably longer than the schemes that don�t

However� the extra space consumed by not rewriting the tail of long lists makes that

option impractical for most applications

While we have analyzed various situations� a designer of an information retrieval

system is faced with the issue of chosing a policy
 Is there a best policy� In general�

no policy is best
 Some policies favor update time and others favor query time

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ���

New style

The new style provides the best update performance� since only the last block of

each long list need ever be read during the updates
 The new style without in	place

updates is the best if update time is critical
 The policy o�ers a factor of � in update

time over the next best policy and a factor of � over the slowest policy
 However� the

policy exhibits poor query time and disk utilization
 The new style with proportional

allocation with constant � compensates for the poor query time and disk utilization

This policy is best if update time is important with reasonable query time
 The policy

is faster by a factor of � over the slowest policy and o�ers query performance within

a factor of � of the best query performance
 Use the new style with a proportional

allocation strategy with a constant of �
� only if query performance is not critical

Fill style

The �ll style o�ers no advantages over the new style except that the maximum con	

tiguous section of disk required is limited �it is unbounded in the new style�
 This

requirement has an advantage in that long lists are automatically divided into sec	

tions of disks that can be written to disk and read in parallel �e
g
� with a disk array�

The cost of satisfying this requirement is small in the case of the �ll style with extent

allocation with constant � since this policy has slightly worse performance on all three

metrics than the new style with proportional allocation with constant �

Whole style

The major advantage of the whole style is its guarantee of � read operation for any

long list
 Providing this guarantee has a cost in index build time
 The penalty arises

from the costs of moving long lists to keep them sequential
 However� this penalty is

not as large as might be expected� due the relative e�ciency of performing sequential

CHAPTER �� INCREMENTAL UPDATES � ACTUAL WORKLOAD ���

disk reads and writes
 The whole style without in	place updates has an about ���

slower update time compared to the whole style with a proportional allocation with

constant �
�
 The latter policy has a long list utilization rate of ���
 Thus the latter

policy is the best if query time is critical
 Use the whole style with a proportional

allocation strategy with a constant value of �
� if query performance is critical

An important issue is selecting the right amount of space for buckets and par	

titioning this space into the right number of buckets
 In reference
TGMS���� we

illustrate the trade	o�s involved� but a more detailed study is required
 We also need

to study how to grow the bucket space dynamically since� unfortunately� as the size

of the index grows from the addition of more documents the performance of the index

degrades
 This behavior implies that we need a strategy to rebalance the division be	

tween short and long lists
 Some possible strategies include periodically rebalancing

or rebalancing as the buckets are read and written for each update

Our results are also limited because we considered only a relatively small database

of ��� MB
 In reference
TGMS���� we generate synthetic databases with the same

characteristics as our real database
 Those results indicate that� given the correct

parameters� our algorithms scale well to larger databases

Chapter �

An Alternative Storage Technology

In this chapter� the implementation of an alternative storage technology �AST� for an

information retrieval system is described
 AST implements the algorithms described

in Chapter �
 We describe the implementation of WAIS� the implementation of AST�

and reports some performance comparisons between the two systems

The AST implementation is based on replacing the underlying inverted index

storage structure of the WAIS information retrieval system
 The remaining infras	

tructure� such as the document management� the user interface� and the information

retrieval model o�ered by WAIS are retained in both implementations
 From an end

user�s point of view� both implementations behave identically since they return iden	

tical answers for any given query of a database
 From an administrator�s point of

view� AST o�ers faster and more �exible updates

One feature of WAIS was removed from both the WAIS and AST implementations

When new �les are appended to an existing inverted index� the WAIS implementation

checks to see if the new �les have already been indexed
 The checking algorithm is

O�n�� where n is the number of �le names
 The checking algorithm searches the

�le of �lenames� so the constant associated with the algorithm is large
 With our

experiments� the number of �les is large and the checking algorithm dominates the

���

CHAPTER �� AN ALTERNATIVE STORAGE TECHNOLOGY ���

total computation time
 Every �le is unique in our experiments� so the checking

algorithm was removed from the WAIS and AST implementations
 The checking

algorithm probably should be replaced with more e�cient algorithm
 Removing the

check caused the execution time of one experiment to drop from �� hours to �� hours

Finally� the current AST implementation is limited in certain ways
 With re	

spect to the WAIS implementation� AST does not implement boolean or exact match

searching
 With respect to the simulation� AST works with a single disk �as does the

WAIS implementation� whereas the simulation handles multiple disks
 AST can be

easily modi�ed to handle these features

��� Design of WAIS

To build a database of documents� WAIS parses each document and generates the

postings for each word
 WAIS maintains �ve �les for this infrastructure
 The catalog

�le contains a description of the documents in the index
 This �le is returned to the

user if a search produces no answer
 The document �le maps document to �les �there

may be multiple documents per �le�
 The �lename �le records the name and type

of each �le
 The headline �le records a one line description of each �le
 Finally� the

source �le records the server description of the database
 AST uses this infrastructure

also

In WAIS� two �les contain the inverted index for the database
 The inverted index

�le contains the inverted lists for the words
 The dictionary �le is a dictionary �or

index� that maps words to their inverted lists in the inverted list �le

To build inverted indexes of documents� WAIS proceeds as shown in the pseu	

docode of Figure ��
 WAIS repeatedly �line �� reads documents� parses them �line ��

and inserts the resulting postings into an in	memory index �line ��
 The in	memory

index is implemented as a hash table with open addressing
 The elements of the hash

CHAPTER �� AN ALTERNATIVE STORAGE TECHNOLOGY ���

�
 while documents remain do

�
 while in	memory inverted index not full do

�
 parse next document

�
 insert postings into in	memory inverted index

�
 end

�
 sort in	memory inverted index alphabetically

�
 �ush in	memory inverted index to new temporary �le

�
 free in	memory inverted index

�
 merge temporary �les

��
 end

��
 merge temporary �les into �nal inverted index

��
 build catalog

Figure ��� The WAIS pseudocode for building inverted indexes

CHAPTER �� AN ALTERNATIVE STORAGE TECHNOLOGY ���

Name Bytes Description

INDEX BLOCK FLAG � Flag indicating type of block

NEXT INDEX BLOCK � O�set to the next index block

INDEX BLOCK SIZE � Size of the index block

NUMBER OF OCCURRENCES � Number of postings for the word

Word � �� String representation of the word

Table ��� The �elds of the dictionary �or index� block of WAIS temporary �les

Name Bytes Description

DOCUMENT ID � Document identi�er for this posting

CHARACTER POSITION � Position of posting in document

WEIGHT � Weight or relevance of the posting

Table ��� The �elds of the posting block of WAIS temporary �les

table are records containing a word and its associated inverted list
 This processing

continues �line �� until the in	memory index is �full� �that is� it holds certain number

of postings�
 At this point� the in	memory index is sorted �line �� and �ushed to a

new temporary �le �line ��� and the in	memory index is freed �line ��
 The new tem	

porary �les are then merged �line �� as described below
 This processing continues

until all documents have been processed

The format of the temporary �les consists of a pair of records for each word
 The

�rst record of the pair is a variable length dictionary �or index� record that contains

the word itself and data that describes the format of the second record of the pair

The �elds for the dictionary record are described in Table ��
 The second record

of the pair is a variable length list for the word
 Table �� describes the �elds for

CHAPTER �� AN ALTERNATIVE STORAGE TECHNOLOGY ���

each posting
 Each pair of records for a word contains all the information for that

word
 Thus� little state information is maintained in memory between each �ush of

the in	memory index

A temporary �le is always written sequentially
 After several temporary �les are

written� they are merged into larger temporary �les of the same format
 �The merging

operation saves some disk space�
 Merging two temporary �les of length n� and n�

takes time O�n� � n��
 The exact sequence of merges of temporary �les into larger

temporary �les varies across the implementations of WAIS
 The exact sequence is

unimportant here
 Finally� when all documents have been processed� the last in	

memory index is written to a temporary �le
 The existing temporary �les are merge

into one �nal inverted index �line ���

At this point �line ��� a temporary copies and the �nal index itself exist� so the

total disk requirement for this implementation is about twice the size of the �nal

index
 During the generation of the �nal index� a dictionary �le is also created
 The

dictionary �le contains the words and o�sets to each word�s list in the �nal inverted

index

��� Design of the Alternative Storage Technology

The implementation is a modi�cation of the freeWAIS version of WAIS produced by

CNIDR
FRE���
 The document parsing and construction of the in	memory inverted

index infrastructure is retained
 The build of the catalog is also retained
 The fol	

lowing are dropped from the implementation� sorting the in	memory index� �ushing

it to a temporary �le� merging temporary �les� and building the dictionary
 Thus�

the catalog �le� the document �le� the �lename �le� the headline �le and the source

�le are identical in both implementations since these �les are related to the parsing

of documents and �les and the organization of the server information

CHAPTER �� AN ALTERNATIVE STORAGE TECHNOLOGY ���

�
 while documents remain do

�
 while in	memory inverted index not full do

�
 parse document

�
 insert postings into in	memory inverted index

�
 end

�
 sort in	memory inverted index by bucket then alphabetically

�
 for each bucket

�
 read bucket

�
 merge in	memory inverted index for bucket and bucket

��
 queue over�ow and long inverted lists

��
 write new bucket

��
 end

��
 process queue as long inverted lists

��
 end

��
 build catalog

Figure ��� The AST pseudocode for building inverted indexes

CHAPTER �� AN ALTERNATIVE STORAGE TECHNOLOGY ���

Figure �� shows the pseudocode for the AST implementation
 Lines �	� are the

same as in Figure ��
 Thus documents are processed in an identical way up to the

construction of the in	memory inverted index
 For the AST implementation� when

the in	memory inverted index is full� the dual structure index is updated as described

in Chapter �
 This update is done in three stages
 First� the inverted lists in the

in	memory inverted index are sorted into bucket order and within each bucket are

sorted �line ��
 This sort partitions the in	memory index into the inverted lists for

each bucket
 Next� each bucket is read �line �� and the corresponding inverted lists

for the bucket are merged �line �� with the inverted lists read from the bucket
 Since

the lists for an in	memory bucket within the index and the lists in the bucket are in

alphabetical order� the merge is linear time in the sum of the sizes of these lists

During the course of the merge of a partition of the in	memory inverted index

and a bucket� each word and its inverted list is classi�ed into one of �ve types� a

word that has never appeared before� a word that has a bucket inverted list� an word

that has a long inverted list �as de�ned in Chapter ��� a word that another inverted

list already queued� and a word �with the longest inverted list in the bucket� that

over�ows from the bucket
 The �rst two types are handled by the merge operation

with the bucket
 The last three types are handled by adding the word and its inverted

list to a queue �line ���
 The checking of each inverted list to determine its type is a

hash	table search

After the buckets are processed� the queued lists are processed �line ���
 Every list

in the queue is a long inverted list
 They are processed according to the algorithms in

Chapter �
 The system administrator chooses among the new� �ll� and whole policies

and the constant associated with the proportional allocation scheme
 Because of the

results of Chapter �� only the proportional allocation scheme was implemented since

it o�ers superior performance

During the course of the merge the lists of the in	memory inverted index are

CHAPTER �� AN ALTERNATIVE STORAGE TECHNOLOGY ���

Name Bytes Description

word � �� String representation of the word

o�set � Index o�sets to the posting list

occur � Number of occurrences of a word

posting � A posting

Table ��� The �elds of the bucket format on disk

copied to another data structure of essentially the same form
 This copy is technically

unnecessary
 It is simply a by	product of the integration of the AST implementation

with the WAIS implementation
 This copy doubles the space needed to represent the

in	memory inverted index in the AST implementation and introduces a small number

of page faults

The �elds of the bucket format on disk are listed in Table ��
 It consists of a

sequence of words� a sequence of o�sets with one o�set per word� and the sequence

of inverted lists for each word
 A word consists of the word as a null terminated

string� and a null string terminates the sequence of words
 Next is a sequence of

o�set indexes into the sequence of postings
 O�sets have an o�set index that points

to the array of postings and a two	byte integer that gives the number of occurrences

of the word
 The �rst o�set is the start of the posting lists
 �It occurrence �eld is set

to ��
 Each subsequent o�set points to the slot beyond the end of the corresponding

word�s posting list
 An index is an o�set represented by a �	byte integer indicating

the last posting of the inverted list for the word
 �Only � bytes are needed because of

the way we index an array of postings in the bucket
� The inverted lists are sequences

of postings in the format described in Table ��

Table �� lists the bytes and contents for each �eld of a bucket that contains two

words �rip� and �roaring� each with a single posting
 The word sequence is the string

CHAPTER �� AN ALTERNATIVE STORAGE TECHNOLOGY ���

Bytes Value Description

� �rip� The string for a word �with a null byte terminator�

� �roaring� The string for a word �with a null byte terminator�

� � The null string �a null byte terminator�

� � An alignment byte for the o�set table

� � The start o�set

� � The end o�set for the word �rip�

� � The number of occurrences for the word �rip�

� � The end o�set for the word �roaring�

� � The number of occurrences for the word �roaring�

� � Alignment bytes for the posting table

� The posting for the word �rip�

� The posting for the word �roaring�

Table ��� The bucket disk data structure for two words

CHAPTER �� AN ALTERNATIVE STORAGE TECHNOLOGY ���

Name Bytes Description

padded word �� String representation of the word

extent � Pointer to the extent list

next � Next element in extent table list

Table ��� The �elds of the extent table

Name Bytes Description

block � Pointer to a block description

used � Number of postings used in this block

next � Next element in extent descriptions list

Table ��� The �elds of an extent description

�rip�� a null character� the string �roaring�� a null character� and a null string
 Then

there is a single null byte to align the subsequent o�set table
 The �rst o�set in

the o�set table� for the word a two	byte integer index to the posting of the word rip

�contains ��� a two byte integer index to the posting for the word roaring �contains

��� the posting for the word rip �� bytes� and �nally the posting for the word roaring

�another � bytes�

Name Bytes Description

id � The block identi�er

size � Number of blocks in this block

next � Next element in the free block list

Table ��� The �elds of a record of a region of the inverted �le

CHAPTER �� AN ALTERNATIVE STORAGE TECHNOLOGY ���

An extent table records which words have long lists
 The disk data structure and

the in	memory data structure for the extent table are identical
 It is a singly linked

list of records� one record for each word with a long list� the �elds are described in

Table ��
 To record where each extent for a word resides� the extent	table record

points to a linked list of extent descriptions
 The �elds of the records for the extent

descriptions are given in Table ��
 Each extent consists of one variable length region

of the inverted �le
 A free	block manager deals with freed regions of the inverted �le

The �elds for the records describing each free region are described in Table ��
 Each

region is of a variable number of blocks
 Every block is of the same �xed	sized and

each record describes the starting block �numbered from the �rst block in the �le�

and the number of blocks for a region
 For free block management� a list of records

is maintained in increasing block order
 This implementation requires linear time to

insert a freed block but permits constant time coalescing of adjacent freed regions

We use a �rst �t algorithm for allocating of regions
 There is always exactly one

region for each extent description
 The use of separate records for recording regions

simpli�es the implementation �at the expensive of some memory� since region records

can be passed directly to the free	block manager when necessary

Figure �� shows the data structure layout for two words �cat� and �mouse
� The

word cat has two extent regions
 The �rst extent contains ��� postings and is stored

starting in block �� in a region consisting of � block
 The second extent contains ���

postings and is stored starting in block �� in a region consisting of � blocks
 The

word mouse has one extent containing ���� postings starting in block �� in a region

consisting of � blocks
 Given the size of each posting and the size of a region� the

number of free posting slots in any region can be computed

��� Results

CHAPTER �� AN ALTERNATIVE STORAGE TECHNOLOGY ���

Etab

Table

 cat

Table

 mouse

ExtentExtentExtent

 200 300 1000

RegionRegionRegion

 14 17 28

 1 2 2

Figure ��� The data structure layout for two long list words �cat� and �mouse
�

CHAPTER �� AN ALTERNATIVE STORAGE TECHNOLOGY ���

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 5 10 15 20 25 30

s
e
c
o
n
d
s

database after update

AST
WAIS

Figure ��� The cumulative time to build inverted index for the month of December

for WAIS and AST with the new policy

CHAPTER �� AN ALTERNATIVE STORAGE TECHNOLOGY ���

To test the performance of our implementation� we built an index for the month of

December from our experiment database described in Chapter �
 Figure �� shows the

cumulative build time for this data
 The x	axis has only �� data points since one day

of data for the month of December is missing
 The y	axis is the cumulative building

time in seconds
 Comparing this graph to Figure �� shows that the implementation

is lower than expected

����� Simulation vs� Implementation

The di�erence in the scale of the graphs is due to the several di�erences between the

simulations of that chapter and the AST implementation
 We �rst consider the dif	

ferences are based on variations in the modeling of the workload and implementation

For modeling� in the simulation the vocabulary of the index is the set of words that

appear in documents
 The WAIS information retrieval model� however� in addition to

the set of words in documents� also represents pairs of capitalized words in sequence

as separate �words
� Thus� the text fragment �the Thin Man� has four words� the

three in the text fragment and an addition word �thinman
� Thus� in comparing

the simulation to the implementation� we must remember that the implementation�s

vocabulary is larger for a document database

The implementation di�ers from the simulation in several ways
 The implemen	

tation is executed over a single disk and the simulation uses three disks �a factor of

� improvement�
 The simulation keeps the entire bucket data structure in memory

At the end of each batch update� the entire bucket data structure is written to disk

In the implementation� only one bucket is kept in memory at any time
 This saves

memory at a factor of � cost in I�O operations that deal with buckets
 The simulation

times assume that document processing and index building are overlapped disk and

CPU operations �a factor of � improvement�
 Finally� the simulation writes to raw

disk and the implementation writes to the �le system �a factor of � improvement�

CHAPTER �� AN ALTERNATIVE STORAGE TECHNOLOGY ���

These di�erences total a factor of �� di�erence in performance

The implementation of the bucket data structure requires about �� bytes on aver	

age to represent a word and � bytes to represent a posting
 The simulation represented

a word as one unit and a posting as one unit� i
e
 a word and posting have equal size

I�O operations are not explicitly sorted in the implementation
 They are sorted by the

�le system
 The simulation sorts the I�O operations explicitly
 These two di�erences

have a small performance impact

����� WAIS vs� AST

In the WAIS implementation� there is no overlap between the building of the in	

memory inverted index and the disk	based inverted index
 Performance measure	

ments were taken to measure the time spent in various parts of the implementation

Of the total ������ seconds� our measurements show that ��
�� ������ seconds� of

the time taken to construct an index is spent in all of the processing needed to build

an in	memory index
 An additional ��
�� ������� seconds� of the time is spent

maintaining the headline �les� catalog �les� etc
 The largest fraction ��
�� �������

seconds� is spent merging inverted lists
 Only �
�� ���� seconds� of the time is spent

writing in	memory indexes to temporary �les
 Finally� �
�� ���� seconds� is spent

sorting the in	memory index

In the AST implementation� there is also no overlap between the building of the in	

memory inverted index and the disk	based inverted index� since both implementations

share this code
 The total time to build the index is ����� seconds
 ��
�� ������

seconds� is spent building the in	memory index
 The di�erence in the raw number of

seconds in building in	memory indexes is due to the additional time spent opening the

extent table catalog
 Maintaining the headline� catalog etc
 �les takes ��
�� ������

seconds�
 Writing the postings to long lists takes �
�� ���� seconds�� and reading�

writing and updating the bucket data structure takes ��
�� ������� seconds� of the

CHAPTER �� AN ALTERNATIVE STORAGE TECHNOLOGY ���

total time
 Clearly� there is room for improvement in the implementation of the bucket

data structure
 Finally� sorting the bucket data structure takes �
�� ���� seconds�

The larger sort time for sorting the bucket data structure in the AST implementation

compared to the WAIS implementation is due to the increased complexity of the

comparison function
 In the AST implementation� each comparison requires a two

hash computations and perhaps a string comparison� the WAIS implementation does

only a string comparison is required

Finally� the major di�erence is that the WAIS implementation discards words

with long inverted lists
 Thus� the curve for the WAIS implementation in Figure ��

does not represent the entire inverted index� the curve for the AST implementation

does
 This can be seen by examining the curve
 The curve �attens out after update

��
 Since the WAIS implementation is an O�n�� implementation� this curve should

continue to climb in a nonlinear fashion
 This feature of WAIS explains why the

performance improvement of AST is relatively small

The current implementation of AST does work correctly
 The same set of docu	

ments for a given query are produced by both the AST and the WAIS implementation

However� performance improvements still remain to be done
 We suggest the following

improvements� expanding of the implementation to use multiple disks� using raw I�O

instead of the �le system� and overlapping of I�O operations and CPU operations

Chapter �

Conclusion

The falling costs of processors� main memories� and disks have encouraged storaging

of increasing numbers of documents on	line
 The advent of the National Information

Infrastructure will provide access for millions of users to thousands of document

repositories
 As a result� there is renewed interest in e�cient document indexing

techniques

In this thesis we demonstrate that distributed architectures can e�ciently solve

this problem
 Since our architecture is manufactured on a commodity basis� this

architecture is also cost e�ective
 This thesis has quanti�ed the engineering trade	

o�s of information retrieval systems
 Essentially� we provide a guide to the engineer

constructing such a system

In Chapter � we explore four di�erent physical organizations for inverted lists

The disk index organization constructs an inverted �le for all the documents logically

assigned to a disk
 The I�O bus index organization constructs inverted lists for all

the documents logically assigned to the disks of an I�O bus and distributes them

among the disks attached to the I�O bus
 The host index organization constructs an

inverted lists for all the documents logically assigned to a processor and distributes

them
 The system index organization constructs inverted list for all documents and

���

CHAPTER 	� CONCLUSION ���

distributes them among all disks

Each physical organization has an associated query processing algorithm
 The

disk� I�O bus and host index organizations are similar in that they issue identical

subqueries to all processors in the system� process the subqueries independently� and

then concatenate the subresults to produce the �nal result
 However� each of these

index organizations processes a subquery in a di�erent way� depending on the number

of disk and I�O buses attached to each host
 The system index organization divides

the query into di�erent subqueries depending on the distribution among the processors

of the keywords of the query
 Each subquery is processed independently and the

subresults are merged to produce the �nal result
 As the number of processors increase

the disk� I�O bus and host index organization issue more and more subqueries
 The

system index organization� however� is independent of the number of processors at

least for boolean information retrieval models

In addition to the query processing algorithm described above� we studied three

optimizations of the system index organization
 These optimizations are based on

prefetching inverted lists in an attempt to reduce the amount of tra�c on a local area

network

That chapter used simulation to analyze the performance of the four index or	

ganizations and seven query processing algorithms
 Our work load is based on an

analytic model
 Generally� the host index organization works best� particularly if

the inverted lists are striped across multiple disks
 Because the inverted lists are so

long in full	text systems �particularly those examined under our analytic model� the

host index organization avoids the transmission of inverted lists across the processor

interconnect ! the bandwidth bottleneck of these systems

In Chapter �� we extended the work of the previous chapter by considering a

di�erent work load based on actual user traces gathered from the Stanford University

FOLIO information retrieval system
 These traces permit the study of a speci�c

CHAPTER 	� CONCLUSION ���

implementation and use of the physical index organizations and query processing

algorithms
 We also studied the impact of caching and the behavior of systems as

the inverted lists were scaled and as the number of processors were scaled
 In this

situation� the system index organization worked the best since the inverted lists that

are queried in the trace are generally short
 We found that caching worked well

in increasing query throughput since the architecture does less total I�O work per

query
 Caching had little e�ect on query response time� principally due to the I�O

operations needed from cache misses �usually at least one per query�
 We studied

database scaling of the inverted list and processor scaling
 We found that some query

optimization methods worked well as the processors scaled� others did not
 One

disadvantage of prefetching is that while it reduces the total amount of tra�c on the

network� it also decreases the amount of parallel processing done per query

In Chapter � we return to an initial assumption of the previous two chapters
 In

typical commercial information retrieval systems each inverted list is stored contigu	

ously on disk to maximize query performance
 We assume contiguous inverted lists

in the previous two chapters
 However� this choice for the physical organization of

inverted lists comes with a high cost in update time
 Each time the inverted �le is

updated� the inverted �le must be reorganized to keep each inverted list contiguous

on disk
 We invent new data structures and algorithms to address this problem
 Es	

sentially� we store infrequent words with short inverted list in a �xed	sized structure

and we store frequent words with long inverted lists in a variable sized structure
 The

division between the two types of words is determined dynamically

In this thesis� our methodology is based on applying the principles of distributed

databases to this problem
 We draw on work from distributed query optimization�

indexing methods� system optimization issues� data structures� and caching tech	

niques� among other issues� to construct e�cient systems
 We construct algorithms

to optimize the incremental update problem and describe the engineering trade	o�s

CHAPTER 	� CONCLUSION ���

involved
 We quantitatively explore three strategies for laying out inverted lists
 One

strategy� for each incremental update� starts a new contiguous region of disk for each

inverted lists
 This strategy optimizes update time at the expense of query time
 A

second strategy organizes inverted lists into contiguous regions of disk
 This strategy

optimizes query time at the expense of update time
 The third strategy organizes

inverted lists into extent sized contiguous regions of disk
 The strategies can be mod	

i�ed by permitting in	place updates
 We quantitatively explore three strategies for

determining the amount of space to reserve for in	place updates at the end of each

long inverted list
 One strategy adds space for a constant number of postings
 A

second strategy adds space in �xed blocks of postings �essentially rounding up to the

next block size�
 A third strategy adds a reserved space that is proportional to the

size of the inverted lists
 We show that the update optimized strategy with in	place

updates using a proportional reserved space strategy for inverted lists provides fast

update times and reasonably good query performance
 The query	optimized strategy

performs well on space utilization

Our performance evaluation is based on multiple methods
 We use simulation in

several forms and model user work load in three ways ! analytically and trace	based

for queries� and an actual work load for updates
 While each type of performance

evaluation has advantages and disadvantages� we found that calibrated simulation

models o�er �exibility� speed of construction� and realistic results
 The quantitative

basis for the study of database systems will become increasingly important

For future work� we envision several avenues
 Several speci�c issues that are direct

extension of this thesis need to be addressed
 There are hundreds of query optimiza	

tion techniques in the database literature
 Our study only scratches the surface of

optimization of inverted lists
 Two avenues that may be fruitful are pipelining of

query processing and using indexes on inverted lists
 In our simulations� an entire

inverted list is read at once
 In pipelining� only part of an inverted list is read at

CHAPTER 	� CONCLUSION ���

any one time for query processing
 The advantage of pipelining is that any system

resource is busy for a shorter period of time� which usually increases system through	

put
 Secondly� query response time for the initial answer will be reduced
 However�

the total work for the query will be increased
 For indexes� we use no secondary

indexing method to access some part of an inverted list randomly� i
e
� entire inverted

lists are always read
 In the case of merging a long inverted list and a short one� it

may be faster to read the short inverted list and then probe� via a secondary index�

the long inverted list

The update algorithms of Chapter � essentially apply to the host index organi	

zation described in the introduction
 However� the system index organization o�ers

performance advantages in some situations and the incremental update problem for

this organization needs to be studied

Constructing a prototype would permit the exploration of issues such as the perfor	

mance impact of a �le system� the impact of various nonlinear compression functions�

and the impact of memory contention

More generally� a merging of information retrieval and databases would be bene�t

both areas
 For instance� some information retrieval systems automatically route new

documents to users based on user pro�les of interest
 Selective dissemination of infor	

mation can be implemented in an active rule	based system that processes information

retrieval queries
 Another example is distributed processing of queries across a wide

area network
 Initial studies
GGMT��� indicate that information retrieval across the

INTERNET is possible in some situations
 In the other direction� the information re	

trieval community has done extensive modeling of the e�ectiveness of queries
 These

models assume that the answer to a query is imprecise
 Database theory has typically

assumed that the model is a precise expression of the world
 However� combining in	

formation retrieval and database systems will require that database models handle

imprecise answers

Appendix A

Derivation of the Probability

Distribution Z

Given the curve �t equations� we wish to derive the form of the probability distribution

Z� which accomplished by transforming the continuous curve �t equation from a

logarithmic domain to a linear domain and then using this equation to approximate

an integer probability distribution
 The distribution that results from a linear curve

�t is derived by introducing two auxiliary equations

x� � lnx� y� � ln y

that describe the relationship between the domains
 The curve �t equation is

y� � mx� � b

and by replacement and exponentiating becomes

elny � em lnx�b

which reduces to

y � em lnxeb � eln
x
m�eb � xmeb�

���

APPENDIX A� DERIVATION OF THE PROBABILITY DISTRIBUTION Z ���

Typically a Zipf Harmonic function
Zip��� is used to approximate the distribu	

tion of the occurrences of high frequency words in a document
 Such a function

corresponds to a linear �t in log space
 The de�nitions of the Zipf Harmonic function

appear in reference
Tri��� as follows
 Here� we model the distribution of all the words

in the document� which simpli�es the analysis and has little impact since we simulate

only the high frequency words
 To show this relationship� suppose for the moment

that Z is this function
 We arrange the probabilities of Z�j� in nonincreasing order

Z��� � � � � � Z�T �
 Zipf�s law states that

Z�i� �
c

i
� � � i � T�

where the constant c is determined from the probability distribution normalization

requirement�
PT

i�� Z�i� � �
 Thus c �
�
HT
where HT is the T th Harmonic number

Given this de�nition� we derive the linear form of the Zipf Harmonic function in

log�log graphs as follows
 Let

x� � lnx� y� � ln y

again describe the relationship between the the logarithmic and linear domains� and

rewrite x as

ex
�

� x

From the derivation above we can write

y �
�

HTx

for the equation of the distribution
 By substitution�

y� � ln
�

HTx
� ln � � lnHT � lnx

we derive the linear form

y� � �x� � lnHT �

APPENDIX A� DERIVATION OF THE PROBABILITY DISTRIBUTION Z ���

This derivation demonstrates that the Zipf Harmonic function is at best some linear

�t on the data shown
 However� Figure � shows that the quadratic �t is better an

any linear �t

Returning to the problem of determining equation Z from the quadratic �t� we

can use a derivation similar to the one above�

x� � lnx� y� � ln y

y� � ax�
�
� bx� � c

elny � ea
lnx�
��b lnx�c

y � ea
lnx�
�

eb lnxec � ea lnx ln xeln
x
b�ec � �eln
x

a��lnxeln
x
b�ec

which produces the general form

y � xa lnx�bec�

Thus� by using this continuous approximation to the integer probability distri	

bution and extracting the values of a� b and c from the curve �t� we can express Z

as

Z�j� �
j����������ln j���������e���	���

������� � ���

where the denominator is a normalization constant

Appendix B

Derivation of the e	ect of u

In this appendix we derive the e�ect of u on the expected size of a query answer set

A document matches a query when every word that appears in the query also appears

in the document
 For expected number of documents to match a query of length K�

we write

D � Pr�query Y of length K matches document A�

by the independence of documents�

D �
X
Y �S

Pr�Y � Pr�Y matches A j Y �

by the theorem of total probability
 The conditional probability

Pr�Y matches A j Y �

Pr��v�� � � � � vK� matches A j Y � �v�� � � � � vK��

Pr�v� matches A� � � �Pr�vK matches A� j Y � �v�� � � � � vK�

reduces to a multiplication by the independence of each match
 The probability of a

match of a word v and a document A

Pr�v matches A�

���

APPENDIX B� DERIVATION OF THE EFFECT OF U ���

Pr�v occurs at least once in A�

� � Pr�v does not occur in A�

�� Pr�v does not occur as word�� � � � � wordW in A�

� � ��� Z�v��W

reduces to a simple function of Z and W by the independence of each word trial

Thus� by replacement� we arrive at the expected number of documents to match a

query of size K�

D �
X

Y �
v������vK��S

Pr�Y �
�� �� � Z�v���
W � � � �
�� ��� Z�vK��

W � ���

We can reduce this equation further by using the independence assumption about the

set of queries S
 Let the words of a query be chosen independently according to a

uniform distribution Q�j�� then Pr�Y � � � �
uT
�K and

D

�uT �K
X

v������vK��S

�� �� � Z�v���
W � � � �
�� �� � Z�vK��

W �

becomes

D

�uT �K
X
v��V �

� � �
X

vK�V
�

�� ��� Z�v���
W � � � �
�� ��� Z�vK��

W �

by independence of the words that appear in the query
 �This assumption is tentative�

some features of user interfaces such as thesauri and wild	cards will invalidate this

assumption
� We rewrite this as

D

�uT �K
X
v��V �

�� ��� Z�v���
W � � � �

X
vK�V

�

�� �� � Z�vK��
W �

and �nally�

D

�uT �K

�
uTX
v��

�� �� � Z�v��W �

�K
�

APPENDIX B� DERIVATION OF THE EFFECT OF U ���

In the equation above� the expression �����Z�v��W can be viewed as the probability

of at least one success in W trials where a success is determined by the distribution

Z�j�
 Since the summation in the above equation is di�cult to compute� we approx	

imate this expression by the use of a Poisson approximation of the Binomial theorem

as follows
 The probability of x successes of probability p in Y trials is the binomial

distribution b�x�Y� p�
 The Poisson distribution is p�x��� � �xe��

x

 The approxima	

tion of the Binomial distribution by a Poisson distribution is by writing � � pY �

which is valid when Y � �� and p � ����
Tri���
 Let Y � W� p � Z�j�� � � WZ�j�

The probability of � successes in the Poisson distribution is p����� � e��
 The prob	

ability of at least one success is � � e��
 Thus� �� �� � Z�v��W � � � e�WZ
j�
 The

equation above can be rewritten as

D

�uT �K

�
uTX
v��

�� e�WZ
j�

�K
�

We use Mathematica
Wol��� to perform the summation and using the parameter

values in Table � and Equation � for Z� we graph this function for the various values

of K and u in Figure �

Bibliography

AS��� Ijsbrand Jan Aalbersberg and Frans Sijstermans
 High	quality and high	

performance full	text document retrieval� the parallel infoguide system

In Proceedings of the First International Conference on Parallel and

Distributed Information Systems� pages �������� Miami Beach� Florida�

����

BCCM��� Eric W
 Brown� James P
 Callan� Bruce Croft� and J
 Eliot B
 Moss

Supporting full	text information retrieval with a persistent object store

Technical Report ��	��� University of Massachusetts� Amherst� Depart	

ment of Computer Science� August ����

Bur��� Forbes J
 Burkowski
 Retrieval performance of a distributed text

database utilizing a parallel processor document server
 In Proceedings of

the Second International Symposium on Databases in Parallel and Dis�

tributed Systems� pages ������ Dublin� Ireland� ����

CD��� D
 Chapman and S
 DeFazio
 Statistical characteristics of legal document

databases
 Technical report� Mead Data Central� Miamisburg� Ohio�

����

CEMW��� Janey K
 Cringean� Roger England� Gordon A
 Manson� and Peter Wil	

lett
 Parallel text searching in serial �les using a processor farm
 In

���

BIBLIOGRAPHY ���

Proceedings of Special Interest Group on Information Retrieval �SIGIR��

pages �������� ����

Che��� Ann L
 Chervenak
 Performance measurements of the �rst RAID pro	

totype
 Technical Report UCB�UCD ������� University of California�

Berkeley� May ����

CP��� Doug Cutting and Jan Pedersen
 Optimizations for dynamic inverted

index maintenance
 In Proceedings of Special Interest Group on Informa�

tion Retrieval �SIGIR�� pages �������� ����

DeF��� Samuel DeFazio
 Document retrieval benchmark
 Working Draft Version

�
�� Sequent Computer Systems� ����

DeF��� Samuel DeFazio
 Full	text document retrieval benchmark
 In Jim Gray�

editor� The Benchmark Handbook for Database and Transaction Process�

ing Systems� chapter �
 Morgan Kaufmann� second edition� ����

DH��� Samuel DeFazio and Joe Hull
 Toward servicing textual database trans	

actions on symmetric shared memory multiprocessors
 In Proceedings of

the International Workshop on High Performance Transaction Systems�

Asilomar� ����

Emr��� Perry Alan Emrath
 Page Indexing for Textual Information Retrieval

Systems
 PhD thesis� University of Illinois at Urbana	Champaign� Octo	

ber ����

Fal��� Christos Faloutsos
 Access methods for text
 ACM Computing Surveys�

��������� ����

FBY��� WilliamB
 Frakes and Ricardo Baeza	Yates
 Information Retrieval� Data

Structures and Algorithms
 Prentice	Hall� ����

BIBLIOGRAPHY ���

Fed��� J
 Fedorowicz
 Database performance evaluation in an indexed �le envi	

ronment
 ACM Transactions on Database Systems� ������������� ����

FJ��a� Christos Faloutsos and H
 V
 Jagadish
 Hybrid index organizations for

text databases
 In A
 Pirotte� C
 Delobel� and G
 Gottlob� editors� Pro�

ceedings
rd International Conference on Extending Database Technology

� EDBT ���� Vienna� ����
 Springer�Verlag

FJ��b� Christos Faloutsos and H
 V
 Jagadish
 On B	tree indices for skewed

distributions
 In Proceedings of ��th International Conference on Very

Large Databases� pages �������� Vancouver� British Columbia� Canada�

����

FRE��� freewais release �
��� beta
 Source code available from the Clearing	

house for Networked Information Discovery and Retrieval �CNIDR� via

anonymous ftp from host ftp
cnidr
org
� ����

GBYS��� Gaston H
 Gonnet� Ricardo A
 Baeza	Yates� and Tim Snider
 Lexico	

graphical indices for text� Inverted �les vs
 PAT trees
 Technical Report

OED	��	��� University of Waterloo Centre for the New Oxford English

Dictionary and Text Research� Canada� ����

GGMT��� Luis Gravano� Hector Garcia	Molina� and Anthony Tomasic
 The ef	

�cacy of gloss for the text database discovery problem
 Technical

Note STAN	CS	TN	��	�� Stanford University� ����
 Anonymous FTP�

db
stanford
edu� �pub�gravano������stan
cs
tn
��
���
ps

GGMT��� Luis Gravano� Hector Garcia	Molina� and Anthony Tomasic
 The e�ec	

tiveness of gloss for the text database discovery problem
 In Proceed�

ings of ���� ACM SIGMOD International Conference on Management

BIBLIOGRAPHY ���

of Data� Minneapolis� MN� ����
 Anonymous FTP� db
stanford
edu�

�pub�gravano������stan
cs
tn
��
���
sigmod��
ps

HC��� Donna Harman and Gerald Candela
 Retrieving records from a giga	

byte of text on a minicomputer using statistical ranking
 Journal of the

American Society for Information Science� �������������� ����

Hol��� Lee A
 Hollaar
 Implementations and evaluation of a parallel text searcher

for very large text databases
 In Proceedings of the Twenty�Fifth Hawaii

International Conference on System Sciences� pages �������
 IEEE Com	

puter society Press� ����

Jai��� Raj Jain
 The Art of Computer Systems Performance Analysis
 John

Wiley and Sons� New York� ����

JO��� Byeong	Soo Jeong and Edward Omiecinski
 Inverted �le partitioning

schemes for a shared	everything multiprocessor
 Technical Report GIT	

CC	������ Georgia Institute of Technology� College of Computing� ����

KMD���� B
 Kahle� H
 Morris� F
 Davis� K
 Tiene� C
 Hart� and R
 Palmer
 Wide

area information servers� an executive information system for unstruc	

tured �les
 Electronic Networking� Research� Applications and Policy�

����������� ����

Knu��� Donald E
 Knuth
 The Art of Computer Programming
 Addison	Wesley�

Reading� Massachusetts� ����

Lin��� Zheng Lin
 Cat� An execution model for concurrent full text search

In Proceedings of the First International Conference on Parallel and

Distributed Information Systems� pages �������� Miami Beach� Florida�

����

BIBLIOGRAPHY ���

Liv��� Miron Livny
 DeNet user�s guide
 Technical report� University of

Wisconsin	Madison� ����

MMN��� Patrick Martin� Ian A
 Macleod� and Brent Nordin
 A design of a dis	

tributed full text retrieval system
 In Proceedings of Special Interest

Group on Information Retrieval �SIGIR�� pages �������� Pisa� Italy�

September ����

PGK��� David A
 Patterson� Garth Gibson� and Randy H
 Katz
 A case for re	

dundant arrays of inexpensive disks �RAID�
 In International Conference

on Management of Data �SIGMOD ���� pages �������� Chicago� Illinois�

����

Sal��� Gerard Salton
 Automatic Text Processing
 Addison	Wesley� New York�

����

Sch��� Bruce Raymond Schatz
 Interactive retrieval in information spaces dis	

tributed across a wide	area network
 Technical Report ��	��� University

of Arizona� December ����

SK��� Craig Stan�ll and Brewster Kahle
 Parallel free	text search on the con	

nection machine system
 Communications of the ACM� �������������

����

SLS���� K
 Shoens� A
 Luniewski� P
 Schwarz� J
 Stamos� and J
 Thomas
 The

Rufus system� Information organization for semi	structured data
 In

Proceedings of the ��th VLDB Conference� Dublin� Ireland� ����

Sta��� Craig Stan�ll
 Partitioned posting �les� A parallel inverted �le structure

for information retrieval
 In Proceedings of Special Interest Group on

Information Retrieval �SIGIR�� ����

BIBLIOGRAPHY ���

STGM��� Kurt Shoens� Anthony Tomasic� and Hector Garcia	Molina
 Synthetic

workload performance analysis of incremental updates
 In Proceedings

of Special Interest Group on Information Retrieval �SIGIR�� Dublin� Ire	

land� ����

Sto��� Harold S
 Stone
 Parallel querying of large databases� A case study

IEEE Computer� pages ������ October ����

STW��� Craig Stan�ll� Robert Thau� and David Waltz
 A parallel indexed al	

gorithm for information retrieval
 In Proceedings of the Twelfth Annual

International ACM�SIGIR Conference on Research and Development in

Information Retrieval� pages ������ Cambridge� Massachusetts� ����

TC��� Howard R
 Turtle and W
 Bruce Croft
 Uncertainty in information re	

trieval systems
 In Amihai Motro and Philippe Smets� editors� Pro�

ceedings of the Workshop on Uncertainty Management in Information

Systems� pages �������� Mallorca� Spain� September ����

TGM��a� Anthony Tomasic and Hector Garcia	Molina
 Caching and database scal	

ing in distributed shared	nothing information retrieval systems
 In Pro�

ceedings of the Special Interest Group on Management of Data �SIG�

MOD�� Washington� D
C
� May ����

TGM��b� Anthony Tomasic and Hector Garcia	Molina
 Query processing and in	

verted indices in shared	nothing document information retrieval systems

The VLDB Journal� ������������� July ����

TGMS��� Anthony Tomasic� Hector Garcia	Molina� and Kurt Shoens
 Incremen	

tal updates of inverted lists for text document retrieval
 Technical

Note STAN	CS	TN	��	�� Stanford University� ����
 Available via FTP

db
stanford
edu��pub�tomasic�stan
cs
tn
��
�
ps

BIBLIOGRAPHY ���

TGMS��� Anthony Tomasic� Hector Garcia	Molina� and Kurt Shoens
 Incremental

updates of inverted lists for text document retrieval
 In Proceedings of

���� ACM SIGMOD International Conference on Management of Data�

Minneapolis� MN� ����

Tri��� Kishor Shridharbhai Trivedi
 Probability and Statistics with Reliability�

Queuing� and Computer Science Applications
 Prentice	Hall� Englewood

Cli�s� New Jersey� ����

Wei��� Peter Weiss
 Size Reduction of Inverted Files Using Data Compression

and Data Structure Reorganization
 PhD thesis� George Washington Uni	

versity� ����

Wol��� Stephen Wolfram
 Mathematica
 Addison	Wesley� Redwood City� Cali	

fornia� �nd edition� ����

Zip��� George Kingsley Zipf
 Human Behavior and the Principle of Least E�ort

Addison	Wesley� ����

ZMSD��� Justin Zobel� Alistair Mo�at� and Ron Sacks	Davis
 An e�cient indexing

technique for full	text database systems
 In Proceedings of ��th Interna�

tional Conference on Very Large Databases� Vancouver� ����

