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Abstract

Access to large numbers of data sources introduces new
problems for users of heterogeneous distributed databases.
End users and application programmers must deal with un-
available data sources. Database administrators must deal
with incorporating new sources into the model. Database
implementors must deal with the translation of queries be-
tween query languages and schemas. The Distributed In-
formation Search COmponent (Disco)� addresses these
problems. Query processing semantics are developed to
process queries over data sources which do not return an-
swers. Data modeling techniques manage connections to
data sources. The component interface to data sources
flexibly handles different query languages and translates
queries. This paper describes (a) the distributed mediator
architecture of Disco, (b) its query processing semantics,
(c) the data model and its modeling of data source connec-
tions, and (d) the interface to underlying data sources.

1. Introduction

Every heterogeneous distributed database system has
several types of users. End users focus on data. Appli-
cation programmers concentrate on the presentation of data.
Database administrators (DBAs) provide definitions of data.
Database implementors (DBIs) concentrate on performance.

As heterogeneous database systems are scaled up in the
number of data sources in the system, several fundamental
issues arise which affect users. For end users and appli-
cation programmers, scale makes a system harder to use.
In the absence of replication, to answer a query involving
n databases, all n databases must be available. If some
database is unavailable, either no answer is returned, or

�This research has been partially supported by the Advanced Research
Project Agency under grant ARPA/ONR 92-J1929 and by the Commission
of European Communities under Esprit project IDEA.

some partial answer is returned. The availability of answers
in the system declines as the number of databases rises. For
database administrators, scale makes a heterogeneous sys-
tem hard to maintain. To add a data source to the system,
schemas must be changed, catalogs updated, and new def-
initions added. For database implementors, scale makes a
system hard to program and tune. To add a data source, new
code must be written and new cost information recorded.
To more clearly explain these issues, we describe the archi-
tecture for a heterogeneous distributed database system, and
then describe various features of this architecture.

1.1 Architecture
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Figure 1. Disco architecture. Boxes repre-
sent stateless components, and disks com-
ponents with state. A stands for application,
M: mediator, C : catalog, W : wrapper, and
D : database. Arcs represent exchange of
queries and answers.



As shown in Figure 1, current distributed heterogeneous
database systems [5, 24], scale up by adopting a distributed
architecture of several specialized components. End users
interact with applications (A) written by application pro-
grammers. Applications access a uniform representation of
the underlying sources through a uniform query language.

Mediators (M) encapsulate a representation of multiple
data sources and provide a value-added service. Media-
tors provide the functionality of uniform access to multiple
data sources. They typically resolve conflicts involving the
dissimilar representation of knowledge using different data
models and database schema, and conflicts due to the mis-
match in querying power of each server. This distributed
architecture permits DBAs to develop mediators indepen-
dently and permits mediators to be combined, providing a
mechanism to deal with the complexity introducedby a large
number of data sources. This architectural assumption is a
good one, and we adopt it in this paper.

To permit collections of databases to be accessed in a
uniform way, mediators accept queries and transform them
into subqueries that are distributed to databases. DBAs pro-
vide information to mediators to accomplish query transfor-
mation. A mediator may, as in data warehousing, also keep
state or summary information about its associated databases.
In addition, special mediators, catalogs, (C), keep track of
collections of databases, wrappers, and mediators in the sys-
tem. Catalogs do not have total knowledge of all elements
of the system; however, they provide an overview of the
entire system.

To deal with the heterogeneous nature of databases,wrap-
pers (W) transform subqueries. Wrappers map from a subset
of a general query language, used by mediators, to the par-
ticular query language of the source. A wrapper supports the
functionality of translating queries appropriate to the partic-
ular server, and reformatting answers (data) appropriate to
each mediator. The wrapper implementor, a new specialty
of DBI, writes wrappers for each type of database.

The design of the Distributed Information Search COm-
ponent (Disco) provides different special features for all
users to deal with the problems of scale. For the application
programmer and end user, Disco provides a new seman-
tics for query processing to ease dealing with unavailable
data sources during query evaluation. For the DBA, Disco
models data sources as objects which permits powerful mod-
eling capability. In addition, Disco supports type transfor-
mations to ease the incorporation of new data sources into a
mediator. For the DBI, Disco provides a flexible wrapper
interface to ease the construction of wrappers.

One of the target applications for Disco is an environ-
mental application for the control of water quality. Multi-
ple databases, distributed geographically, contain measure-
ments of water quality at the physical site of the database.
All of these measurements have the same type and the DBA

must integrate a large number of data sources with simi-
lar structures. Disco provides special features to ease the
integration of multiple data sources.

1.2 Data model

Consider a system that contains two data sources r0
and r1. Suppose the r0 data source contains a person
relation with a person Mary whose salary is 200 and r1
contains a person relation with a person Sam whose salary
is 50. A mediator models r0 and r1 as extents person0
and person1, of type Person. The extent person of
the Person type automatically contains the two extents
person0 and person1.

To access the objects, theDisco query language is used.
For example, the query

select x.name
from x in person
where x.salary > 10

constructs a bag of the names of the persons from person
who have a salary greater than 10. The answer to this query
is a bag of strings Bag("Mary","Sam").

With this organization, the addition of a new data source
with persons simply requires the addition of a new extent
to person, as long as the type of the new data source
is the same as the type Person. The same query would
then access three data sources. The query itself does not
change. This property greatly simplifies the maintenance
of the mediator. Disco provides support for incorporating
new data sources with similar structure with respect to exist-
ing sources. It also provides support for incorporating new
data sources with dissimilar structure with respect to exist-
ing sources. This supports scalability from the viewpoint of
the DBA.

1.3 Query processing

Disco supports a new query processing semantics to
deal with the problem of unavailable data. In the absence of
replication, if a data source does not respond, then a database
management system is faced with two possibilities: either
it waits for the data source to respond, or it returns a partial
answer. Disco uses partial evaluation semantics to return
a partial answer to queries, by processing as much of the
query as possible, from the information that is available.
Thus, the answer to a query may be another query.

Suppose that the r0 data source does not respond. Then,
answer to the previous query would be the following query,
representing a partial answer:

union(select y.name
from y in person0



where y.salary > 10,
Bag("Sam"))

(In Disco, the union of two bags is a bag). Thus, the query
in the partial answer is contained in the first argument of the
union and the data is contained in the second argument.
When r0 becomes available, this partial answer could be
submitted as a new query (since it is itself a query) and
the answer Bag("Mary", "Sam") would be returned,
assuming that the underlying data sources have not changed.

1.4 Wrapper interface

For the DBI, Disco provides a flexible wrapper inter-
face. Disco interfaces to wrappers at the level of an abstract
algebraic machine (AM) of logical operators. When the DBI
implements a new wrapper, she chooses a (sub)set of logical
operators to support. The DBI implements the logical op-
erators, and also implements a call in the wrapper interface
which returns the grammar describing the supported logical
expressions. During query processing, a Disco media-
tor query optimizer generates a logical expression for the
wrapper. The mediator calls the wrapper interface to get
the grammar describing the supported logical expressions,
and checks that the logical expression generated by the op-
timizer is legal with respect to the grammar describing the
wrapper interface.

In summary,Disco attacks fundamental problems in ac-
cessing a large number of heterogeneous sources. Explicit
specification of the data sources, as objects, in the Disco
data model, gives the DBA the capability to express queries
that range over an unspecified collection of data sources
[17], or queries that refer to particular data sources. As
a result, the mediator can use the full power of the OQL
query language to query data in heterogeneous servers, in
a transparent manner. Inclusion of the data source speci-
fication within the model also allows Disco to support a
new query processing semantics. Since data sources are
objects, an answer to a query can be a partial answer, and
can refer to a data source object or to actual data objects,
and both references will be meaningful. Such a situation
can occur when a particular data source is unavailable, as is
common in a networked environment. This provides alter-
native query evaluation schemes and is very flexible. The
type hierarchy and mapping supported by the Discomodel
allows the mapping of multiple data sources to a single type
of a mediator, and also allows the mapping of a data source
to multiple types of a mediator. This aspect of the Disco
model supports scaling to a large number of data sources.
New data sources may also be incorporated transparently, if
they map to the same mediator type.

This paper is organized as follows: Section 2 presents
the data model through a description of the extensions to
an existing standard. Section 3 describes mediator query

processing and the wrapper interface. Section 4 presents
a new semantics of query processing. Section 5 describes
related work. We conclude with a summary and discussion
of future plans.

2 Mediator data model

2.1 Extensions to the ODMG standard

Disco is based on the ODMG standard. The ODMG
standard consists of an object data model, an object def-
inition language (ODL), a query language (OQL), and a
language binding. In the data model, an interface de-
fines a type signature for accessing an object. An extent,
associated with an interface, instructs a system to automati-
cally maintain the collection of objects of the interface. An
extent is a named variable whose value is the collection of
all objects of the associated interface. When objects are
created or destroyed, the extent is updated automatically.
Extents are the primary entry point for access to data.

The Disco data model is based on the ODMG-93 data
model specification [6]. We extend ODMG ODL in two
ways, to simplify the addition of data sources to a mediator.

extents This extension associates multiple extents with
each interface type defined for the mediators.

type mapping This extension associates type mapping in-
formation between a mediator type and the type asso-
ciated with a data source.

In addition to these extensions, we define two (stan-
dard) ODMG interfaces; Wrapper models wrappers and
Repository models repositories. A repository is essen-
tially the address of a database or some other type of repos-
itory. Repositories typically contain several data sources.
Each data source in a repository is associated with an ex-
tent, and this provides the entry point to the data source.
Disco extends the concept of an extent for an interface,

to include a bag of extents for the interface, for any type
defined for the mediator. Each extent in the bag mirrors the
extent of objects in a particular data source, associated with
this mediator type. Since this extension is fully integrated
into the ODMG model, the full modeling capabilities of
the ODMG model are available for organizing data sources.
Disco evaluates queries on extents and thereby on the data
sources. To describe the data model, we proceed with the
steps a database administrator (DBA) uses to define access
to a data source in Disco.

The first step is to model the data source. The DBA
creates an instance of theRepository type, which defines
the repository and the data source that it contains. For
example,



r0 := Repository(host="rodin.inria.fr",
name="db", address="123.45.6.7")

creates a object of type Repository with the informa-
tion necessary to access the data source in the repository,
and assigns the object id to the variable r0. The defini-
tion of the Repository type is not completely specified;
our example shows some necessary fields. Other attributes
which describe the maintainer of the data source, the cost of
accessing the data source, etc., can be added.

In the second step, the DBA locates a wrapper (written
by a database implementor), for the data source. Section 3
discusses the features of Disco to aid the database imple-
mentor. A wrapper is an object with an interface that, when
supplied with information to access a repository and a query,
returns objects to a mediator which answer the query. For
instance, the following wrapper object w0 might access a
relational database; details of the wrapper are not specified
in this paper:

w0 := WrapperPostgres();

In the third step, the DBA defines the type in the mediator
which corresponds to the type of the objects in the data
source. For example, the Person type corresponding to
the objects in data sources r0 and r1, is defined as follows,
where the interface is a standard ODL interface:

interface Person {
attribute String name;
attribute Short salary; }

Finally, the DBA specifies the extent of this mediator
type, which accesses the r0 repository utilizing the w0
wrapper. Our specification of the extent is a modification of
the meta-data information. Disco provides the following
special syntax, for the addition of an extent:

extent person0 of Person wrapper w0
repository r0;

This specification adds the extentperson0 to thePerson
interface. The type of the objects of extent person0 are of
the same type as the interface Person. This specification
states that access to objects in the data source are through
the wrapper w0, and objects are located in the repository
r0. The extent name person0 is determined by the name
of the data source in the repository. The type of objects in
the data source are assumed to be the same as the type of the
objects in the extent. Thus, the type of the objects in the data
source associated with person0 is Person. At run-time,
the wrapper checks that these types are indeed the same. We
note that the Disco data model can also handle the case
where there is a mismatch of types, and this is discussed
in Section 2.2.2. Thus, each Disco extent represents a
collection of data in one data source. This intuition is the

key to the Disco data model. (A more general approach
associates an implementation with each data source [5, 29])

At this point, data access from the data source is possible.
The following query:

select x.name
from x in person0
where x.salary > 10

returns the answer Bag("Mary") with respect to the data
source defined in the introduction. Several conditions must
hold for this answer to be returned. The name of the data
source in repository r0 is person0, the same as the extent
name. The type of every object in the data source must be of
typePerson. We modify these restrictions in Section 2.2.2.

The addition of a new Person data source now only
requires adding an extent to type Person, assuming that
the appropriate wrapper is available. For example, the fol-
lowing extent expression:

extent person1 of Person wrapper w0
repository r1;

adds theperson1 extent to thePerson interface,utilizing
the same wrapper, but referencing a different repository
object r1. We assume that the objects in person1, which
are from the r1 repository are of type Person. To access
objects in both data sources, the extents are listed explicitly
in the following select expression:

select x.name
from x in union(person0,person1)
where x.salary > 10

which returns the answer: Bag("Mary", "Sam").
The Disco data model allows us to explicitly refer to

the extents for mediator type, in the queries. Although, this
is a powerful capability, which is exploited in examples in
Section 2.3, it also makes it difficult to express queries,
when the extents are not explicitly specified. The Disco
data model solves this by using a special meta-data type
MetaExtent, which records the extents of all the mediator
types. The special extent syntax used previously to add
or delete extents can be translated to automatically create
instances of this meta-data type, MetaExtent, which is
defined as follows:

interface MetaExtent (extent metaextent)
{
attribute String name;
attribute Extent e;
attribute Type interface;
attribute Wrapper wrapper;
attribute Repository repository;
attribute Map map; }



Thus, extents for the mediator types can be added or deleted
by adding or deleting objects of type MetaExtent. For
example, the following extent:

extent person1 of Person wrapper w0
repository r1;

will create an instance, say m1, of type MetaExtent,
where m1.e=person1, m1.interface=Person, etc.
Note that the map attribute of type MetaExtent provides
a type conversion facility between the mediator type and
the data source type, and is described in Section 2.2.2. It is
possible to generalize the association of extents to type into
a full hierarchy of extents. However, it is not clear that this
generality brings any real modeling benefits to the DBA.

Using this meta-data,Disco can now provide an implicit
reference to all the extents associated with a mediator type,
by declaring an extent in the interface definition. Thus,
the following interface definition for Person implicitly
assumes a query definition expression for the corresponding
extent person:

interface Person (extent person){
attribute String name;
attribute Short salary; }

define person as
flatten(select x.e from x in metaextent

where x.interface=Person)

This query definition expression for person accesses the
meta-data of the extents, to dynamically select all of the ex-
tents associated with the type Person. Thus, the following
query dynamically accesses all the extents defined for the
type Person:

select x.name
from x in person
where x.salary > 10

This modeling feature distinguishes Disco from other
systems and permits the DBA to more easily manage scaling
to a larger number of data sources. With the above ODL
definitions, the query in the introduction will produce the
answers described. Note that if the wrapper cannot match
(or convert) the type in the mediator to the type in the data
source, a run-time error will occur.

2.2 Matching similar and dissimilar structures

In general, when a DBA defines the aggregation of data
from data sources, the need to access multiple data sources
of similar structure or subsstructure, or sources of dissim-
ilar structure, may arise. Disco provides subtyping for
modeling similar substructures, maps for modeling similar
structures, and views for modeling dissimilar structures. All

these features can be applied while incorporating new data
sources, and associating types of objects in the data sources
to the types defined in the mediators. In related research
[1, 14, 16, 15, 17], the main objective when integrating
multiple data sources was obtaining a single unified type.
In contrast, in Disco, we apply these features to the task
of providing support for incorporating new data sources, by
specifying the mapping among types in the mediator and the
data source. We note that in this paper, we use an example
of relational data sources. However, the Disco model can
be applied to a variety of information servers, such as WAIS
servers, file systems, specialized image servers, etc.

2.2.1 Subtyping

Subtyping is a method to organize collections of data sources
with similar substructures. The subtype concept described
here is directly obtained from the ODMG data model. Con-
sider two data sources of students, in repositories r2 and
r3. The DBA defines a Student interface as a subtype of
Person, and the following extents:

interface Student:Person { }
extent student0 of Student wrapper w0

repository r2;
extent student1 of Student wrapper w0

epository r3;

Theperson extent still contains the two extents,person0
and person1. Thus, the extent of a type does not automat-
ically reference the extents of its subtypes, in the subtype
hierarchy. Disco therefore provides a special syntax, e.g.,
person*, for typePerson, which recursively refers to the
extents of all the subtypes of this type. Thus, the person*
extent now contains four extents.

2.2.2 Mapping Disco types to data source types

In the previous section, we assumed that the type of the
data source, and the type defined for the mediator accessing
the data source, were identical. Recall that we assumed a
relational data source. Then, the name of the data source
relation is the name of the extent of the mediator type. Fur-
ther, the names of the fields of the relation in the data source
are identical to the names of the fields of the mediator type.
In many existing systems, the burden of resolving the con-
flict between the two types is in the hands of the wrapper
implementor. Disco provides some functionality to the
DBA to resolve such conflicts. Here we consider the simple
case where the type of the mediator and the type of the data
source are different. A similar technique can be used to map
multiple data sources to the same mediator type, or to map
several mediator types to a single data source.

Suppose the DBA defines a different type,
PersonPrime, with extent personprime0, to access



the data source named person, which has objects of type
Person, as follows:

interface PersonPrime {
attribute String n;
attribute Short s; }

extent personprime0 of PersonPrime
wrapper w0 repository r0;

Since Disco binds objects in data sources to types at run-
time, these ODL statements are legal. Since objects returned
from r0 are of type Person, the extent personprime0
has a type conflict with objects returned, and Disco will
simply generate a run-time error. Disco allows the DBA
to resolve this type conflict.

The DBA resolves type conflicts by specifying a mapping
between a mediator type and a data source type. A mapping
is a function from type to type. The mapping is called the
local transformation map.

The local transformation map consists of a list of strings
and is recorded in the map field of the extent. This corre-
sponds to the field map of the meta-data typeMetaExtent.
Each string is either (1) an equivalence between the name
of the data source (relation) and the name of the extent of
the mediator type, or (2) an equivalence between the name
of a field of the data source (relation) and the name of a field
of the mediator type. The DBA resolves the type conflict in
this example with the following map:

extent personprime0 of PersonPrime
wrapper w0 repository r0

map ((person0=personprime0),(name=n),
(salary=s));

This map associates the name of the data source relation
person0 with the name of the extent personprime0.
Further, since personprime0 is of type PersonPrime,
the map creates a one-to-one correspondence between the
name field and n and salary and s, respectively. Thus,
when a query is generated for this data source, by the me-
diator, it will refer to the attributes in the map to obtain the
correct type for the data source. At present, maps are re-
stricted to a flat structure, and they are defined as a list of
strings. We plan to extend maps to handle nested types. A
further extension is functions which map between domains
and ranges, and will allow the mediator to resolve mismatch
of values in the data sources during query processing.

In prior research [1, 14, 16], there has been much discus-
sion about the mismatch of the data types, formats, values,
etc., with respect to data sources and mediator types. In these
previous approaches, the DBA resolves all conflict to obtain
a single unifying type. Disco has no such objective. Our
objective is to provide distinct types and appropriate tech-
niques to resolve type mismatch. Our approach makes all
types explicit in the mediators. Each addition of a type and

resolution of a type conflict should be independent of any
other type conflict.

2.3 Reconciling structures and data

The previous sections introduced features such as maps
and subtyping to resolve mismatch between types. In gen-
eral, some arbitrary transformations in the representation of
a data source may be needed. This functionality is provided
by query definition expressions, or views in Disco. The
define � � � as � � � OQL syntax specifies a view con-
sisting of a query name and a query. Views do not have
explicit objects associated with them. The objects are ref-
erenced through the query name and are generated through
executing the query.

Suppose a data source r5 of type PersonTwo, does
not have a single salary field, but has two fields, regular
for regular pay and consult for consulting pay. We may
still wish to aggregate over the data sources. To do so, the
different structures are included in a view definition. In this
example, we assume that the people in the data sources of
type Person are distinct from the people in r5 of type
PersonTwo. The opposite assumption is also supported in
Disco, but the view definition would be more complicated.

interface PersonTwo {
attribute String name;
attribute Short regular;
attribute Short consult; }

extent persontwo0 of PersonTwo
wrapper w0 repository r5;

define personnew as
bag(select struct(name: x.name,

salary: x.salary)
from x in person,
select struct(name: x.name,

salary: x.regular+x.consult)
from x in persontwo0)

A view can reference other views, as long as the references
are not cyclic. These views are not updatable.

3 Mediator query processing

The Disco mediator contains an internal database.
The internal database records information on data sources,
types, interfaces, views, etc. The mediator also contains a
query optimizer and run-time system. The query optimizer
searches for the best way to execute a query on the run-time
system. The search is accomplished by transforming the
query into several alternative logical expressions over an
abstract machine (AM). Each logical expression can be exe-
cuted by the mediator or by a wrapper, as appropriate. Each



expression has an associated estimated cost. The expression
with the lowest estimated cost is then executed by the run
time system [11].
Disco models calls to a wrapper with the

submit(source, expression) logical operator.
This operator means that the meaning of the logical expres-
sion expression is located at source. When the query
optimizer translates an OQL query into a logical expression,
references to extents are translated into the submit opera-
tor. The query optimizer generates a submit operator for
each reference to an extent.

For example, the query optimizer translates the query

select x.name
from x in person

where person has extents person0 and person1, into
the following logical expression:

union(project(name,submit(r0,
get(person0))),

project(name,submit(r1,
get(person1))))

Reading in the order of application, from right to left, this
logical expression means that the query retrieves tuples with
the get operation from the person0 collection. The loca-
tion of the tuples is specified in the r0 object. The submit
operator accesses the tuples in the data source, and thename
attribute is projected out of each tuple in the collection. The
projection is done by the run-time system of the media-
tor. A similar operation is done with r1 and the results are
combined into a bag.

Logical expressions containing the submit logical op-
erator can be rewritten using transformation rules. For in-
stance, one rule is to push a project into the argument of the
submit, and therefore model the execution of the project
directly on the data source. There are restrictions on the
transformation rules. Some of these restrictions are based
on the algebra and are well known. Additional restrictions
are imposed by the functionality of the wrapper.

To determine the transformation rules applicable to the
submit operator,Disco consults the wrapper interface(s)
with a call to thesubmit-functionalitymethod. The
method returns a grammar. The grammar specifies the sub-
set of the abstract machine, corresponding to the capability
of the wrapper. For this example, the call may return a
grammar for r0, indicating that it supports composition of
the operatorsget and project, and it may return a gram-
mar for r1, indicating that it only supports the operator
get. More generally, multiple features of the composition
of operators, the support for certain comparison operators,
etc., can be defined. Transformation rules would operate on
the logical expression output by the query optimizer, and
produce the following logical expression, for this example:

union(submit(get(r0),
project(name,get(person0))),

project(name,submit(r1,
get(person1))))

Note that the arguments ofsubmit are in the name space
of the mediator and do not yet refer to names in the local
data source. That translation is performed by the wrapper.

Each submit call has a cost function which estimates
the cost of execution for the particular submit call, during
run-time. In the case of heterogeneousdatabases, estimating
the cost function is difficult, since the data source may not
export enough information to determine the run-time cost of
eachsubmit call. Disco solves this problem by recording
previous submit calls to a data source and the actual cost
of the call. When the submit call finishes, the arguments
of the call, the time taken and the amount of data generated
is recorded. A new call is compared to the previous calls.
In the case that an submit call exactly matches a sequence
of previous submit calls to a data source, a smoothing
function may be used to combine the associated data to
generate a new estimate. Only a fixed number of exactly
matching calls are recorded.

In the case that the submit call does not exactly match,
Disco searches for close matches. A close match is, e.g., a
selection logical operator whose comparison operators
match, but where the constants do not match. We believe
that a variant of predicate-based caching [13] will accom-
plish close matching. While the associated statistics may be
somewhat inaccurate, particularly if there is high data skew,
we believe that these estimates are still useful. We plan to
conduct experimental analysis of this problem.

4 Query processing with unavailable data

As mentioned in the introduction, scaling the number
of heterogeneous data sources introduces the problem of
access to unavailable data sources in a query. Since the
Disco data model models data sources as objects, and the
query language permits quantification over data sources, it
is straightforward to write a query which accesses many data
sources. It is likely that some of the data sources will be
unavailable.

One approach to this problem assigns the meaning that
the unavailable data source is considered to have no match-
ing tuples. Another approach assigns a different meaning
that the unavailable sources do not exist. Disco choses a
third alternative. The answer to a query is another query.
If all sources are available, then the query (answer) will
contain only data. If data sources are unavailable, then, the
answer is a partial evaluation of the original query. The
partial evaluation corresponds to the available data sources.
The unevaluated part of the answer corresponds to the un-
available data sources. This definition of an answer as a



query is included in OQL, since both queries and answers
are treated as expressions. That is, OQL is closed with
respect to queries and data.

Query processing proceeds normally until a designed
time has elapsed. At this point, data sources are classi-
fied as unavailable or available. The query is rewritten into
two parts, one which contains a query to the unavailable data
sources, and the other containing the query that is currently
being processed on the available sources. Query processing
proceeds until the latter query consists only of data. Query
processing then terminates and a two part answer which is
a query in a special form is returned. The first part contains
a query on the unavailable data sources and the second part
contains data. It is also possible that sources that are initially
available become unavailable before query processing has
terminated; we have not considered this possibility here.

The partial evaluation proceeds as follows: The query
is translated into a logical expression and submitted to the
run-time system. The logical expression contains calls to
the submit operator. These calls proceed in parallel. Calls
to available data sources succeed. Calls to unavailable data
sources block. After a designated time period, query evalu-
ation stops. Then, the logical expression is translated back
into a high level query. This translation is possible because
each logical expression has a corresponding OQL expres-
sion. The new high level query is the partial evaluation of
the query. It is also the answer to the query.

Thus, continuing the example from the previous section,
suppose that the r0 repository does not respond, but the r1
repository produced the bag of strings Bag("Sam") as the
result. Disco would translate the query on the unavailable
source into a high level query, and combine it with the data
obtained from r1 to produce the following answer:

union(select x.name
from x in person0,
Bag("Sam"))

This approach has two advantages. First, the semantics
of an answer are clearly defined. Second, if the unavailable
data sources become available, and the answer is evaluated
again, the original answer to the first query will be returned,
as if all data sources were available in the first place.

5 Related work

Pegasus [1], UniSQL/M [16, 15] and SIMS [2] sup-
port mediator capabilities through a unified global schema
which integrates each remote database and resolves con-
flicts among these remote databases [4] within this unified
schema. These projects made substantial contributions in
resolving conflicts among different schema and data mod-
els. Scalability was not explicitly addressed, and will pose
problems, since the unified schema must be substantially

modified as new sources are integrated. They also do not
consider data sources that do not have a fixed schema, or
servers which have a less powerful query capability. Fed-
erated multidatabases include Interbase* [22], which pro-
vides transaction semantics for federations of heterogeneous
servers, and IRO-DB [10]. The latter also uses ODMG as
the common model and provides integrated schemas and
global transaction management. Disco differs from these
projects since we focus on dynamic features such as scala-
bility as new sources are added, and query processing when
sources are unavailable.

Alternately, the capability of a mediator is supported by
the use of higher-order query languages or meta-models
[3, 8, 14, 17, 18]. Mediators are also implemented by map-
ping knowledge bases that capture the knowledge required
to resolve conflicts among the local schema, and transforma-
tion algorithms that support query mediation and interopera-
tion among relational and object databases [7, 19, 26, 27, 28].
Here, too, scalability is a problem, since the higher-order
queries or the mapping knowledge has to adapt, as addi-
tional sources are incorporated.

In contrast to the unified global schema which resolves
all conflicts among the entities of the local schema, the Gar-
lic system [5], and research described in [9, 21, 20], assume
a mediator environment based on a common data model.
In [9], the common data model is the ODMG standard ob-
ject model [6], which extends the OMG object-oriented data
model [12]. Semantic knowledge expresses the mappings
among the multidatabase interface description and the local
interface descriptions corresponding to each local database.
Semantic knowledge is expressed as general equivalences,
queryi � queryj, where each query is expressed using the
OQL query language. Semantic knowledge includes map-
ping knowledge in the form of queries that are views over the
union of the MDBMS and the local interfaces; equivalences
expressing integrity constraints in the local and MDBMS in-
terfaces, and equivalences expressing data replication in the
local interfaces. All these equivalences are used for query
reformulation. They address the problem of mismatch in
the querying capability of the servers, since a query is refor-
mulated using the views [9, 21, 20]. However, they do not
focus on scalability issues. Although it is not described in
this paper, we assume that there is such semantic knowledge,
and it is used in query reformulation.

The focus of the TSIMMIS project [24, 25, 23] is the in-
tegration of structured and unstructured (schema-less) data
sources, techniques for the rapid prototyping of wrappers
and techniques for implementing mediators. The com-
mon model is an object-based information exchange model
(OEM), which has a very simple specification. They too
address the issue of mismatch in the querying capability
of different data sources, and propose techniques for query
reformulation that resolves this mismatch. In [25], they de-



scribe techniques for rapid prototyping of wrappers using
query translation techniques. We expect to use similar tech-
niques, and we extend the model with the explicit represen-
tation of data source objects, the ability to express mappings
among types and a flexible query processing semantics.

6 Conclusions and future work

In summary, scaling the number of data sources in het-
erogeneous distributed databases introduces problems for
end users, application programmers, database administra-
tors and database implementors (wrapper implementors).
The design of Disco provides solutions to some of the prob-
lems encountered by these users. Partial evaluation query
semantics are provided to end users and applications pro-
grammers. Data modeling tools for modeling data sources
as objects, and a simple language for resolving type conflicts
are provided to the database administrator. The wrapper im-
plementor uses a flexible wrapper interface to deal with the
problem of the mismatch between the expressive power of
the Disco system and the underlying data source.
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