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Abstract

Accessing data from numerous widely-distributed
sources poses significant new challenges for query opti-
mization and execution. Congestion and failures in the
network can introduce highly-variable response times
for wide-area data access. This paper is an initial ex-
ploration of solutions to this variability. We introduce
a class of dynamic, run-time query plan modification
techniques that we call query plan scrambling. We
present an algorithm that modifies execution plans on-
the-fly in response to unexpected delays in obtaining
wmttial requested tuples from remote sources. The al-
gorithm both reschedules operators and introduces new
operators into the query plan. We present simulation
results that demonstrate how the technique effectively
hides delays by performing other useful work while
waiting for missing data to arrive.

1 Introduction

Ongoing improvements in networking technology
and infrastructure have resulted in a dramatic in-
crease in the demand for accessing and collating data
from disparate, remote data sources over wide-area
networks such as the Internet and intranets. Query
optimization and execution strategies have long been
studied in centralized, parallel, and tightly-coupled
distributed environments. Data access across widely-
distributed sources, however, imposes significant new
challenges for query optimization and execution for
two reasons: First, there are semantic and perfor-
mance problems that arise due to the heterogeneous
nature of the data sources in a loosely-coupled envi-
ronment. Second, data access over wide-area networks
involves a large number of remote data sources, inter-
mediate sites, and communications links, all of which
are vulnerable to congestion and failures. From the
end user’s point of view, congestion or failure in any
of the components of the network are manifested as
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highly-variable response time — that is, the time re-
quired for obtaining data from remote sources can vary
greatly depending on the specific data sources accessed
and the current state of the network at the time that
such access 1s attempted.

The query processing problems resulting from het-
erogeneity have been the subject of much attention in
recent years (e.g., [SADT95 BE96, TRV96]). In con-
trast, the impact of unpredictable response time on
wide-area query processing has received relatively lit-
tle attention. The work presented here is an initial
exploration into addressing problems of response-time
variability for wide-area data access.

1.1 Response Time Variability

High variability makes efficient query processing
difficult because query execution plans are typically
generated statically, based on a set of assumptions
about the costs of performing various operations and
the costs of obtaining data (i.e., disk and/or network
accesses). The causes of high-variability are typically
failures and congestion, which are inherently runtime
issues; they cannot be reliably predicted at query op-
timization time or even at query start-up time. As a
result, the execution of a statically optimized query
plan 1s likely to be sub-optimal in the presence of un-
expected response time problems. In the worst case,
a query execution may be blocked for an arbitrarily
long time if needed data fail to arrive from remote
data sources.

The different types of response time problems that
can be experienced in a loosely-coupled, wide-area en-
vironment can be categorized as follows:

e Initial Delay - There is an unexpected delay
in the arrival of the first tuple from a particu-
lar remote source. This type of delay typically
appears when there is difficulty connecting to a
remote source, due to a failure or congestion at
that source or along the path between the source
and the destination.

e Slow Delivery - Data is arriving at a regu-
lar rate, but this rate is much slower than the



expected rate. This problem can be the re-
sult, for example, of network congestion, resource
contention at the source, or because a different
(slower) communication path is being used (e.g.,
due to a failure).

e Bursty Arrival - Data is arriving at an unpre-
dictable rate, typically with bursts of data fol-
lowed by long periods of no arrivals. This prob-
lem can arise from fluctuating resource demands
and the lack of a global scheduling mechanism in
the wide-area environment.

Because these problems can arise unpredictably at
runtime, they cannot be effectively addressed by static
query optimization techniques. As a result, we have
been investigating a class of dynamic, runtime query
plan modification techniques that we call query plan
scrambling. In this approach, a query 1s initially ex-
ecuted according to the original plan and associated
schedule generated by the query optimizer. If how-
ever, a significant performance problem arises during
the execution, then query plan scrambling is invoked
to modify the execution on-the-fly, so that progress
can be made on other parts of the plan. In other
words, rather than simply stalling for slowly arriving
data, query plan scrambling attempts to hide unex-
pected delays by performing other useful work.

There are three ways that query plan scrambling
can be used to help mask response time problems.
First, scrambling allows useful work to be done in the
hope that the cause of the problem is resolved in the
meantime. This approach is useful for all three classes
of problems described above. Second, if data are ar-
riving, but at a rate that hampers query processing
performance (e.g., in the Slow Delivery or Bursty Ar-
rival cases), then scrambling allows useful work to be
performed while the problematic data are obtained in
a background fashion. Finally, in cases where data are
simply not arriving, or are arriving far too slowly, then
scrambling can be used to produce partial results that
can then be returned to users and/or used in query
processing at a later time [TRV96].

1.2 Tolerating Initial Delays

In this work, we present an initial approach to query
plan scrambling that specifically addresses the prob-
lem of Initial Delay (i.e., delay in receiving the initial
requested tuples from a remote data source). We de-
scribe and analyze a query plan scrambling algorithm
that follows the first approach outlined above; namely,
other useful work is performed in the hope that the
problem will eventually be resolved, and the requested
data will arrive at or near the expected rate from then
on. The algorithm exploits, where possible, decisions
made by the static query optimizer and imposes no op-
timization or execution performance overhead in the
absence of unexpected delays.

In order to allow us to clearly define the algorithm
and to study its performance, this work assumes an
execution environment with several properties:

e The algorithm addresses only response time de-
lays in receiving the initial requested tuples from

remote data sources. Once the initial delay is
over, tuples are assumed to arrive at or near the
originally expected rate. As stated previously,
this type of delay models problems in connecting
to remote data sources, as it is often experienced
in the Internet.

e We focus on query processing using a data-
shipping or hybrid-shipping approach [FIK96],
where data is collected from remote sources and
integrated at the query source. Only query pro-
cessing that is performed at the query source is
subject to scrambling. This approach is typi-
cal of mediated database systems that integrate
data from distributed, heterogeneous sources,
e.g., [TRV96].

e Query execution is scheduled using an iterator
model [Gra93]. In this model every run-time op-
erator supports an open()} call and a get-next()
call. Query execution starts by calling open() on
the topmost operator of the query execution plan
and proceeds by iteratively calling get-next() on
the topmost operator. These calls are propagated
down the tree; each time an operator needs to con-
sume data, it calls get-next() on its child (or chil-
dren) operator(s). This model imposes a schedule
on the operators in the query plan.

The reminder of the paper is organized as follows.
Section 2 describes the algorithm and gives an ex-
tended example. Section 3 presents results from a
simulation study that demonstrate the properties of
the algorithm. Section 4 describes related work. Sec-
tion b concludes with a summary of the results and a
discussion of future work.

2 Scrambling Query Plans

This section describes the algorithm for scrambling
queries to cope with initial delays in obtaining data
from remote data sources. The algorithm consists
of two phases: one that changes the execution order
of operations in order to avoid idling, and one that
synthesizes new operations to execute in the absence
of other work to perform. We first provide a brief
overview of the algorithm and then describe the two
phases in detail using a running example. The algo-
rithm is then summarized at the end of the section.

2.1 Algorithm Overview

Figure 1 shows an operator tree for a complex query
plan. Typically, such a complicated plan would be
generated by a static query optimizer according to its
cost model, statistics, and objective functions. At the
leaves of the tree are base relations stored at remote
sites. The nodes of the tree are binary operators (we
focus our study on hash-based joins) that are executed
at the query source site.!

As discussed previously, we describe the scrambling
algorithm in the context of an iterator-based execution

1Unary operators, such as selections, sorting, and partition-
ing are not shown in the figure.



Figure 1: Initial Query Tree

model. This model imposes a schedule on the opera-
tors of a query and drives the flow of data between
operators. The scheduling of operators is indicated
in Figure 1 by the numbers associated to each oper-
ator. In the figure, the joins are numbered according
to the order in which they would be completed by an
iterator-based scheduler. The flow of data between
the operators follows the model discussed in [SD90],
1.e., the left input of a hash join is always material-
ized while the right input is consumed in a pipelined
fashion.

The schedule implied by the tree in Figure 1 would
thus begin by materializing the left subtree of the root
node. Assuming that hash joins are used and that
there 1s sufficient memory to hold the hash tables for
relations A, C, and D (so no partitioning is necessary
for these relations), this materialization would consist
of the following steps:

1. Scan relation A and build hash-table Hy using
selected tuples;

2. In a pipelined fashion, probe H4 with (selected)
tuples of B and build a hash-table containing the
result of AXB (Hap);

Scan C and build hash-table H¢;

Scan D and build hash-table Hp;

In a pipelined fashion, probe Hp, He and Hup

with tuples of E and build a hash-table containing
the result of (AXNB)X(CXDXE).

Ot 2

The execution thus begins by requesting tuples
from the remote site where relation A is stored. If
there is a delay in accessing that site (say, because
this site is temporarily down), then the scan of A (i.e.,
step 1) is blocked until the site recovers. Under a tra-
ditional iterator-based scheduling discipline, this delay
of A would result in the entire execution of the query
being blocked, pending the recovery of the remote site.

Given that unexpected delays are highly probable
in a wide-area environment, such sensitivity to delays
is likely to result in unacceptable performance. The
scrambling algorithm addresses this problem by at-
tempting to hide such delays by making progress on
other parts of the query until the problem is resolved.
The scrambling algorithm is invoked once a delayed
relation is detected (via a timeout mechanism). The
algorithm is iterative; during each iteration it selects
part of the plan to execute and materializes the cor-
responding temporary results to be used later in the
execution.

The scrambling algorithm executes in one of two
phases. During Phase I, each iteration modifies the
schedule in order to execute operators that are not
dependent on any data that is known to be delayed.
For example, in the query of Figure 1, Phase 1 might
result in materializing the join of relations C, D and E
while waiting for the arrival of A. During Phase 2, each
iteration synthesizes new operators (joins for example)
in order to make further progress. In the example, a
Phase 2 iteration might choose to join relation B with
the result of (CXDNE) computed previously.

At the end of each iteration the algorithm checks
to see if any delayed sources have begun to respond,
and if so, it stops iterating and returns to normal
scheduling of operators, possibly re-invoking scram-
bling if additional delayed relations are later detected.
If, however, no delayed data has arrived during an
iteration, then the algorithm iterates again. The algo-
rithm moves from Phase 1 to Phase 2 when it fails to
find an existing operator that is not dependent on a
delayed relation. If; while in Phase 2, the algorithm is
unable to create any new operators, then scrambling
terminates and the query simply waits for the delayed
data to arrive. In the following sections we describe,
in detail, the two phases of scrambling and their in-
teractions.

2.2 Phase 1: Materializing Subtrees
2.2.1 Blocked and Runnable Operators

The operators of a query tree have producer-
consumer relationships. The immediate ancestor of a
given operator consumes the tuples produced by that
operator. Conversely, the immediate descendants of a
given operator produce the tuples that operator con-
sumes. The producer-consumer relationships create
execution dependencies between operators, as one op-
erator can not consume tuples before these tuples have
been produced. For example, a select operator can
not consume tuples of a base relation if that relation
is not available. In such a case the select operator is
blocked. If the select can not consume any tuples, it
can not produce any tuples. Consequently, the con-
sumer of the select 1s also blocked. By transitivity, all
the ancestors of the unavailable relation are blocked.

When the system discovers that a relation is un-
available, query plan scrambling is invoked. Scram-
bling starts by splitting the operators of the query tree
into two disjoint queues: a queue of blocked operators
and a queue of runnable operators. These queues are
defined as follows:

Definition 2.1 Queue of Blocked Operators:
Given a query tree, the queue of blocked operators
contains all the ancestors of each unavailable relation.

Definition 2.2 Queue of Runnable Operators:
Given a query tree and a queue of blocked operators,
the queue of runnable operators contains all the oper-
ators that are not in the queue of blocked operators.

Operators are inserted in the runnable and blocked
queues according to the order in which their execution
would be initiated by an iterator-based scheduler.



2.2.2 Maximal Runnable Subtree

Each iteration during Phase 1 of query plan scram-
bling analyzes the runnable queue in order to find a
maxzimal runnable subtree to materialize. A maximal
runnable subtree is defined as follows:

Definition 2.3 Maximal Runnable Subtree:
Given the query tree and the queues of blocked and
runnable operators, a runnable subtree i1s a subtree
in which all the operators are runnable. A runnable
subtree is maximal if its root is the first runnable de-
scendant of a blocked operator.

None of the operators belonging to a maximal
runnable subtree depend on data that is known to be
delayed. Each iteration of Phase 1 initiates the materi-
alization of the first maximal runnable subtree found.
The notion of maximal used in the definition is impor-
tant, as materializing the biggest subtrees during each
iteration tends to minimize the number of materializa-
tions performed, hence reducing the amount of extra
I/O caused by scrambling. The materialization of a
runnable subtree completes only if no relations used
by this subtree are discovered to be unavailable dur-
ing the execution.? When the execution of a runnable
subtree is finished and its result materialized, the al-
gorithm removes all the operators belonging to that
subtree from the runnable queue. It then checks if
missing data have begun to arrive. If the missing data
from others, blocked relations are still unavailable, an-
other iteration 1s begun. The new iteration analyzes
(again) the runnable queue to find the next maximal
runnable subtree to materialize.

2.2.3 Subtrees and Data Unavailability

It is possible that during the execution of a runnable
subtree, one (or more) of the participating base rela-
tions is discovered to be unavailable. This is because
a maximal runnable subtree i1s defined with respect
to the current contents of the blocked and runnable
queues. The runnable queue is only a guess about
the real availability of relations. When the algorithm
inserts operators in the runnable queue, it does not
know whether their associated relations are actually
available or unavailable. This will be discovered only
when the corresponding relations are requested.

In the case where a relation is discovered to be
unavailable during the execution of a runnable sub-
tree, the current iteration stops and the algorithm up-
dates the runnable and blocked queues. All the an-
cestors of the unavailable relation are extracted from
the runnable queue and inserted in the blocked queue.
Once the queues are updated, the scrambling of the
query plan initiates a new Phase 1 iteration in order
to materialize another maximal runnable subtree.

2Note that in the remainder of this paper, we use “maxi-
mal runnable subtree” and “runnable subtree” interchangeably,
except where explicitly noted.
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Figure 2: Blocked and Runnable Operators with Re-
lation A Unavailable

2.2.4 Termination of Phase 1

At the end of each iteration, the algorithm checks
for data arrival. If it is discovered that an unavailable
relation has begun to arrive, the algorithm updates
the blocked and runnable queues. The ancestors of
the unblocked relation are extracted from the blocked
queue and inserted in the runnable queue. Note that
any ancestors of the unblocked relation that also de-
pend on other blocked relations are not extracted from
the queue. Phase 1 then terminates and the execution
of the query returns to normal iterator-based schedul-
ing of operators. If no further relations are blocked,
the execution of the query will proceed until the final
result is returned to the user. The scrambling algo-
rithm will be re-invoked, however, if the query execu-
tion blocks again.

Phase 1 also terminates if the runnable queue is
empty. In this case, Phase 1 can not perform any other
iteration because all remaining operators are blocked.
When this happens, query plan scrambling switches
to Phase 2. The purpose of the second phase is to
process the available relations when all the operators
of the query tree are blocked. We present the second
phase of query plan scrambling in Section 2.3. First,
however, we present an example that illustrates all the
facets of Phase 1 described above.

2.2.5 A Running Example

This example reuses the complex query tree pre-
sented at the beginning of Section 2. To discuss cases
where data need or do need not to be partitioned be-
fore being joined, we assume that tuples of relations
A, B, C, D and E do not need to be partitioned. In
contrast, we assume that the tuples of relations F, G,
H and I have to be partitioned. To illustrate the be-
havior of Phase 1, we follow the scenario given below:

1. When the execution of the query starts, relation A
is discovered to be unavailable.

2. During the third iteration, relation G is discov-
ered to be unavailable.

3. The tuples of A begin to arrive at the query exe-
cution site before the end of the fourth iteration.

4. At the time Phase 1 terminates, no tuples of G
have been received.

The execution of the example query begins by re-
questing tuples from the remote site owning relation A.
Following the above scenario, we assume relation A is
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Figure 3: Query Tree During Iterations 1 and 2

unavailable (indicated by the thick solid line in Fig-
ure 2). The operators that are blocked by the delay of
A are depicted using a dashed line.

The unavailability of A invokes Phase 1 which up-
dates the blocked and runnable queues and initiates
its first iteration. This iteration analyses the runnable
queue and finds that the first maximal runnable sub-
tree consists of a unary operator that selects tuples
from relation B.3 Once the operator is materialized
(i.e., selected tuples of B are on the local disk stored
in the relation B’), the algorithm checks for the ar-
rival of the tuples of A. Following the above scenario,
we assume that the tuples of A are still unavailable,
so another iteration is initiated. This second iteration
finds the next maximal runnable subtree to be the one
rooted at operator 3. Note the subtree rooted at oper-
ator 2 is not maximal since its consumer (operator 3)
is not blocked.

Figure 3 shows the materialization of the runnable
subtrees found by the first two iterations of query
scrambling. Part (a) of this figure shows the effect of
materializing of the first runnable subtree: the local
relation B’ contains the materialized and selected tu-
ples of the remote relation B. It also shows the second
runnable subtree (indicated by the shaded grey area).
Figure 3(b) shows the query tree after the materializa-
tion of this second runnable subtree. The materialized
result is called X1.

Once X1 is materialized, another iteration starts
since, in this example, relation A is still unavailable.
The third iteration finds the next runnable subtree
rooted at operator 7 which joins F, G, H and T (as
stated above, these relations need to be partitioned
before being joined). The execution of this runnable
subtree starts by building the left input of operator 5
(partitioning F into F’). It then requests relation G
in order to partition it before probing the tuples of
F. In this scenario, however, G is discovered to be
unavailable; triggering the update of the blocked and
runnable queues. Figure 4(a) shows that operators 5
and 7 are newly blocked operators (operator 8 was al-
ready blocked due to the unavailability of A). Once the
queues of operators are updated, another iteration of
scrambling is initiated to run the next runnable sub-
tree, i.e., the one rooted at operator 6 (indicated by
the shaded grey area in the figure). The result of this
execution 1s called X2.

3 As stated earlier, operators are inserted into the queues with
respect to their execution order.
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Figure 4: G Unavailable; X2 Materialized

Figure 5 illustrates the next step in the scenario,
l.e., 1t illustrates the case where after X2 is materi-
alized it 1s discovered that the tuples of relation A
have begun to arrive. In this case, the algorithm up-
dates the runnable and blocked queues. As shown
in Figure 5(a), operators 1 and 4 that were previ-
ously blocked are now unblocked (operator 8 remains
blocked however). Phase 1 then terminates and re-
turns to the normal iterator-based scheduling of op-
erators which materializes the left subtree of the root
node (see Figure 5(b)). The resulting relation is called
X3

After X3 is materialized, the query 1s blocked on G
so Phase 1 is re-invoked. Phase 1 computes the new
contents of the runnable and blocked queue and dis-
covers that the runnable queue is empty since all re-
maining operators are ancestors of G. Phase 1 then
terminates and the scrambling of the query plan en-
ters Phase 2. We describe Phase 2 of the algorithm in
the next section.

2.3 Phase 2: Creating New Joins

Scrambling moves into Phase 2 when the runnable
queue is empty but the blocked queue is not. The goal
of Phase 2 is to create new operators to be executed.
Specifically, the second phase creates joins between
relations that were not directly joined in the original
query tree, but whose consumers are blocked (i.e., in
the blocked queue) due to the unavailability of some
other data.

In contrast to Phase 1 iterations, which simply ad-
just scheduling to allow runnable operators to exe-
cute, iterations during Phase 2 actually create new
joins. Because the operations that are created dur-
ing Phase 2 were not chosen by the optimizer when
the original query plan was generated, 1t is possible
that these operations may entail a significant amount
of additional work. If the joins created and executed
by Phase 2 are too expensive, query scrambling could
result in a net degradation in performance. Phase 2,

@ | ®

Figure 5: Relation A Available
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Figure 6: Performing a New Join in Phase 2

therefore, has the potential to negate or even reverse
the benefits of scrambling if care is not taken. In this
paper we use the simple heuristic of avoiding Carte-
sian products to prevent the creation of overly expen-
sive joins during Phase 2. In Section 3, we analyze the
performance impact of the cost of created joins relative
to the cost of the joins in the original query plan. One
way to ensure that Phase 2 does not generate overly
expensive joins is to involve the query optimizer in the
choice of new joins. Involving the optimizer in query
scrambling is one aspect of our ongoing work.

2.3.1 Creating New Joins

At the start of Phase 2, the scrambling algorithm
constructs a graph G of possible joins. Each node in
G corresponds to a relation, and each edge in G in-
dicates that the two connected nodes have common
join attributes, and thus can be joined without caus-
ing a Cartesian product. Unavailable relations are not
placed into G.

Once G 1s constructed, Phase 2 starts to iteratively
create and execute new join operators. Each iteration
of Phase 2 performs the following steps:

1. In G, find the two leftmost joinable (i.e., con-
nected) relations ¢ and j. The notion of leftmost
is with respect to the order in the query plan. If
there are no joinable relations in G, then termi-
nate scrambling.

2. Create a new join operator ¢ 4 j.

3. Materialize ¢ X 5. Update G by replacing ¢ and
j with the materialized result of ¢ X j. Update
runnable and blocked queues. Update query tree.

4. Test to see if any unavailable data has arrived. If
so, then terminate scrambling, else begin a new
iteration.

Figure 6 demonstrates the behavior of Phase 2 by
continuing the example of the previous section. The
figure is divided into three parts. Part (a) shows the
query tree at the end of Phase 1. In this case, G would
contain F’, X2, and X3. Assume that, in G, relations
F’ and X2 are directly connected but relation X3 is
not connected to either (i.e., assume it shares join at-
tributes only with the unavailable relation G). In this
example, therefore, F’ and X2 are the two leftmost
joinable relations; X3 is the leftmost relation, but it
is not joinable.

Figure 6(b) shows the creation of the new join of F’
and X2. The creation of this join requires the removal
of join number 7 from the blocked queue and its re-
placement in the ordering of execution by join number

5. Finally, Figure 6(c) shows the materialization of the
created operator. The materialized join is called X4.
At this point, G is modified by removing F’ and X2
and inserting X4, which is not joinable with X3, the
only other relation in G.

2.3.2 Termination of Phase 2

After each iteration of Phase 2, the number of re-
lations in G 1s reduced. Phase 2 terminates 1f G is
reduced to a single relation, or if there are multiple
relations but none that are joinable. As shown in the
preceding example, this latter situation can arise if
the attribute(s) required to join the remaining rela-
tions are contained in an unavailable relation (in this
case, relation G).

Phase 2 can also terminate due to the arrival
of unavailable data. If such data arrive during a
Phase 2 iteration, then, at the end of that itera-
tion, the runnable and blocked queues are updated
accordingly and the control is returned to the normal
iterator-based scheduling of operators. As mentioned
for Phase 1, query scrambling may be re-invoked later
to cope with other delayed relations.

2.3.3 Physical Properties of Joins

The preceding discussion focused on restructuring
logical nodes of a query plan. The restructuring of
physical plans, however, raises additional considera-
tions. First, adding a new join may require the intro-
duction of additional unary operators to process the
inputs of this new join so that it can be correctly ex-
ecuted. For example, a merge join operator requires
that the tuples it consumes are sorted, and thus may
require that sort operators be applied to its inputs.
Second, deleting operators, as was done in the preced-
ing example, may also require the addition of unary
operators. For example, relations may need to be
repartitioned in order to be placed as children of an ex-
isting hybrid hash node. Finally, changing the inputs
of an existing join operator may also require modifica-
tions. If the new inputs are sufficiently different than
the original inputs, the physical join operators may
have to be modified. For example, an indexed nested
loop join might have to be changed to a hash join if the
inner relation is replaced by one that is not indexed
on the join attribute.

2.4 Summary and Discussion

The query plan scrambling algorithm can be sum-
marized as follows:

e When a query becomes blocked (because relations
are unavailable), query plan scrambling is initi-
ated. It first computes a queue of blocked opera-
tors and a queue of runnable operators.

e Phase 1 then analyses the queue of runnable oper-
ators, picks a maximal runnable subtree and ma-
terializes its result. This process is repeated, 1.e.,
it iterates, until the queue of runnable operators
is empty. At this point, the system switches to
Phase 2.



e Phase 2 tries to create a new operator that joins
two relations that are available and joinable. This
process iterates until no more joinable relations
can be found.

e After each iteration of the algorithm, it checks to
see 1f any unavailable data have arrived, and if
so, control is returned to normal iterator-based
scheduling of operators, otherwise another itera-
tion is performed.

There are two additional issues regarding the al-
gorithm that deserve mention, here. The first issue
concerns the knowledge of the actual availability of re-
lations. Instead of discovering, as the algorithm does
now, during the execution of the operations performed
by each iteration that some sources are unavailable, it
is possible to send some or all of the initial data re-
quests to the data sources as soon as the first relation
is discovered to be unavailable. Doing so would give
the algorithm immediate knowledge of the availabil-
ity status of all the sources. Fortunately, using the
iterator model, opening multiple data sources at once
does not force the query execution site to consume all
the tuples simultaneously — the iterator model will
suspend the flow of tuples until they are consumed by
their consumer operators.

The second issue concerns the potential additional
work of each phase. As described previously, Phase 1
materializes existing subtrees that have been opti-
mized prior to runtime by the query optimizer. The
relative overhead of each materialization may be more
or less significant depending on the I/O pattern of the
scrambled subtree compared to its unscrambled ver-
sion. For example, if a subtree consists of a single
select on a base relation, its materialization during
Phase 1 is pure overhead since the original query plan
was selecting tuples as they were received, without in-
volving any I/0O. On the other hand, the overhead of
materializing an operator that partitions data is com-
paratively less important. In this case, both the origi-
nal query plan and the scrambled plan have to perform
disk T/Os to write the partitions on disk for later pro-
cessing. The scrambled plan, however, writes to disk
one extra partition that would be kept in memory by
the original non-scrambled query plan.

Phase 2, however, can be more costly as it creates
new joins from scratch using the simple heuristic of
avoiding Cartesian products. The advantage of this
approach is its simplicity. The disadvantage, however,
is the potential overhead caused by the possibly sub-
optimal joins. We study the performance impact of
varying costs of the created joins in the following sec-
tion.

The costs of materializations during Phase 1 and
of new joins during Phase 2 may, in certain cases,
negate the benefits of scrambling. Controlling these
costs raises the possibility of integrating scrambling
with an existing query optimizer. This would allow
us to estimate the costs of iterations in order to skip,
for example, costly materializations or expensive joins.
Such an integration is one aspect of our ongoing work.

| Parameter | Value | Description |
NumSites 8 | number of sites
Mips 30 | CPU speed (10° instr/sec)
NumDisks 1 | number of disks per site
DskPageSize | 4096 | size of a disk page (bytes)
NetBw 1 | network bandwidth (Mbit/sec)
NetPageSize | 8192 | size of a network page (bytes)
Compare 4 | instr. to apply a predicate
HashlInst 25 | instr. to hash a tuple
Mowe 2 | instr. to copy 4 bytes

Table 1: Simulation Parameters and Main Settings

3 Performance

In this section, we examine the main performance
characteristics of the query scrambling algorithm. The
first set of experiments shows the typical performance
of any query that is scrambled. The second set of
experiments studies the sensitivity of Phase 2 to the
selectivity of the new joins it creates. We first de-
scribe the simulation environment used to study the
algorithm.

3.1 Simulation Environment

To study the performance of the query scrambling
algorithm, we extended an existing simulator [FJK96,
DFJ*96] that models a heterogeneous, peer-to-peer
database system such as SHORE [CDF*94]. The sim-
ulator we used provides a detailed model of query pro-
cessing costs in such a system. Here, we briefly de-
scribe the simulator, focusing on the aspects that are
pertinent to our experiments.

Table 1 shows the main parameters for configuring
the simulator, and the settings used for this study.
Every site has a CPU whose speed is specified by the
Mips parameter, NumDisks disks, and a main-memory
buffer pool. For the current study, the simulator was
configured to model a client-server system consisting
of a single client connected to seven servers. FEach
site, except the query execution site, stores one base
relation.

In this study, the disk at the query execution site
(i.e., client) is used to store temporary results. The
disk model includes costs for random and sequential
physical accesses and also charges for software oper-
ations implementing I/Os. The unit of disk T/O for
the database and the client’s disk cache are pages of
size DskPageSize. The unit of transfer between sites
are pages of size NetPageSize. The network is mod-
eled simply as a FIFO queue with a specified band-
width (NetBw); the details of a particular technology
(Ethernet, ATM) are not modeled. The simulator also
charges CPU instructions for networking protocol op-
erations. The CPU is modeled as a FIFO queue and
the simulator charges for all the functions performed
by query operators like hashing, comparing, and mov-
ing tuples in memory.

In this paper, the simulator is used primarily to
demonstrate the properties of the scrambling algo-
rithm, rather than for a detailed analysis of the algo-
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Figure 7: Query Tree Used for the Experiments

rithm. As such, the specific settings used in the simu-
lator are less important than the way in which delay is
either hidden or not hidden by the algorithm. In the
experiments, the various delays were generated by sim-
ply requesting tuples from an “unavailable” source at
the end of the various iterations of query plan scram-
bling. That is, rather than stochastically generating
delays, we explicitly imposed a series of delays in or-
der to study the behavior of the algorithm in a con-
trolled manner. For example, to simulate the arrival
of blocked tuples during, say, the third iteration of
Phase 1, we scrambled the query 3 times, and then
initiated the transfer of tuples from the “blocked” re-
lation so that the final result of the query could even-
tually be computed.

3.2 A Query Tree for the Experiments

For all the experiments described in this section, we
use the query tree represented in Figure 7. We use this
query tree because it demonstrates all of the features
of scrambling and allows us to highlight the impact on
performance of the overheads caused by materializa-
tions and created joins.

Each base relation has 10,000 tuples of 100 bytes
each. We assume that the join graph is fully con-
nected, that is, any relation can be (equi-)joined with
any other relation and that all joins use the same join
attribute. In the first set of experiments, we study
the performance of query plan scrambling in the case
where all the joins in the query tree produce the same
number of tuples, i.e.;, 1,000 tuples. In the second set
of experiments, however, we study the case where the
joins in the query tree have different selectivities and
thus produce results of various sizes.

For all the experiments, we study the performance
of our approach in the case where a single relation
is unavailable. This relation is the left-most relation
(i.e., relation A) which represents the case where query
scrambling is the most beneficial. Examining the cases
with others unavailable relations would not change the
basic lessons of this study.

For each experiment described below, we evaluate
the algorithm in the cases where 1t executes in the con-
text of a small or a large memory. In the case of large
memory, none of the relations used in the query tree
(either a base relation or an intermediate result) need
to be partitioned before being processed. In the case
of small memory, every relation (including intermedi-
ate results) must be partitioned. Note, that since all
joins in the test query use the same join attribute, no

re-partitioning of relations is required when new joins
are created in this case.

3.3 Experiment 1: The Step Phenomenon

Figure 8 shows the response time for the scram-
bled query plans that are generated as the delay for
relation A (the leftmost relation in the plan) is var-
ied. The delay for A is shown along the X-axis, and
is also represented as the lower grey line in the figure.
The higher grey line shows the performance of the un-
scrambled query, that 1s, if the execution of the query
is simply delayed until the tuples of relation A begin
to arrive. The distance between these two lines there-
fore is constant, and is equal to the response time for
the original (unscrambled) query plan, which is 80.03
seconds in this case. In this experiment, the memory
size of the query execution site is small. With this set-
ting, the hash-tables for inner relations for joins can
not entirely be built in memory so partitioning is re-
quired.

The middle line in Figure 8 shows the response time
for the scrambled query plans that are executed for
various delays of A. In this case, there are six possible
scrambled plans that could be generated. As stated
in Sections 2.2 and 2.3, the scrambling algorithm is
iterative. At the end of each iteration it checks to see
if delayed data has begun to arrive, and if so, it stops
scrambling and normal query execution is resumed. If,
however, at the end of the iteration, the delayed data
has still not arrived, another iteration of the scram-
bling algorithm is initiated. The result of this execu-
tion model 1s the step shape that can be observed in
Figure 8.

The width of each step is equal to the duration of
the operations that are performed by the current itera-
tion of the scrambling algorithm, and the height of the
step 1s equal to the response time of the query if nor-
mal processing is resumed at the end of that iteration.
For example, in this experiment, the first scrambling
iteration results in the retrieval and partitioning of re-
lation B. This operation requires 12.23 seconds. If at
the end of the iteration, tuples of relation A have be-
gun to arrive then no further scrambling is done and
normal query execution resumes. The resulting execu-
tion in this case, has a response time of 80.10 seconds.
Thus, the first step shown in Figure 8 has a width of
12.23 seconds and a height of 80.10 seconds. Note that
in this case, scrambling is effective at hiding the de-
lay of A; the response time of the scrambled query is
nearly identical to that of original query with no delay
of A.

If no tuples of A have arrived at the end of the
first iteration, then another iteration is performed. In
this case, the second iteration retrieves, partitions, and
joins relations C and D. As shown in Figure 8, this it-
eration requires an additional 26.38 seconds, and if
A begins to arrive during this iteration, then the re-
sulting query plan has a total response time of 80.90
seconds. Thus, in this experiment, scrambling is able
to hide delays of up to 38.61 seconds with a penalty of
no more than 0.80 seconds (i.e., 1%) of the response
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Figure 8: Response Times of Scrambled Query Plans (Small Memory, Varying the Delay of A.)

time of the original query with no delay. This corre-
sponds to a response time improvement of up to 32%
compared to not scrambling.

If, at the end of the second iteration, tuples of A
have still failed to arrive, then the third iteration is
initiated. In this case however, there are no more
runnable subtrees, so scrambling switches to Phase 2,
which results in the creation of new joins (see Sec-
tion 2.3). In this third iteration, the result of CXD is
partitioned and joined with relation B. This iteration
has a width of only 2.01 seconds, because both inputs
are already present, B is already partitioned, and the
result of CXD is fairly small. The response time of the
resulting plan is 82.22 seconds, which again represents
a response time improvement of up to 32% compared
to not scrambling.

The remaining query plans exhibit similar behav-
ior. Table 2 shows the additional operations and the
overall performance for each of the possible scrambled
plans. In this experiment, the largest relative benefit
(approximately 44%) over not scrambling is obtained
when the delay of A is 69.79 seconds, which is the
time required to complete all six iterations. After this
point, there is no further work for query scrambling to
do, so the scrambled plan must also wait for A to ar-
rive. As can be seen in Figure 8, at the end of iteration
six the response time of the scrambled plan increases
linearly with the delay of A. The distance between the
delay of A and the response time of the scrambled plan
is the time that is required to complete the query once
A arrives.

Although it is not apparent in Figure 8, the first
scrambled query is slightly slower than the unscram-
bled query plan when A is delayed for a very short
amount of time. For a delay below 0.07 seconds, the
response time of the scrambled query is 80.10 seconds
while it is 80.03 seconds for the non-scrambled query.
When joining A and B, as the unscrambled query does,
B is partitioned during the join, allowing one of the

partitions of B to stay in memory. Partitioning B be-
forejoining it with A as the first scrambled query plan
does, forces this partition to be written back to disk
and to be read later during the join with A. When
A is delayed by less than the time needed to perform
these additional I/Os, it is cheaper to stay idle waiting
for A.

3.4 Experiment 2: Sensitivity of Phase 2

In the previous experiment all the joins produced
the same number of tuples, and as a result, all of the
operations performed in Phase 2 were beneficial. In
this section, we examine the sensitivity of Phase 2
to changes in the selectivities of the joins it creates.
Varying selectivities changes the number of tuples pro-
duced by these joins which affects the width and the
height of each step. Our goal is to show cases where
the benefits of scrambling vary greatly, from clear im-
provements to cases where scrambling performs worse
than no-scrambling.

For the test query, the first join created in Phase 2
is the join of relation B with the result of CXD (which
was materialized during Phase 1). In this set of experi-
ments, we vary the selectivity of this new join to create
a result of a variable size. The selectivity of this join is
adjusted such that it produces from 1,000 tuples up to
several thousand tuples. The other joins that Phase 2
may create behave like functional joins and they sim-
ply carry all the tuples created by (BX(CXD)) through
the query tree. At the time these tuples are joined
with A, the number of tuples carried along the query
tree returns to normality and drops down to 1,000.
Varying the selectivity of the first join produced by
Phase 2 is sufficient to generate a variable number of
tuples that are carried all along the tree by the other
joins that Phase 2 may create.

The two next sections present the results of this sen-
sitivity analysis for a small and a large memory case.



Scrambled | Performed by Total Response Savings
Plan # Tteration Delay Time
1 Partition B 0-12.23 80.10 | up to 13.18%
2 X1—CNXD 12.23-38.61 80.90 | 12.31-31.81%
3 X2—BXX1 | 38.61-40.62 82.22 | 30.69-31.85%
4 X3—X2XE | 40.62-50.32 82.51 | 31.61-36.70%
5 X4—X3XF | 50.32-60.07 83.05 | 36.28-40.72%
6 X5—X4XG | 60.07-69.79 83.52 | 40.38-44.21%

Table 2: Delay Ranges and Response Times of Scrambled Query Plans
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Figure 9: Response Times of Scrambled Query Plans
(Small Memory, Varying Selectivity and Delay.)

As stated previously, when the memory is small, re-
lations have to be partitioned before being joined (as
in the previous experiment). This partitioning adds
to the potential cost of scrambled plans because it
results in additional I/O that would not have been
present in the unscrambled plan. When the memory
is large, however, hash-tables can be built entirely in
memory so relations do not need to be partitioned.
Thus, with large memory the potential overhead of
scrambled plans is lessened.

3.4.1 Small Memory Case

In this experiment, we examine the effectiveness
of query scrambling when the selectivity of the first
join created by Phase 2 is varied. Figure 9 shows the
response time results for 3 different selectivities. As
in the previous experiment, the delay for A is shown
along the X-axis and is also represented as the lower
grey line in the figure. The higher grey line shows the
response time of the unscrambled query, which as be-
fore, increases linearly with the delay of A. These two
lines are exactly the same as the ones presented in the
previous experiment.

The solid line in the middle of the figure shows
the performance of a scrambled query plan that stops
scrambling right at the end of Phase 1 (in this case,
two iterations are performed during Phase 1) without
initiating any Phase 2 iterations. Note that this line
becomes diagonal after the end of Phase 1 since the

system simply waits until the tuples of A arrive before
computing the final result of the query.

Intuitively, it is not useful to perform a second
phase for scrambled queries when the resulting re-
sponse time would be located above this line. Costly
joins that would be created by Phase 2 would con-
sume a lot of resources for little improvement. On the
other hand, Phase 2 would be beneficial for scrambled
queries whose resulting response time would be below
this line since the additional overhead would be small
and the gain large.

The dashed and dotted lines in the figure illustrate
the tradeoffs. These lines show the response time for
the scrambled query plans that are executed for vari-
ous delays of A and for various selectivities. Note all
these scrambled query plans share the same response
times for the iterations performed during Phase 1.
These two first iterations correspond exactly to the
scrambled plans 1 and 2 described in the previous ex-
periment. At the end of the second iteration (38.61
seconds), however, if the tuples of A have still failed
to arrive, a third iteration is initiated and the query
scrambling enters Phase 2 which creates new joins.

The dotted line shows the performance when the
selectivity for the new join is such that it produces a
result of 1,000 tuples. This line is identical to the one
showed in the previous experiment since all the joins
were producing 1,000 tuples.

With the second selectivity, the first join created by
the second phase produces 10,000 tuples. If at the end
of this 1teration, the tuples of A have still not arrived,
another iteration is initiated and this iteration has to
process and to produce 10,000 tuples. The correspond-
ing line in the figure is the lowest dashed line. In this
case, where 10 times more tuples have to be carried
along the scrambled query plans, each step is higher
(roughly 12 seconds) and wider since more tuples have
to be manipulated than in the case where only 1,000
tuples are created. Even with the additional overhead
of these 10,000 tuples, however, the response times of
the scrambled query plans are far below the response
times of the unscrambled query with equivalent delay.

When the new join produces 50,000 tuples (the
higher dashed line in the figure), the response time
of the scrambled plans are almost equal to or even
worse than that of the original unscrambled query in-
cluding the delay for A. In this case, it i1s more costly
to carry the large number of tuples through the query
tree than to simply wait for blocked data to arrive.
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Figure 10: Response Times of Scrambled Query Plans
(Large Memory, Varying Selectivity and Delay.)

3.4.2 Large Memory Case

Figure 10 shows the same experiment in the case
where the memory is large enough to allow inner re-
lations for joins to be built entirely in main memory.
With large memory, no partitioning of relations needs
to be done.

For the large memory case, the lines showing the
increasing delay of A and the response time of the
unscrambled query when this delay increases are sep-
arated by 65.03 seconds and Phase 2 starts when A
is delayed by more than 18.95 seconds. Four different
selectivities are represented in this figure.

In contrast to the previous experiment where 50
times more tuples negated the benefits of scrambling,
in this case up to 80 times more tuples can be car-
ried by the scrambled query plans before the benefits
become close to zero. With a large memory, results
computed by each iteration need only be materialized
and can be consumed as is. In contrast, when the
memory is small, materialized results have to be par-
titioned before being consumed. With respect to a
small memory case, not partitioning the relation when
the memory 1s large reduces the number of 1/Os and
allows the scrambled plans to manipulate more tuples
for the same overhead.

3.5 Discussion

The experiments presented in this section have
shown that query scrambling can be an effective tech-
nique that 1s able to improve the response time of
queries when data are delayed. These improvements
come from the fact that each iteration of a scrambled
query plan can hide the delay of data. The improve-
ment, however, depends on the overhead due to mate-
rializations and created joins.

The improvement that scrambling can bring also
depends on the amount of work done in the origi-
nal query. The bigger (i.e., the longer and the more
costly) the original query is, the more improvement
our technique can bring since it will be able to hide
larger delays by computing costly operations. The im-
provement also depends on the shape of the query

tree: bushy trees offer more options for scrambling
than deep trees.

With respect to the Figures 9 and 10 presented
above, when many iterations can be done during
Phase 1, the point where Phase 2 starts shifts to the
right. This increases the distance between the Phase 1-
only diagonal line and the response time of the un-
scrambled query. In turn, the scrambling algorithm
can handle a wider range of bad selectivities for the
joins 1t creates during Phase 2.

4 Related Work

In this section we consider related work with respect
to (a) the point in time that optimization decisions are
made (i.e., compile time, query start-up time, or query
run-time); (b) the variables used for dynamic decisions
(i.e. if the response time of a remote source is con-
sidered); (¢) the nature of the dynamic optimization
(i.e. if the entire query can be rewritten); and (d) the
basis of the optimization (i.e., cost-based or heuristic
based).

The Volcano optimizer [CG94, Gra93] does dy-
namic optimization for distributed query processing.
During optimization, if a cost comparison returns in-
comparable, the choice for that part of the search space
is encoded in a choose-plan operator. At query start
up time, all the incomparable cost comparisons are re-
evaluated. According to the result of the reevaluation,
the choose-plan operator selects a particular query ex-
ecution plan. All final decisions regarding query ex-
ecution are thus made at query start-up time. Our
work is complimentary to the Volcano optimizer since
Volcano does not adapt to changes once the evaluation
of the query has started.

Other work in dynamic query optimization ei-
ther does not consider the distributed case [DMP93,
OHMS92] or only optimizes access path selection and
cannot reorder joins [HS93]. Thus, direct consider-
ations of problems with response times from remote
sources are not accounted for. These articles are, how-
ever, a rich source of optimizations which can be car-
ried over into our work.

A novel approach to dynamic query optimization
used in Rdb/VMS is described in [Ant93]. In this ap-
proach, multiple different executions of the same log-
ical operator occur at the same time. They compete
for producing the best execution — when one execution
of an operator is determined to be (probably) better,
the other execution is terminated.

In [DSDY5] the response time of queries is improved
by reordering left-deep join trees into bushy join trees.
Several reordering algorithms are presented. This
work assumes that reordering is done entirely at com-
pile time. This work cannot easily be extended to
handle run-time reordering, since the reorderings are
restricted to occur at certain locations in the join tree.

[ACPS96] tracks the costs of previous calls to re-
mote sources (in addition to caching the results) and
can use this tracking to estimate the cost of new calls.
As in Volcano, this system optimizes a query both at
query compile and query start-up time, but does not
change the query plan during query run-time.



The research prototype Mermaid [CBTY89] and its
commercial successor InterViso [THMB95] are hetero-
geneous distributed databases that perform dynamic
query optimization. Mermaid constructs its query
plan entirely at run-time, thus each step in query opti-
mization 1s based on dynamic information such as in-
termediate join result sizes and network performance.
Mermaid neither takes advantage of a statically gener-
ated plan nor does it dynamically account for a source
which does not respond at run-time.

The Sage system [Kno95] is an Al planning system
for query optimization for heterogeneous distributed
sources. This system interleaves execution and opti-
mization and responds to unavailable data sources.

5 Conclusion and Future Work

Query plan scrambling is a novel technique that can
dynamically adjust to changes in the run-time environ-
ment. We presented an algorithm which specifically
deals with variability in performance of remote data
sources and accounts for inetial delays in their response
times. The algorithm consists of two phases. Phase 1
changes the scheduling of existing operators produced
as a result of query optimization. Phase 1 is iteratively
applied until no more changes in the scheduling are
possible. At this point, the algorithm enters Phase 2
which creates new operators to further process avail-
able data. New operators are iteratively created until
there is no further work for query plan scrambling to
do.

The performance experiments demonstrated how
the technique hides delays in receiving the initial re-
quested tuples from remote data sources. We then ex-
amined the sensitivity of the performance of scrambled
plans to the selectivity of the joins created in Phase 2.

This work represents an initial exploration into
the development of flexible systems that dynamically
adapt to the changing properties of the environment.
Among our ongoing and future research plans, we are
developing algorithms that can scramble under differ-
ent failure models to handle environments where data
arrives at a bursty rate or at a steady rate that is
significantly slower than expected. We are also study-
ing the use of partial results which approximate the
final results. We also plan to study the potential
improvement of basing scrambling decisions on cost-
based knowledge.

Finally, query plan scrambling is a promising ap-
proach to addressing many of the concerns addressed
by dynamic query optimization. Adapting the query
plan at run-time to account for the actual costs of
operations could compensate for the often inaccurate
and unreliable estimates used by the query optimizer.
Moreover, it could account for remote sources that do
not export any cost information, which is especially
important when these remote sources run complex
subqueries. Thus, we plan to investigate the use of
scrambling as a complimentary approach to dynamic
query optimization.
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