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Abstract

Accessing data from numerous widely�distributed
sources poses signi�cant new challenges for query opti�
mization and execution� Congestion and failures in the
network can introduce highly�variable response times
for wide�area data access� This paper is an initial ex�
ploration of solutions to this variability� We introduce
a class of dynamic� run�time query plan modi�cation
techniques that we call query plan scrambling� We
present an algorithm that modi�es execution plans on�
the��y in response to unexpected delays in obtaining
initial requested tuples from remote sources� The al�
gorithm both reschedules operators and introduces new
operators into the query plan� We present simulation
results that demonstrate how the technique e�ectively
hides delays by performing other useful work while
waiting for missing data to arrive�

� Introduction

Ongoing improvements in networking technology
and infrastructure have resulted in a dramatic in�
crease in the demand for accessing and collating data
from disparate� remote data sources over wide�area
networks such as the Internet and intranets� Query
optimization and execution strategies have long been
studied in centralized� parallel� and tightly�coupled
distributed environments� Data access across widely�
distributed sources� however� imposes signi�cant new
challenges for query optimization and execution for
two reasons� First� there are semantic and perfor�
mance problems that arise due to the heterogeneous
nature of the data sources in a loosely�coupled envi�
ronment� Second� data access over wide�area networks
involves a large number of remote data sources� inter�
mediate sites� and communications links� all of which
are vulnerable to congestion and failures� From the
end user�s point of view� congestion or failure in any
of the components of the network are manifested as
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highly�variable response time � that is� the time re�
quired for obtaining data from remote sources can vary
greatly depending on the speci�c data sources accessed
and the current state of the network at the time that
such access is attempted�

The query processing problems resulting from het�
erogeneity have been the subject of much attention in
recent years �e�g�� �SAD�	
� BE	�� TRV	��
� In con�
trast� the impact of unpredictable response time on
wide�area query processing has received relatively lit�
tle attention� The work presented here is an initial
exploration into addressing problems of response�time
variability for wide�area data access�

��� Response Time Variability

High variability makes e�cient query processing
di�cult because query execution plans are typically
generated statically� based on a set of assumptions
about the costs of performing various operations and
the costs of obtaining data �i�e�� disk and�or network
accesses
� The causes of high�variability are typically
failures and congestion� which are inherently runtime
issues� they cannot be reliably predicted at query op�
timization time or even at query start�up time� As a
result� the execution of a statically optimized query
plan is likely to be sub�optimal in the presence of un�
expected response time problems� In the worst case�
a query execution may be blocked for an arbitrarily
long time if needed data fail to arrive from remote
data sources�

The di�erent types of response time problems that
can be experienced in a loosely�coupled� wide�area en�
vironment can be categorized as follows�

� Initial Delay � There is an unexpected delay
in the arrival of the �rst tuple from a particu�
lar remote source� This type of delay typically
appears when there is di�culty connecting to a
remote source� due to a failure or congestion at
that source or along the path between the source
and the destination�

� Slow Delivery � Data is arriving at a regu�
lar rate� but this rate is much slower than the



expected rate� This problem can be the re�
sult� for example� of network congestion� resource
contention at the source� or because a di�erent
�slower
 communication path is being used �e�g��
due to a failure
�

� Bursty Arrival � Data is arriving at an unpre�
dictable rate� typically with bursts of data fol�
lowed by long periods of no arrivals� This prob�
lem can arise from �uctuating resource demands
and the lack of a global scheduling mechanism in
the wide�area environment�

Because these problems can arise unpredictably at
runtime� they cannot be e�ectively addressed by static
query optimization techniques� As a result� we have
been investigating a class of dynamic� runtime query
plan modi�cation techniques that we call query plan
scrambling� In this approach� a query is initially ex�
ecuted according to the original plan and associated
schedule generated by the query optimizer� If how�
ever� a signi�cant performance problem arises during
the execution� then query plan scrambling is invoked
to modify the execution on�the��y� so that progress
can be made on other parts of the plan� In other
words� rather than simply stalling for slowly arriving
data� query plan scrambling attempts to hide unex�
pected delays by performing other useful work�

There are three ways that query plan scrambling
can be used to help mask response time problems�
First� scrambling allows useful work to be done in the
hope that the cause of the problem is resolved in the
meantime� This approach is useful for all three classes
of problems described above� Second� if data are ar�
riving� but at a rate that hampers query processing
performance �e�g�� in the Slow Delivery or Bursty Ar�
rival cases
� then scrambling allows useful work to be
performed while the problematic data are obtained in
a background fashion� Finally� in cases where data are
simply not arriving� or are arriving far too slowly� then
scrambling can be used to produce partial results that
can then be returned to users and�or used in query
processing at a later time �TRV	���

��� Tolerating Initial Delays

In this work� we present an initial approach to query
plan scrambling that speci�cally addresses the prob�
lem of Initial Delay �i�e�� delay in receiving the initial
requested tuples from a remote data source
� We de�
scribe and analyze a query plan scrambling algorithm
that follows the �rst approach outlined above� namely�
other useful work is performed in the hope that the
problem will eventually be resolved� and the requested
data will arrive at or near the expected rate from then
on� The algorithm exploits� where possible� decisions
made by the static query optimizer and imposes no op�
timization or execution performance overhead in the
absence of unexpected delays�

In order to allow us to clearly de�ne the algorithm
and to study its performance� this work assumes an
execution environment with several properties�

� The algorithm addresses only response time de�
lays in receiving the initial requested tuples from

remote data sources� Once the initial delay is
over� tuples are assumed to arrive at or near the
originally expected rate� As stated previously�
this type of delay models problems in connecting
to remote data sources� as it is often experienced
in the Internet�

� We focus on query processing using a data�
shipping or hybrid�shipping approach �FJK	���
where data is collected from remote sources and
integrated at the query source� Only query pro�
cessing that is performed at the query source is
subject to scrambling� This approach is typi�
cal of mediated database systems that integrate
data from distributed� heterogeneous sources�
e�g�� �TRV	���

� Query execution is scheduled using an iterator
model �Gra	��� In this model every run�time op�
erator supports an open�� call and a get�next��
call� Query execution starts by calling open�
 on
the topmost operator of the query execution plan
and proceeds by iteratively calling get�next�
 on
the topmost operator� These calls are propagated
down the tree� each time an operator needs to con�
sume data� it calls get�next�
 on its child �or chil�
dren
 operator�s
� This model imposes a schedule
on the operators in the query plan�

The reminder of the paper is organized as follows�
Section � describes the algorithm and gives an ex�
tended example� Section � presents results from a
simulation study that demonstrate the properties of
the algorithm� Section � describes related work� Sec�
tion 
 concludes with a summary of the results and a
discussion of future work�

� Scrambling Query Plans

This section describes the algorithm for scrambling
queries to cope with initial delays in obtaining data
from remote data sources� The algorithm consists
of two phases� one that changes the execution order
of operations in order to avoid idling� and one that
synthesizes new operations to execute in the absence
of other work to perform� We �rst provide a brief
overview of the algorithm and then describe the two
phases in detail using a running example� The algo�
rithm is then summarized at the end of the section�

��� Algorithm Overview

Figure � shows an operator tree for a complex query
plan� Typically� such a complicated plan would be
generated by a static query optimizer according to its
cost model� statistics� and objective functions� At the
leaves of the tree are base relations stored at remote
sites� The nodes of the tree are binary operators �we
focus our study on hash�based joins
 that are executed
at the query source site��

As discussed previously� we describe the scrambling
algorithm in the context of an iterator�based execution

�Unary operators� such as selections� sorting� and partition�
ing are not shown in the �gure�
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Figure �� Initial Query Tree

model� This model imposes a schedule on the opera�
tors of a query and drives the �ow of data between
operators� The scheduling of operators is indicated
in Figure � by the numbers associated to each oper�
ator� In the �gure� the joins are numbered according
to the order in which they would be completed by an
iterator�based scheduler� The �ow of data between
the operators follows the model discussed in �SD	���
i�e�� the left input of a hash join is always material�
ized while the right input is consumed in a pipelined
fashion�

The schedule implied by the tree in Figure � would
thus begin by materializing the left subtree of the root
node� Assuming that hash joins are used and that
there is su�cient memory to hold the hash tables for
relations A� C� and D �so no partitioning is necessary
for these relations
� this materialization would consist
of the following steps�

�� Scan relation A and build hash�table HA using
selected tuples�

�� In a pipelined fashion� probe HA with �selected

tuples of B and build a hash�table containing the
result of A�B �HAB
�

�� Scan C and build hash�table HC �
�� Scan D and build hash�table HD �

� In a pipelined fashion� probe HD� HC and HAB

with tuples of E and build a hash�table containing
the result of �A�B
��C�D�E
�

�� � � �

The execution thus begins by requesting tuples
from the remote site where relation A is stored� If
there is a delay in accessing that site �say� because
this site is temporarily down
� then the scan of A �i�e��
step �
 is blocked until the site recovers� Under a tra�
ditional iterator�based scheduling discipline� this delay
of A would result in the entire execution of the query
being blocked� pending the recovery of the remote site�

Given that unexpected delays are highly probable
in a wide�area environment� such sensitivity to delays
is likely to result in unacceptable performance� The
scrambling algorithm addresses this problem by at�
tempting to hide such delays by making progress on
other parts of the query until the problem is resolved�
The scrambling algorithm is invoked once a delayed
relation is detected �via a timeout mechanism
� The
algorithm is iterative� during each iteration it selects
part of the plan to execute and materializes the cor�
responding temporary results to be used later in the
execution�

The scrambling algorithm executes in one of two
phases� During Phase �� each iteration modi�es the
schedule in order to execute operators that are not
dependent on any data that is known to be delayed�
For example� in the query of Figure �� Phase � might
result in materializing the join of relations C� D and E
while waiting for the arrival of A� During Phase 	� each
iteration synthesizes new operators �joins for example

in order to make further progress� In the example� a
Phase � iteration might choose to join relation B with
the result of �C�D�E
 computed previously�

At the end of each iteration the algorithm checks
to see if any delayed sources have begun to respond�
and if so� it stops iterating and returns to normal
scheduling of operators� possibly re�invoking scram�
bling if additional delayed relations are later detected�
If� however� no delayed data has arrived during an
iteration� then the algorithm iterates again� The algo�
rithm moves from Phase � to Phase � when it fails to
�nd an existing operator that is not dependent on a
delayed relation� If� while in Phase �� the algorithm is
unable to create any new operators� then scrambling
terminates and the query simply waits for the delayed
data to arrive� In the following sections we describe�
in detail� the two phases of scrambling and their in�
teractions�

��� Phase �� Materializing Subtrees

����� Blocked and Runnable Operators

The operators of a query tree have producer�
consumer relationships� The immediate ancestor of a
given operator consumes the tuples produced by that
operator� Conversely� the immediate descendants of a
given operator produce the tuples that operator con�
sumes� The producer�consumer relationships create
execution dependencies between operators� as one op�
erator can not consume tuples before these tuples have
been produced� For example� a select operator can
not consume tuples of a base relation if that relation
is not available� In such a case the select operator is
blocked� If the select can not consume any tuples� it
can not produce any tuples� Consequently� the con�
sumer of the select is also blocked� By transitivity� all
the ancestors of the unavailable relation are blocked�

When the system discovers that a relation is un�
available� query plan scrambling is invoked� Scram�
bling starts by splitting the operators of the query tree
into two disjoint queues� a queue of blocked operators
and a queue of runnable operators� These queues are
de�ned as follows�

De�nition ��� Queue of Blocked Operators�
Given a query tree� the queue of blocked operators
contains all the ancestors of each unavailable relation�

De�nition ��� Queue of Runnable Operators�
Given a query tree and a queue of blocked operators�
the queue of runnable operators contains all the oper�
ators that are not in the queue of blocked operators�

Operators are inserted in the runnable and blocked
queues according to the order in which their execution
would be initiated by an iterator�based scheduler�



����� Maximal Runnable Subtree

Each iteration during Phase � of query plan scram�
bling analyzes the runnable queue in order to �nd a
maximal runnable subtree to materialize� A maximal
runnable subtree is de�ned as follows�

De�nition ��� Maximal Runnable Subtree�
Given the query tree and the queues of blocked and
runnable operators� a runnable subtree is a subtree
in which all the operators are runnable� A runnable
subtree is maximal if its root is the �rst runnable de�
scendant of a blocked operator�

None of the operators belonging to a maximal
runnable subtree depend on data that is known to be
delayed� Each iteration of Phase � initiates the materi�
alization of the �rst maximal runnable subtree found�
The notion of maximal used in the de�nition is impor�
tant� as materializing the biggest subtrees during each
iteration tends to minimize the number of materializa�
tions performed� hence reducing the amount of extra
I�O caused by scrambling� The materialization of a
runnable subtree completes only if no relations used
by this subtree are discovered to be unavailable dur�
ing the execution�� When the execution of a runnable
subtree is �nished and its result materialized� the al�
gorithm removes all the operators belonging to that
subtree from the runnable queue� It then checks if
missing data have begun to arrive� If the missing data
from others� blocked relations are still unavailable� an�
other iteration is begun� The new iteration analyzes
�again
 the runnable queue to �nd the next maximal
runnable subtree to materialize�

����� Subtrees and Data Unavailability

It is possible that during the execution of a runnable
subtree� one �or more
 of the participating base rela�
tions is discovered to be unavailable� This is because
a maximal runnable subtree is de�ned with respect
to the current contents of the blocked and runnable
queues� The runnable queue is only a guess about
the real availability of relations� When the algorithm
inserts operators in the runnable queue� it does not
know whether their associated relations are actually
available or unavailable� This will be discovered only
when the corresponding relations are requested�

In the case where a relation is discovered to be
unavailable during the execution of a runnable sub�
tree� the current iteration stops and the algorithm up�
dates the runnable and blocked queues� All the an�
cestors of the unavailable relation are extracted from
the runnable queue and inserted in the blocked queue�
Once the queues are updated� the scrambling of the
query plan initiates a new Phase � iteration in order
to materialize another maximal runnable subtree�

�Note that in the remainder of this paper� we use 	maxi�
mal runnable subtree
 and 	runnable subtree
 interchangeably�
except where explicitly noted�

A B
1

C

D E

3

2
IHGF

4

8

7

5 6

Runnable
Blocked

Figure �� Blocked and Runnable Operators with Re�
lation A Unavailable

����� Termination of Phase �

At the end of each iteration� the algorithm checks
for data arrival� If it is discovered that an unavailable
relation has begun to arrive� the algorithm updates
the blocked and runnable queues� The ancestors of
the unblocked relation are extracted from the blocked
queue and inserted in the runnable queue� Note that
any ancestors of the unblocked relation that also de�
pend on other blocked relations are not extracted from
the queue� Phase � then terminates and the execution
of the query returns to normal iterator�based schedul�
ing of operators� If no further relations are blocked�
the execution of the query will proceed until the �nal
result is returned to the user� The scrambling algo�
rithm will be re�invoked� however� if the query execu�
tion blocks again�

Phase � also terminates if the runnable queue is
empty� In this case� Phase � can not perform any other
iteration because all remaining operators are blocked�
When this happens� query plan scrambling switches
to Phase �� The purpose of the second phase is to
process the available relations when all the operators
of the query tree are blocked� We present the second
phase of query plan scrambling in Section ���� First�
however� we present an example that illustrates all the
facets of Phase � described above�

����� A Running Example

This example reuses the complex query tree pre�
sented at the beginning of Section �� To discuss cases
where data need or do need not to be partitioned be�
fore being joined� we assume that tuples of relations
A� B� C� D and E do not need to be partitioned� In
contrast� we assume that the tuples of relations F� G�
H and I have to be partitioned� To illustrate the be�
havior of Phase �� we follow the scenario given below�

�� When the execution of the query starts� relation A
is discovered to be unavailable�

�� During the third iteration� relation G is discov�
ered to be unavailable�

�� The tuples of A begin to arrive at the query exe�
cution site before the end of the fourth iteration�

�� At the time Phase � terminates� no tuples of G
have been received�

The execution of the example query begins by re�
questing tuples from the remote site owning relation A�
Following the above scenario� we assume relation A is
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Figure �� G Unavailable� X� Materialized

unavailable �indicated by the thick solid line in Fig�
ure �
� The operators that are blocked by the delay of
A are depicted using a dashed line�

The unavailability of A invokes Phase � which up�
dates the blocked and runnable queues and initiates
its �rst iteration� This iteration analyses the runnable
queue and �nds that the �rst maximal runnable sub�
tree consists of a unary operator that selects tuples
from relation B�� Once the operator is materialized
�i�e�� selected tuples of B are on the local disk stored
in the relation B	
� the algorithm checks for the ar�
rival of the tuples of A� Following the above scenario�
we assume that the tuples of A are still unavailable�
so another iteration is initiated� This second iteration
�nds the next maximal runnable subtree to be the one
rooted at operator �� Note the subtree rooted at oper�
ator � is not maximal since its consumer �operator �

is not blocked�

Figure � shows the materialization of the runnable
subtrees found by the �rst two iterations of query
scrambling� Part �a
 of this �gure shows the e�ect of
materializing of the �rst runnable subtree� the local
relation B	 contains the materialized and selected tu�
ples of the remote relation B� It also shows the second
runnable subtree �indicated by the shaded grey area
�
Figure ��b
 shows the query tree after the materializa�
tion of this second runnable subtree� The materialized
result is called X��

Once X� is materialized� another iteration starts
since� in this example� relation A is still unavailable�
The third iteration �nds the next runnable subtree
rooted at operator � which joins F� G� H and I �as
stated above� these relations need to be partitioned
before being joined
� The execution of this runnable
subtree starts by building the left input of operator 

�partitioning F into F	
� It then requests relation G
in order to partition it before probing the tuples of
F� In this scenario� however� G is discovered to be
unavailable� triggering the update of the blocked and
runnable queues� Figure ��a
 shows that operators 

and � are newly blocked operators �operator � was al�
ready blocked due to the unavailability of A
� Once the
queues of operators are updated� another iteration of
scrambling is initiated to run the next runnable sub�
tree� i�e�� the one rooted at operator � �indicated by
the shaded grey area in the �gure
� The result of this
execution is called X��

�As stated earlier� operators are inserted into the queues with
respect to their execution order�

Figure 
 illustrates the next step in the scenario�
i�e�� it illustrates the case where after X� is materi�
alized it is discovered that the tuples of relation A
have begun to arrive� In this case� the algorithm up�
dates the runnable and blocked queues� As shown
in Figure 
�a
� operators � and � that were previ�
ously blocked are now unblocked �operator � remains
blocked however
� Phase � then terminates and re�
turns to the normal iterator�based scheduling of op�
erators which materializes the left subtree of the root
node �see Figure 
�b

� The resulting relation is called
X��

After X� is materialized� the query is blocked on G
so Phase � is re�invoked� Phase � computes the new
contents of the runnable and blocked queue and dis�
covers that the runnable queue is empty since all re�
maining operators are ancestors of G� Phase � then
terminates and the scrambling of the query plan en�
ters Phase �� We describe Phase � of the algorithm in
the next section�

��� Phase �� Creating New Joins

Scrambling moves into Phase � when the runnable
queue is empty but the blocked queue is not� The goal
of Phase � is to create new operators to be executed�
Speci�cally� the second phase creates joins between
relations that were not directly joined in the original
query tree� but whose consumers are blocked �i�e�� in
the blocked queue
 due to the unavailability of some
other data�

In contrast to Phase � iterations� which simply ad�
just scheduling to allow runnable operators to exe�
cute� iterations during Phase � actually create new
joins� Because the operations that are created dur�
ing Phase � were not chosen by the optimizer when
the original query plan was generated� it is possible
that these operations may entail a signi�cant amount
of additional work� If the joins created and executed
by Phase � are too expensive� query scrambling could
result in a net degradation in performance� Phase ��
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Figure �� Performing a New Join in Phase �

therefore� has the potential to negate or even reverse
the bene�ts of scrambling if care is not taken� In this
paper we use the simple heuristic of avoiding Carte�
sian products to prevent the creation of overly expen�
sive joins during Phase �� In Section �� we analyze the
performance impact of the cost of created joins relative
to the cost of the joins in the original query plan� One
way to ensure that Phase � does not generate overly
expensive joins is to involve the query optimizer in the
choice of new joins� Involving the optimizer in query
scrambling is one aspect of our ongoing work�

����� Creating New Joins

At the start of Phase �� the scrambling algorithm
constructs a graph G of possible joins� Each node in
G corresponds to a relation� and each edge in G in�
dicates that the two connected nodes have common
join attributes� and thus can be joined without caus�
ing a Cartesian product� Unavailable relations are not
placed into G�

Once G is constructed� Phase � starts to iteratively
create and execute new join operators� Each iteration
of Phase � performs the following steps�

�� In G� �nd the two leftmost joinable �i�e�� con�
nected
 relations i and j� The notion of leftmost
is with respect to the order in the query plan� If
there are no joinable relations in G� then termi�
nate scrambling�

�� Create a new join operator i � j�
�� Materialize i � j� Update G by replacing i and

j with the materialized result of i � j� Update
runnable and blocked queues� Update query tree�

�� Test to see if any unavailable data has arrived� If
so� then terminate scrambling� else begin a new
iteration�

Figure � demonstrates the behavior of Phase � by
continuing the example of the previous section� The
�gure is divided into three parts� Part �a
 shows the
query tree at the end of Phase �� In this case� G would
contain F	� X�� and X�� Assume that� in G� relations
F	 and X� are directly connected but relation X� is
not connected to either �i�e�� assume it shares join at�
tributes only with the unavailable relation G
� In this
example� therefore� F	 and X� are the two leftmost
joinable relations� X� is the leftmost relation� but it
is not joinable�

Figure ��b
 shows the creation of the new join of F	
and X�� The creation of this join requires the removal
of join number � from the blocked queue and its re�
placement in the ordering of execution by join number


� Finally� Figure ��c
 shows the materialization of the
created operator� The materialized join is called X��
At this point� G is modi�ed by removing F	 and X�
and inserting X�� which is not joinable with X�� the
only other relation in G�

����� Termination of Phase �

After each iteration of Phase �� the number of re�
lations in G is reduced� Phase � terminates if G is
reduced to a single relation� or if there are multiple
relations but none that are joinable� As shown in the
preceding example� this latter situation can arise if
the attribute�s
 required to join the remaining rela�
tions are contained in an unavailable relation �in this
case� relation G
�

Phase � can also terminate due to the arrival
of unavailable data� If such data arrive during a
Phase � iteration� then� at the end of that itera�
tion� the runnable and blocked queues are updated
accordingly and the control is returned to the normal
iterator�based scheduling of operators� As mentioned
for Phase �� query scrambling may be re�invoked later
to cope with other delayed relations�

����� Physical Properties of Joins

The preceding discussion focused on restructuring
logical nodes of a query plan� The restructuring of
physical plans� however� raises additional considera�
tions� First� adding a new join may require the intro�
duction of additional unary operators to process the
inputs of this new join so that it can be correctly ex�
ecuted� For example� a merge join operator requires
that the tuples it consumes are sorted� and thus may
require that sort operators be applied to its inputs�
Second� deleting operators� as was done in the preced�
ing example� may also require the addition of unary
operators� For example� relations may need to be
repartitioned in order to be placed as children of an ex�
isting hybrid hash node� Finally� changing the inputs
of an existing join operator may also require modi�ca�
tions� If the new inputs are su�ciently di�erent than
the original inputs� the physical join operators may
have to be modi�ed� For example� an indexed nested
loop join might have to be changed to a hash join if the
inner relation is replaced by one that is not indexed
on the join attribute�

��� Summary and Discussion

The query plan scrambling algorithm can be sum�
marized as follows�

� When a query becomes blocked �because relations
are unavailable
� query plan scrambling is initi�
ated� It �rst computes a queue of blocked opera�
tors and a queue of runnable operators�

� Phase � then analyses the queue of runnable oper�
ators� picks a maximal runnable subtree and ma�
terializes its result� This process is repeated� i�e��
it iterates� until the queue of runnable operators
is empty� At this point� the system switches to
Phase ��



� Phase � tries to create a new operator that joins
two relations that are available and joinable� This
process iterates until no more joinable relations
can be found�

� After each iteration of the algorithm� it checks to
see if any unavailable data have arrived� and if
so� control is returned to normal iterator�based
scheduling of operators� otherwise another itera�
tion is performed�

There are two additional issues regarding the al�
gorithm that deserve mention� here� The �rst issue
concerns the knowledge of the actual availability of re�
lations� Instead of discovering� as the algorithm does
now� during the execution of the operations performed
by each iteration that some sources are unavailable� it
is possible to send some or all of the initial data re�
quests to the data sources as soon as the �rst relation
is discovered to be unavailable� Doing so would give
the algorithm immediate knowledge of the availabil�
ity status of all the sources� Fortunately� using the
iterator model� opening multiple data sources at once
does not force the query execution site to consume all
the tuples simultaneously � the iterator model will
suspend the �ow of tuples until they are consumed by
their consumer operators�

The second issue concerns the potential additional
work of each phase� As described previously� Phase �
materializes existing subtrees that have been opti�
mized prior to runtime by the query optimizer� The
relative overhead of each materialization may be more
or less signi�cant depending on the I�O pattern of the
scrambled subtree compared to its unscrambled ver�
sion� For example� if a subtree consists of a single
select on a base relation� its materialization during
Phase � is pure overhead since the original query plan
was selecting tuples as they were received� without in�
volving any I�O� On the other hand� the overhead of
materializing an operator that partitions data is com�
paratively less important� In this case� both the origi�
nal query plan and the scrambled plan have to perform
disk I�Os to write the partitions on disk for later pro�
cessing� The scrambled plan� however� writes to disk
one extra partition that would be kept in memory by
the original non�scrambled query plan�

Phase �� however� can be more costly as it creates
new joins from scratch using the simple heuristic of
avoiding Cartesian products� The advantage of this
approach is its simplicity� The disadvantage� however�
is the potential overhead caused by the possibly sub�
optimal joins� We study the performance impact of
varying costs of the created joins in the following sec�
tion�

The costs of materializations during Phase � and
of new joins during Phase � may� in certain cases�
negate the bene�ts of scrambling� Controlling these
costs raises the possibility of integrating scrambling
with an existing query optimizer� This would allow
us to estimate the costs of iterations in order to skip�
for example� costly materializations or expensive joins�
Such an integration is one aspect of our ongoing work�

Parameter Value Description

NumSites � number of sites
Mips �� CPU speed ���� instr�sec�

NumDisks � number of disks per site
DskPageSize ���	 size of a disk page �bytes�
NetBw � network bandwidth �Mbit�sec�

NetPageSize ���
 size of a network page �bytes�
Compare � instr� to apply a predicate
HashInst 
� instr� to hash a tuple
Move 
 instr� to copy � bytes

Table �� Simulation Parameters and Main Settings

� Performance

In this section� we examine the main performance
characteristics of the query scrambling algorithm� The
�rst set of experiments shows the typical performance
of any query that is scrambled� The second set of
experiments studies the sensitivity of Phase � to the
selectivity of the new joins it creates� We �rst de�
scribe the simulation environment used to study the
algorithm�

��� Simulation Environment

To study the performance of the query scrambling
algorithm� we extended an existing simulator �FJK	��
DFJ�	�� that models a heterogeneous� peer�to�peer
database system such as SHORE �CDF�	��� The sim�
ulator we used provides a detailed model of query pro�
cessing costs in such a system� Here� we brie�y de�
scribe the simulator� focusing on the aspects that are
pertinent to our experiments�

Table � shows the main parameters for con�guring
the simulator� and the settings used for this study�
Every site has a CPU whose speed is speci�ed by the
Mips parameter� NumDisks disks� and a main�memory
bu�er pool� For the current study� the simulator was
con�gured to model a client�server system consisting
of a single client connected to seven servers� Each
site� except the query execution site� stores one base
relation�

In this study� the disk at the query execution site
�i�e�� client
 is used to store temporary results� The
disk model includes costs for random and sequential
physical accesses and also charges for software oper�
ations implementing I�Os� The unit of disk I�O for
the database and the client�s disk cache are pages of
size DskPageSize� The unit of transfer between sites
are pages of size NetPageSize� The network is mod�
eled simply as a FIFO queue with a speci�ed band�
width �NetBw
� the details of a particular technology
�Ethernet� ATM
 are not modeled� The simulator also
charges CPU instructions for networking protocol op�
erations� The CPU is modeled as a FIFO queue and
the simulator charges for all the functions performed
by query operators like hashing� comparing� and mov�
ing tuples in memory�

In this paper� the simulator is used primarily to
demonstrate the properties of the scrambling algo�
rithm� rather than for a detailed analysis of the algo�
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rithm� As such� the speci�c settings used in the simu�
lator are less important than the way in which delay is
either hidden or not hidden by the algorithm� In the
experiments� the various delays were generated by sim�
ply requesting tuples from an �unavailable� source at
the end of the various iterations of query plan scram�
bling� That is� rather than stochastically generating
delays� we explicitly imposed a series of delays in or�
der to study the behavior of the algorithm in a con�
trolled manner� For example� to simulate the arrival
of blocked tuples during� say� the third iteration of
Phase �� we scrambled the query � times� and then
initiated the transfer of tuples from the �blocked� re�
lation so that the �nal result of the query could even�
tually be computed�

��� A Query Tree for the Experiments

For all the experiments described in this section� we
use the query tree represented in Figure �� We use this
query tree because it demonstrates all of the features
of scrambling and allows us to highlight the impact on
performance of the overheads caused by materializa�
tions and created joins�

Each base relation has ������ tuples of ��� bytes
each� We assume that the join graph is fully con�
nected� that is� any relation can be �equi�
joined with
any other relation and that all joins use the same join
attribute� In the �rst set of experiments� we study
the performance of query plan scrambling in the case
where all the joins in the query tree produce the same
number of tuples� i�e�� ����� tuples� In the second set
of experiments� however� we study the case where the
joins in the query tree have di�erent selectivities and
thus produce results of various sizes�

For all the experiments� we study the performance
of our approach in the case where a single relation
is unavailable� This relation is the left�most relation
�i�e�� relation A
 which represents the case where query
scrambling is the most bene�cial� Examining the cases
with others unavailable relations would not change the
basic lessons of this study�

For each experiment described below� we evaluate
the algorithm in the cases where it executes in the con�
text of a small or a large memory� In the case of large
memory� none of the relations used in the query tree
�either a base relation or an intermediate result
 need
to be partitioned before being processed� In the case
of small memory� every relation �including intermedi�
ate results
 must be partitioned� Note� that since all
joins in the test query use the same join attribute� no

re�partitioning of relations is required when new joins
are created in this case�

��� Experiment �� The Step Phenomenon

Figure � shows the response time for the scram�
bled query plans that are generated as the delay for
relation A �the leftmost relation in the plan
 is var�
ied� The delay for A is shown along the X�axis� and
is also represented as the lower grey line in the �gure�
The higher grey line shows the performance of the un�
scrambled query� that is� if the execution of the query
is simply delayed until the tuples of relation A begin
to arrive� The distance between these two lines there�
fore is constant� and is equal to the response time for
the original �unscrambled
 query plan� which is �����
seconds in this case� In this experiment� the memory
size of the query execution site is small� With this set�
ting� the hash�tables for inner relations for joins can
not entirely be built in memory so partitioning is re�
quired�

The middle line in Figure � shows the response time
for the scrambled query plans that are executed for
various delays of A� In this case� there are six possible
scrambled plans that could be generated� As stated
in Sections ��� and ���� the scrambling algorithm is
iterative� At the end of each iteration it checks to see
if delayed data has begun to arrive� and if so� it stops
scrambling and normal query execution is resumed� If�
however� at the end of the iteration� the delayed data
has still not arrived� another iteration of the scram�
bling algorithm is initiated� The result of this execu�
tion model is the step shape that can be observed in
Figure ��

The width of each step is equal to the duration of
the operations that are performed by the current itera�
tion of the scrambling algorithm� and the height of the
step is equal to the response time of the query if nor�
mal processing is resumed at the end of that iteration�
For example� in this experiment� the �rst scrambling
iteration results in the retrieval and partitioning of re�
lation B� This operation requires ����� seconds� If at
the end of the iteration� tuples of relation A have be�
gun to arrive then no further scrambling is done and
normal query execution resumes� The resulting execu�
tion in this case� has a response time of ����� seconds�
Thus� the �rst step shown in Figure � has a width of
����� seconds and a height of ����� seconds� Note that
in this case� scrambling is e�ective at hiding the de�
lay of A� the response time of the scrambled query is
nearly identical to that of original query with no delay
of A�

If no tuples of A have arrived at the end of the
�rst iteration� then another iteration is performed� In
this case� the second iteration retrieves� partitions� and
joins relations C and D� As shown in Figure �� this it�
eration requires an additional ����� seconds� and if
A begins to arrive during this iteration� then the re�
sulting query plan has a total response time of ���	�
seconds� Thus� in this experiment� scrambling is able
to hide delays of up to ����� seconds with a penalty of
no more than ���� seconds �i�e�� ��
 of the response



0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

0 10 15 20 25 30 35 40 45 50 55 60 65 70 75 805

1 2 3 4 5 6
R

es
po

ns
e 

T
im

e 
(s

ec
.)

7

Delay (sec.)

Delay for A

No Scrambling

Figure �� Response Times of Scrambled Query Plans �Small Memory� Varying the Delay of A�


time of the original query with no delay� This corre�
sponds to a response time improvement of up to ���
compared to not scrambling�

If� at the end of the second iteration� tuples of A
have still failed to arrive� then the third iteration is
initiated� In this case however� there are no more
runnable subtrees� so scrambling switches to Phase ��
which results in the creation of new joins �see Sec�
tion ���
� In this third iteration� the result of C�D is
partitioned and joined with relation B� This iteration
has a width of only ���� seconds� because both inputs
are already present� B is already partitioned� and the
result of C�D is fairly small� The response time of the
resulting plan is ����� seconds� which again represents
a response time improvement of up to ��� compared
to not scrambling�

The remaining query plans exhibit similar behav�
ior� Table � shows the additional operations and the
overall performance for each of the possible scrambled
plans� In this experiment� the largest relative bene�t
�approximately ���
 over not scrambling is obtained
when the delay of A is �	��	 seconds� which is the
time required to complete all six iterations� After this
point� there is no further work for query scrambling to
do� so the scrambled plan must also wait for A to ar�
rive� As can be seen in Figure �� at the end of iteration
six the response time of the scrambled plan increases
linearly with the delay of A� The distance between the
delay of A and the response time of the scrambled plan
is the time that is required to complete the query once
A arrives�

Although it is not apparent in Figure �� the �rst
scrambled query is slightly slower than the unscram�
bled query plan when A is delayed for a very short
amount of time� For a delay below ���� seconds� the
response time of the scrambled query is ����� seconds
while it is ����� seconds for the non�scrambled query�
When joining A and B� as the unscrambled query does�
B is partitioned during the join� allowing one of the

partitions of B to stay in memory� Partitioning B be�
fore joining it with A� as the �rst scrambled query plan
does� forces this partition to be written back to disk
and to be read later during the join with A� When
A is delayed by less than the time needed to perform
these additional I�Os� it is cheaper to stay idle waiting
for A�

��� Experiment �� Sensitivity of Phase �

In the previous experiment all the joins produced
the same number of tuples� and as a result� all of the
operations performed in Phase � were bene�cial� In
this section� we examine the sensitivity of Phase �
to changes in the selectivities of the joins it creates�
Varying selectivities changes the number of tuples pro�
duced by these joins which a�ects the width and the
height of each step� Our goal is to show cases where
the bene�ts of scrambling vary greatly� from clear im�
provements to cases where scrambling performs worse
than no�scrambling�

For the test query� the �rst join created in Phase �
is the join of relation B with the result of C�D �which
was materialized during Phase �
� In this set of experi�
ments� we vary the selectivity of this new join to create
a result of a variable size� The selectivity of this join is
adjusted such that it produces from ����� tuples up to
several thousand tuples� The other joins that Phase �
may create behave like functional joins and they sim�
ply carry all the tuples created by �B��C�D

 through
the query tree� At the time these tuples are joined
with A� the number of tuples carried along the query
tree returns to normality and drops down to ������
Varying the selectivity of the �rst join produced by
Phase � is su�cient to generate a variable number of
tuples that are carried all along the tree by the other
joins that Phase � may create�

The two next sections present the results of this sen�
sitivity analysis for a small and a large memory case�
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As stated previously� when the memory is small� re�
lations have to be partitioned before being joined �as
in the previous experiment
� This partitioning adds
to the potential cost of scrambled plans because it
results in additional I�O that would not have been
present in the unscrambled plan� When the memory
is large� however� hash�tables can be built entirely in
memory so relations do not need to be partitioned�
Thus� with large memory the potential overhead of
scrambled plans is lessened�

����� Small Memory Case

In this experiment� we examine the e�ectiveness
of query scrambling when the selectivity of the �rst
join created by Phase � is varied� Figure 	 shows the
response time results for � di�erent selectivities� As
in the previous experiment� the delay for A is shown
along the X�axis and is also represented as the lower
grey line in the �gure� The higher grey line shows the
response time of the unscrambled query� which as be�
fore� increases linearly with the delay of A� These two
lines are exactly the same as the ones presented in the
previous experiment�

The solid line in the middle of the �gure shows
the performance of a scrambled query plan that stops
scrambling right at the end of Phase � �in this case�
two iterations are performed during Phase �
 without
initiating any Phase � iterations� Note that this line
becomes diagonal after the end of Phase � since the

system simply waits until the tuples of A arrive before
computing the �nal result of the query�

Intuitively� it is not useful to perform a second
phase for scrambled queries when the resulting re�
sponse time would be located above this line� Costly
joins that would be created by Phase � would con�
sume a lot of resources for little improvement� On the
other hand� Phase � would be bene�cial for scrambled
queries whose resulting response time would be below
this line since the additional overhead would be small
and the gain large�

The dashed and dotted lines in the �gure illustrate
the tradeo�s� These lines show the response time for
the scrambled query plans that are executed for vari�
ous delays of A and for various selectivities� Note all
these scrambled query plans share the same response
times for the iterations performed during Phase ��
These two �rst iterations correspond exactly to the
scrambled plans � and � described in the previous ex�
periment� At the end of the second iteration ������
seconds
� however� if the tuples of A have still failed
to arrive� a third iteration is initiated and the query
scrambling enters Phase � which creates new joins�

The dotted line shows the performance when the
selectivity for the new join is such that it produces a
result of ����� tuples� This line is identical to the one
showed in the previous experiment since all the joins
were producing ����� tuples�

With the second selectivity� the �rst join created by
the second phase produces ������ tuples� If at the end
of this iteration� the tuples of A have still not arrived�
another iteration is initiated and this iteration has to
process and to produce ������ tuples� The correspond�
ing line in the �gure is the lowest dashed line� In this
case� where �� times more tuples have to be carried
along the scrambled query plans� each step is higher
�roughly �� seconds
 and wider since more tuples have
to be manipulated than in the case where only �����
tuples are created� Even with the additional overhead
of these ������ tuples� however� the response times of
the scrambled query plans are far below the response
times of the unscrambled query with equivalent delay�

When the new join produces 
����� tuples �the
higher dashed line in the �gure
� the response time
of the scrambled plans are almost equal to or even
worse than that of the original unscrambled query in�
cluding the delay for A� In this case� it is more costly
to carry the large number of tuples through the query
tree than to simply wait for blocked data to arrive�
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����� Large Memory Case

Figure �� shows the same experiment in the case
where the memory is large enough to allow inner re�
lations for joins to be built entirely in main memory�
With large memory� no partitioning of relations needs
to be done�

For the large memory case� the lines showing the
increasing delay of A and the response time of the
unscrambled query when this delay increases are sep�
arated by �
��� seconds and Phase � starts when A
is delayed by more than ���	
 seconds� Four di�erent
selectivities are represented in this �gure�

In contrast to the previous experiment where 
�
times more tuples negated the bene�ts of scrambling�
in this case up to �� times more tuples can be car�
ried by the scrambled query plans before the bene�ts
become close to zero� With a large memory� results
computed by each iteration need only be materialized
and can be consumed as is� In contrast� when the
memory is small� materialized results have to be par�
titioned before being consumed� With respect to a
small memory case� not partitioning the relation when
the memory is large reduces the number of I�Os and
allows the scrambled plans to manipulate more tuples
for the same overhead�

��� Discussion

The experiments presented in this section have
shown that query scrambling can be an e�ective tech�
nique that is able to improve the response time of
queries when data are delayed� These improvements
come from the fact that each iteration of a scrambled
query plan can hide the delay of data� The improve�
ment� however� depends on the overhead due to mate�
rializations and created joins�

The improvement that scrambling can bring also
depends on the amount of work done in the origi�
nal query� The bigger �i�e�� the longer and the more
costly
 the original query is� the more improvement
our technique can bring since it will be able to hide
larger delays by computing costly operations� The im�
provement also depends on the shape of the query

tree� bushy trees o�er more options for scrambling
than deep trees�

With respect to the Figures 	 and �� presented
above� when many iterations can be done during
Phase �� the point where Phase � starts shifts to the
right� This increases the distance between the Phase ��
only diagonal line and the response time of the un�
scrambled query� In turn� the scrambling algorithm
can handle a wider range of bad selectivities for the
joins it creates during Phase ��

� Related Work
In this section we consider related work with respect

to �a
 the point in time that optimization decisions are
made �i�e�� compile time� query start�up time� or query
run�time
� �b
 the variables used for dynamic decisions
�i�e� if the response time of a remote source is con�
sidered
� �c
 the nature of the dynamic optimization
�i�e� if the entire query can be rewritten
� and �d
 the
basis of the optimization �i�e�� cost�based or heuristic
based
�

The Volcano optimizer �CG	�� Gra	�� does dy�
namic optimization for distributed query processing�
During optimization� if a cost comparison returns in�
comparable� the choice for that part of the search space
is encoded in a choose�plan operator� At query start
up time� all the incomparable cost comparisons are re�
evaluated� According to the result of the reevaluation�
the choose�plan operator selects a particular query ex�
ecution plan� All �nal decisions regarding query ex�
ecution are thus made at query start�up time� Our
work is complimentary to the Volcano optimizer since
Volcano does not adapt to changes once the evaluation
of the query has started�

Other work in dynamic query optimization ei�
ther does not consider the distributed case �DMP	��
OHMS	�� or only optimizes access path selection and
cannot reorder joins �HS	��� Thus� direct consider�
ations of problems with response times from remote
sources are not accounted for� These articles are� how�
ever� a rich source of optimizations which can be car�
ried over into our work�

A novel approach to dynamic query optimization
used in Rdb�VMS is described in �Ant	��� In this ap�
proach� multiple di�erent executions of the same log�
ical operator occur at the same time� They compete
for producing the best execution � when one execution
of an operator is determined to be �probably
 better�
the other execution is terminated�

In �DSD	
� the response time of queries is improved
by reordering left�deep join trees into bushy join trees�
Several reordering algorithms are presented� This
work assumes that reordering is done entirely at com�
pile time� This work cannot easily be extended to
handle run�time reordering� since the reorderings are
restricted to occur at certain locations in the join tree�

�ACPS	�� tracks the costs of previous calls to re�
mote sources �in addition to caching the results
 and
can use this tracking to estimate the cost of new calls�
As in Volcano� this system optimizes a query both at
query compile and query start�up time� but does not
change the query plan during query run�time�



The research prototype Mermaid �CBTY�	� and its
commercial successor InterViso �THMB	
� are hetero�
geneous distributed databases that perform dynamic
query optimization� Mermaid constructs its query
plan entirely at run�time� thus each step in query opti�
mization is based on dynamic information such as in�
termediate join result sizes and network performance�
Mermaid neither takes advantage of a statically gener�
ated plan nor does it dynamically account for a source
which does not respond at run�time�

The Sage system �Kno	
� is an AI planning system
for query optimization for heterogeneous distributed
sources� This system interleaves execution and opti�
mization and responds to unavailable data sources�

� Conclusion and Future Work

Query plan scrambling is a novel technique that can
dynamically adjust to changes in the run�time environ�
ment� We presented an algorithm which speci�cally
deals with variability in performance of remote data
sources and accounts for initial delays in their response
times� The algorithm consists of two phases� Phase �
changes the scheduling of existing operators produced
as a result of query optimization� Phase � is iteratively
applied until no more changes in the scheduling are
possible� At this point� the algorithm enters Phase �
which creates new operators to further process avail�
able data� New operators are iteratively created until
there is no further work for query plan scrambling to
do�

The performance experiments demonstrated how
the technique hides delays in receiving the initial re�
quested tuples from remote data sources� We then ex�
amined the sensitivity of the performance of scrambled
plans to the selectivity of the joins created in Phase ��

This work represents an initial exploration into
the development of �exible systems that dynamically
adapt to the changing properties of the environment�
Among our ongoing and future research plans� we are
developing algorithms that can scramble under di�er�
ent failure models to handle environments where data
arrives at a bursty rate or at a steady rate that is
signi�cantly slower than expected� We are also study�
ing the use of partial results which approximate the
�nal results� We also plan to study the potential
improvement of basing scrambling decisions on cost�
based knowledge�

Finally� query plan scrambling is a promising ap�
proach to addressing many of the concerns addressed
by dynamic query optimization� Adapting the query
plan at run�time to account for the actual costs of
operations could compensate for the often inaccurate
and unreliable estimates used by the query optimizer�
Moreover� it could account for remote sources that do
not export any cost information� which is especially
important when these remote sources run complex
subqueries� Thus� we plan to investigate the use of
scrambling as a complimentary approach to dynamic
query optimization�
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