
IS
S

N
 0

24
9-

63
99

ap por t

de r ech er ch e

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Partial Answers for Unavailable Data Sources

Philippe Bonnet and Anthony Tomasic

N ˚ 3127

Mars 1997

THÈME 3

Partial Answers for Unavailable Data SourcesPhilippe Bonnet� and Anthony TomasicyTh�eme 3 | Interaction homme-machine,images, donn�ees, connaissancesProjet RodinRapport de recherche n�3127 | Mars 1997 | 24 pages
Abstract: Many heterogeneous database system products and prototypes exist today; they will soon bedeployed in a wide variety of environments. All existing systems su�er from an Achilles' heel: if some sources areunavailable when accessed, these systems either silently ignore them or generate an error, i.e. they ungraciouslyfail. This behavior is improper in environments where there is a non-negligible probability that data sourcescannot be accessed (e.g., Internet). In this paper, we propose a novel approach to this issue where, in presenceof unavailable data sources, the answer to a query is a partial answer. A partial answer is itself a query thatresults from theo partial evaluation of the original query; it is composed of the data that have been obtainedand processed during the evaluation and of a representation of the un�nished work to be done. Partial answerscan be resubmitted to the system in order to obtain the �nal answer to the original query, or another partialanswer. Additionally, the application program can extract information from a partial answer through the useof a secondary query. This secondary query is called a parachute query. In this paper we give a taxonomyof partial answers and parachute queries. We present algorithms for the evaluation of queries in presence ofunavailable data sources, and we describe an implementation.Key-words: Heterogeneous databases, Query Processing, Partial Evaluation, Unavailable Data

(R�esum�e : tsvp)This work has been done in the context of Dyade, joint R&D venture between Bull and Inria.� Bull, GIE Dyade - Address: INRIA Rhone Alpes, 655 Av de l'Europe, 38330 Montbonnot, France. e-mail:Philippe.Bonnet@inrialpes.fr, http://sirac.inrialpes.fr/ pbonnety Address: INRIA Rocquencourt, 78153 Le Chesnay, France. e-mail: Anthony.Tomasic@inria.fr,http://rodin.inria.fr/person/tomasic
Unité de recherche INRIA Rocquencourt

Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
Téléphone : (33) 01 39 63 55 11 – Télécopie : (33) 01 39 63 53 30

R�eponses partielles pour sources de donn�ees indisponiblesR�esum�e : De nombreux syst�emes de bases de donn�ees h�et�erog�enes existent aujourd'hui, sous forme de proto-type ou de produits; ils seront sous peu deploy�es dans un grand nombre d'environnements. Tous ces syst�emesexistants sou�rent cependant d'un talon d'Achille: si certaines sources de donn�ees sont indisponibles lorsqu'ellessont acc�ed�ees, les syst�emes les ignorent ou g�en�erent une erreur. Ce comportement n'est pas satisfaisant dansdes environnements o�u il existe une probabilit�e non n�egligeable qu'un site soit indisponible (e.g., Internet).Dans cet article, nous proposons une approche originale o�u, en pr�esence de sources de donn�ees indisponibles, lar�eponse �a une requête est une r�eponse partielle. Une r�eponse partielle est elle même une requête qui r�esulte del'�evaluation partielle de la requête initiale; elle est compos�ee des donn�ees obtenues lors de l'�evaluation et d'unerepr�esentation du travail restant �a accomplir. Les r�eponses partielles peuvent être soumises au syst�eme pourobtenir la r�eponse �nale la requête initiale, ou bien une autre r�eponse partielle. Par ailleurs, une applicationpeut extraire de l'information d'une r�eponse partielle en utilisant une requête secondaire. Nous appelons cetterequête secondaire une /em requête parachute. Dans ce papier, nous pr�esentons une taxonomie des r�eponsespartielles et des requêtes parachutes. Nous pr�esentons des algorithmes pour l'�evaluaiton de requêtes en pr�esencede sources de donn�ees indisponibles, et nous d�ecrivons notre impl�ementation.Mots-cl�e : Bases de Donnes htrognes distribues, traitement de requtes, valuation partielle, donnes in-disponibles

31 IntroductionMany current application environments provide declarative access to a wide variety of heterogeneous datasources. Research into improving these systems has produced many new results [8, 7, 17, 1, 4, 12, 13, 3, 15, 11],which are being incorporated into prototypes and commercial products. However, to the best of our knowledge,these systems all fail ungraciously in the presence of unavailable data sources. They either assume that all datasources are available, report error conditions, or silently ignore unavailable sources.In this paper we present a novel solution to this problem of ungracious failure. Our solution relies, �rst, onthe partial evaluation of queries to produce a partial answer, and second, on the ability to extract informationfrom the partial answer of a query. By partial evaluation we mean that part of the work in processing a queryis accomplished and then query processing stops due to an interrupt condition. In this paper, the interruptcondition is based on the unavailability of a data source, but it can be more general. It could be, for instance,an alarm that is triggered after a certain amount of time. When the interrupt condition is reached and queryprocessing stops, a partial answer is generated. The partial answer represents both the work accomplishedduring the partial evaluation and the work that remains to be accomplished to provide the �nal answer to theoriginal query.The partial answer contains a query that can be resubmitted to the query processing system and queryprocessing will continue until either the �nal answer is produced or the interruption condition again occurs,generating another partial answer. Under our working assumptions, the �nal answer will always equal theanswer to the original query as if the interrupt condition and the partial evaluations never occurred. Given apartial answer we can extract useful information from it and return this partial information to the user.1.1 ExampleTo make our solution more concrete, let us consider the following example, executed on the Disco [18] het-erogeneous distributed database system. Suppose we have a mediator [22] that accesses two distributed datasources, companies for companies, bids for bids on work, and a local relation regions that classi�es regions intodistricts. The schemas of these data sources are given in Appendix A. We ask the query select the companiesand the bids for work located in the Rhne-Alpes region and return the name and activity of the companies withthe markets of bids on work. In Disco this query is expressed in an OQL-like syntax asfrom x in companies, y in bids, z in regionsselect x.name, x.activity, y.marketwhere x.district = y.district and z.region = "Rhone Alpes"and x.district = z.district;The query starts execution. The interrupt condition occurs if a data source is unavailable. If all sources areavailable, the query completes and returns the answer{["ATELIER SOIXANTE QUATORZE","Bureauxd'tudes - btiments et travaux publics"," Objet du march :construction d'un groupe scolaire. Lieu d'excution : avenuedu Stade, 74970 Marignier. "][12 more tuples not shown]["BALTHAZARD ET COTTE","Matires premires pourle btimentet les travaux publics"," Objet du march : extension etrhabilitation du collge Les Mntriers. Lieu d'excution : aucollge Les Mntriers, 21, rue de Landau, 68150 Ribeauvill. "]}exactly as in any heterogeneous database system. However, for example, if the bids data source is unavailable,Disco responds with an object, say o1 that represents the partial answer and its environment. This objectrepresents the partial answer interface to the user. The unavailable method of this object returns the list ofsources that are unavailable. Thus o1.unavailable() returns the set (bids).Another method of this object returns a query that can be re-submitted as a new query. The followingstring is obtained, with some details suppressed:RR n�3127

4 Ph Bonnet & A.Tomasicfrom x0 in (from x1 in (from x3 in (from x4 in (bids) select x4)select x3), x2 in (from x5 in ({["ATELIER SOIXANTE QUATORZE","Bureauxd'tudes - btiments et travaux publics","74","1 r Jean Jaurs BP36274012 Annecy Cedex ","0450516945","0450528088","RhoneAlpes","74"],[7 more tuples not shown]) select x5) selectx1.parution, x1.valid, x1.district, x1.market, x2.name, x2.activity,x2.district, x2.address, x2.tel,x2.fax,x2.region,x2.districtwhere x1.district = x2.district) select x0.name, x0.activity,x0.market;1.2 DiscussionAn alternative to dealing with partial answers in applications is replication of data sources to increase theavailability of all data sources to the point that queries almost always execute. Replication su�ers from aneconomic disadvantage { �rst, the hardware for each data source must be replicated at a di�erent physicalsite (to avoid communication failures) and second the software has higher cost because replication impacts thecomplexity of software and update performance. In addition, in an environment with autonomous data sources,replication may not be possible simply because the data source forbids it. Finally, partial answers are completelycompatible with replication { in the case that a data source is replicated, the probability that it will trigger ourexample interrupt condition is simply smaller.In the example, the user re-submits the partial answer as a new query to continue partial evaluation.However, if the interrupt condition still holds (e.g., data source bids is still unavailable), the re-submission willaccomplish little. The new query will be re-optimized, but its execution will stop immediately. Thus, in thisapplication of partial answers, the noti�cation to the user of the availability of a data source would improvematters. This issue is future work.Finally, in our example we state that, under our working assumptions, the re-submission of the partial answeras a new query will result in the same answer as the original query. This statement holds under the assumptionthat no update relevant to the query occurs between the start of query processing and the �nal answer. By arelevant update, we mean an update that changes the answer to the query. For the rest of this paper, we keepthis working assumption. Handling updates is also future work.1.3 ContributionsIn summary, this paper describes a novel approach to handling unavailable data sources during query processingin heterogeneous distributed databases. We describe in Section 2 a framework of related technical problemsand solutions that partial answers induces. In particular, we de�ne parachute queries, a general method forextracting information from partial answers. In Section 3 we describe an algorithm for generating partialanswers and discuss implementation trade-o�s for this algorithm. Section 4 describes an implementation of onecollection of these trade-o�s. Section 5 describes a query processing example which involves partial answers. InSection 7 we conclude the paper by summarizing our results and discussing future work.2 FrameworkOur approach to the problem of unavailable data sources o�ers two aspects. First, we consider the evaluationof queries in presence of unavailable data sources. Second, in case some data sources are unavailable, we studythe problem of extracting information gathered during the evaluation.Let us study the behavior of a query processing system that integrates our approach. An application programsubmits a queryQ, which involves several data sources. If all data sources are available, then the system returnsan answer A(Q). If one or several sources are unavailable, the system returns a partial answer P(Q).We de�ne a partial answer P(Q) as a pair (Q',E). Q' is a query that results from the partial evaluationof the original query and E is the environment of the partial answer. We provide an algorithm in Section 3that constructs Q'. Generally, Q' is composed of two parts: a part that contains the data accessed from dataINRIA

5

Constrained
Unconstrained

Constrained
Unconstrained

Constrained
Unconstrained

Partial Answers

Opaque Transparent

Ad hoc Parachute Queries

ContainsContained By Non-OverlappingOverlapping

Unconstrained
ConstrainedFigure 1: Taxonomy of Partial Answers and Parachute Queriessources, and a part that is a query on the data sources that were unavailable. E contains additional informationthat has been gathered during the evaluation, e.g., the list of data sources that were available or unavailable.At a later point in time, Q' can be re-submitted to the system. Our algorithm for the generation of Q' onlyinvolves the data sources that were unavailable when Q was evaluated. The system returns either an answerA(Q'), or another partial answer P(Q'), depending on the interrupt condition, i.e., the availability of the datasources involved in Q'. When Q' is submitted to the system, the query processor considers it in the same wayas a plain query, and it is optimized. The execution plan that is used for Q' is generally di�erent from theexecution plan used for Q.If the sources that were unavailable during the evaluation of Q are now available, then an answer A(Q')is returned. Under our working assumption that no updates are performed on the data sources A(Q') is theanswer to the original query: A(Q') = A(Q).If some of the sources that were unavailable during the evaluation of Q are still unavailable, then anotherpartial answer is returned, P(Q') = (Q",E'). Possibly successive partial answers are produced before the �nalresult can be obtained.For example, consider the original query given in the introduction. It involves two data sources (companiesand bids), and a local class (region). Originally, both remote sources are unavailable; a partial answer isgenerated. This partial answer contains a query that still involves the companies and bids data sources. It islater re-submitted to the system, optimized and evaluated. During the second evaluation, the bids data sourceis available; the companies data source is still unavailable. The system returns another partial answer, whichcontains a query involving only the companies data source. It is later resubmitted; this time, the companiesdata source is available and the system returns the �nal result.Using successive partial answers, there is no need to have every data sources available simultaneously toproduce a result. It su�ces that a data source is available during the evaluation of one of the successive partialanswers to ensure that the data from this source is used for the �nal result. The system can produce the �nalresult if each source is available at least once during the successive evaluations. This is an increase in reliabilitywith respect to the systems that can produce the �nal result only if all sources are available simultaneously.When an application program receives a partial answer P(Q), it can resubmit Q', or extract informationfrom E. However, the information extracted from E is essentially speci�c information coded into the interface,such as the list of available or unavailable data sources. Intuitively, there is more information contained in apartial answer. Considering the example in the introduction, in the case that the bids data source is unavailable,the set of companies that appear in the query is available, and at least some subset of it may be contained inthe partial answer. We introduce a parachute query C to denote data an application would like to extract froma partial answer. There is a function M(P(Q),C) that attempts to return the answer to a parachute querywith respect to a partial answer. If the data denoted by C can be obtained, then it is returned, otherwise theanswer to C is null. The application program may ask several parachute queries.In this section, we present a taxonomy of the issues related to partial answers and parachute queries, Figure 1.This classi�cation of the di�erent types of partial answers and parachute queries that we have identi�ed includessome implementation considerations; it gives us a framework for the di�erent possible research directions, andit provides an overview of the problems raised by partial answers and parachute queries.RR n�3127

6 Ph Bonnet & A.Tomasic2.1 Partial AnswersWe make a primary division between opaque partial answers, that are simply a step towards the �nal result,and transparent partial answers, from which data can be extracted.2.1.1 Opaque Partial AnswersWhen an application program receives an opaque partial answer, it knows that the original query could notbe completely evaluated because the interrupt condition occurred. The application program can re-submit theopaque partial answer at a later point in time to obtain the result of the original query. It cannot extractinformation. Even this minimal functionality is very useful, since an answer can be returned even if all datasources are not available simultaneously. The probability that an application program obtains an answer is thusincreased.The central issue concerning opaque partial answers concerns the amount of work accomplished during partialevaluation. (In fact, this issue also concerns transparent partial answers, but we discuss the issue here.) Theamount of work depends on the interrupt condition. In our application, the work accomplished is stronglyrelated to the issues raised in the work on query scrambling [2]. Query scrambling tackles the problem of delaysin the responses of the data sources by rescheduling operations in response to delays. In a simple run-timesystem, each data source involved in query is contacted sequentially. When a data source delays, the run-timesystem blocks. In a query scrambling run-time system, the delayed source is skipped and other parts of therun-time system are executed. We use this technique to increase the amount of work accomplished duringpartial evaluation, as detailed in Section 3.The main advantage of opaque partial answers is that the system is free to generate and maintain partialanswers in the most e�cient way. The obvious disadvantage is that a partial answer may contain usefulinformation that cannot be exploited, as it is not possible to extract it.2.1.2 Transparent Partial AnswersTransparent partial answers permit the extraction of information. We classify information as ad hoc or asspeci�c. We use parachute queries to specify speci�c information.The nature of ad hoc information depends on the general system in which partial answers are used. In ourapplication, partial answers are embedded in a heterogeneous distributed database with multiple data sources,so we provide various functions related to this system. We provide a function to extract the set of sourcesavailable during query processing and the set of sources unavailable during query processing. The applicationmay track the sources that are often unavailable or available and take decisions on whether to submit the queryagain, or not, based on this information.A problem is the interpretation an application program gives to a data source name, since the applicationprogram actually deals with global schema that does not explicitly state data sources; the connection betweenthe global schema and data sources is provided by the database administrator. We leave this problem for futurework.Most importantly, the users want to extract data that have been obtained from a data source and processedduring partial evaluation. This presents a problem, since the execution plan for the query, and therefore thestructure of the intermediate results during execution of the query, are determined by the query optimizer.Consider the three data sources of the introduction: bids, companies, and regions; and the query of theintroduction.Now, let us consider that the bids data source is unavailable when the query is evaluated; a partial answeris returned. Depending on the execution plan, intermediate results will either contain the materialization ofthe data obtained from the company and region relations, or the result of a join between these two relations.Linking application programs to the result of query optimization is clearly undesirable, since the applicationprogram will have to cope with both possible materializations.To solve this problem the application program speci�es a parachute query C and an algorithm M thatmay extract the answer to C from the partial evaluation P(Q). The likelihood that M succeeds in extractingthe answer to C depends on �rst the relationship between C and Q (cf. Section 2.2) and second on theimplementation of M (cf. Section 2.2.1.)The main advantage of transparent partial answers is that useful and meaningful information can be ex-tracted part way through the computation of a query. (For example, the interrupt condition could simply bean alarm that is triggered after a certain amount of time.) The disadvantage is that, in order to provide thisinformation, general extra data structures must be maintained and the run-time system is more complicated.INRIA

7In addition, some query execution plans may be rejected because they prevent the evaluation of C by M. Thismay restrict the e�ciency and the simplicity of the system.2.2 Parachute QueriesWe distinguish four di�erent kinds of parachute queries C depending on how the answers to the parachutequeries relate to the answer of the original query Q independently of the state of the underlying data sources.We call the four kinds of parachute queries contains, contained-by, overlapping and non-overlapping. Containsmeans that for all states of the data A(C) � A(Q), i.e., the answer to the parachute query contains the answerto the initial query (in the sense of containment de�ned in [20]). Contained-by, A(C) � A(Q) means theopposite. Overlapping , A(C) \ A(Q) 6= ;, means that the answers overlap but do not contain each other.Non-overlapping (A(C) \ A(Q) = ;) means that the answer to the parachute query and answer to the originalquery never overlap, regardless of the data in the underlying data sources. The equality case of A(C)=A(Q)reduces to the case of opaque partial answers.Let us take again the example of the introduction. An example of a contains parachute query is select thecompanies and the bids of work located in any region and return the name and activity of the company with themarkets of bids on work. An example of parachute query contained-by the original query is select the companyBalthazard et Cotte and the bids of work located in the Rhne-Alpes region and return the name and the activityof this company with the markets of bids on work. Overlapping parachute queries are di�cult to generate in ourexample. Consider a query select the names of employees with a salary < 5. An overlapping parachute queryis select the names of employees with a salary > 3. Returning to the query in the introduction, an exampleof a non-overlapping parachute query for the query is select the companies located in region Rhne-Alpes. Thisexample is particularly interesting because the parachute query corresponds to an intermediate result producedby some query execution plans. Parachute queries can thus be a natural way for the application program tospecify and use intermediate results that have been produced during the partial evaluation.2.2.1 Implementation IssuesUntil now, we have de�ned parachute queries with respect to partial answers. That is, a parachute queryis asked after partial evaluation has taken place. In this case, the parachute query was not known duringthe optimization. The information that is gathered during partial evaluation is not targeted at a particularparachute query.However, a parachute query can be asked together with the original query. We de�ne the former case asunconstrained optimization and the latter case as constrained optimization. In the latter case, the parachutequery may be considered when optimizing the original query. Thus, a new, additional, goal of the optimizer,beyond optimizing the query, is to increase the likelihood that an answer to the parachute query is produced inthe case that the interrupt condition occurs.Constrained Optimization A parachute query is submitted together with the original query. Both queriesare simultaneously optimized. Depending on the relationship between the parachute query and the originalquery, possibly a unique execution plan is generated, where the execution plan for the parachute query cor-responds to a subtree of the execution plan for the original query. In other cases, two entirely independentplans are produced. Optimization of parachute queries is related to the problem of simultaneous optimizationof multiple query [16].Providing the parachute query together with the original query has the following advantage. It increasesthe likelihood that the system can return an answer to the parachute query. The disadvantage is that the costfunction of the optimizer has changed: it now includes computations based on the parachute query and thelikelihood that the interrupt condition will occur. For instance, if the optimizer predicts that the interruptcondition will occur with high probability, it will favor the plan that optimizes the execution of the parachutequery.Unconstrained Optimization The parachute query is submitted once the original query has been evaluated.Query optimization proceeds classically, and only concerns the original query. If the interrupt condition occurs,a partial answer is produced. The application program can extract information from this partial answer byasking one or several parachute queries.If the optimizer is not modi�ed, the likelihood of M(P(Q),C) producing an answer is very low. Theparachute query C must correspond to an intermediate result that is in the environment E at the exact momentRR n�3127

8 Ph Bonnet & A.Tomasicof the interrupt condition being satis�ed. For instance, the parachute query may correspond to an intermediateresult that has been produced but destroyed after it has been used to produce another intermediate result. Inthis case, the system cannot give an answer to the parachute query.The unconstrained optimization does not impact the way execution plans are produced, it is thus simplerto implement than the constrained optimization that impacts the run-time system and the optimizer. Gettinggood performance is a problem that we can handle in the classical optimization framework. However, thelikelihood of getting an answer to a parachute query depends very much on the output of the optimizer, andis thus restricted. The optimizer can easily be extended to increase the likelihood of matching a parachutequery, for instance by retaining all intermediate results. However, this heuristic is completely unguided by anyknowledge of the nature of the parachute query.2.2.2 Non-Deterministic Set of QueriesA generalization of the idea of parachute query consists in asking to the system a set of queries, instead of asingle query. The system answers at least one of the queries. The behavior of the system is non-deterministic:the evaluation stops when an answer is found, and this answer is returned to the application program. Non-deterministic queries for handling unavailable data sources is an area of future research.3 AlgorithmsIn this section, we describe an unconstrained system for producing partial answers. Our system is orientedtowards the application described in the introduction: the architecture is based on a mediator architecture foraccessing heterogeneous data sources; however, the algorithms we describe have broad application.Our system consists of a run-time system for the evaluation of queries, and of a component for the extractionof information from partial answers. The run-time system is based on the iterator model [9] that is slightlymodi�ed to handle partial evaluation. First, the run-time system extends the iterator execution model with asimple form of query scrambling to permit execution to proceed in the presence of unavailable data sources.Second, the run-time system implements an interrupt condition to trigger partial evaluation. Third, it includesan algorithm for the construction of partial answers after the interrupt condition has been satis�ed.The component for the extraction of information contains an algorithm for the processing of parachutequeries. These aspects are described below. They are followed by a discussion on the implementation trade-o�s.3.1 ArchitectureFor our algorithms, we consider an architecture that involves an application program, a mediator, wrappers,and data sources. During query processing, the application program issues a query to the mediator. Themediator transforms the query into any valid execution plan consisting of subqueries and of a compositionquery. The mediator then evaluates the execution plan. Evaluation proceed by issuing subqueries to thewrappers. Each wrapper that is contacted process the subqueries by communicating with the associated datasource and returning subanswers. If all data sources are available, the mediator combines the subanswers byusing the composition query and returns the answer to the application program. In case one or several datasources are unavailable, the mediator returns a partial answer to the application. The application extractsinformation from the partial answer by asking a parachute query.3.2 Query EvaluationThe algorithm for query evaluation follows the iterator model. The query optimizer generates a tree of operatorsthat computes the answer to the query. The operators are relational-like, such as project, select, etc. (Forclarity, in this paper we describe operators in terms of operations instead of the corresponding physical operatoralgorithms. However our implementation uses physical operators.) Each operator supports three procedures:open, get-next, and close. The procedure open prepares each operator for producing data. Each call toget-next generates one tuple in the answer to the operator, and the close procedure performs any clean-upoperations.The operator submit contacts a wrapper to process a subquery. During the open call to submit a networkconnection to the wrapper is opened. In this paper, we make a working assumption about the behavior ofwrappers and data sources: if the open call to the wrapper succeeds, then the corresponding data source isavailable and will deliver its subanswer without problems. If the open call fails, then the corresponding dataINRIA

9source is unavailable. This behavior implies that each data source can be classi�ed as available or unavailableaccording to the result of the open call.A second working assumption is that, during execution, only the mediator sends subqueries to wrappers.Two wrappers cannot communicate directly with each other.Third, we assume that no updates relevant to a query are performed between the moment the processing ofthis query starts and the moment where the processing related to this query ends, because the �nal answer isobtained, or because the user does not resubmit a partial answer.We describe a two steps evaluation of queries. The �rst step, the eval algorithm, performs a partialevaluation of the execution plan with respect to the available data sources. If all the sources are available, theresult of the �rst step is the answer to the query (a set of tuples). If at least one source is unavailable, theresult of the �rst step is an annotated execution plan. The second step, the construct algorithm, constructs apartially evaluated query from the annotated execution plan. A partial answer built from the partially evaluatedquery and the annotated execution plan can then be returned. See Figure 2 for an example.
district = district

companies

bids

regions

district = district

name, activity, market

σ

Π

Submit

Submit
region =

u

u

u a

a a

"Rhone Alpes"

tmp0

from x0 in (from x1 in (from x3 in (

"Rhone Alpes"

from x4 in bids select x4) select x3),

x2 in (from x5 in tmp0 select x5)

select x1.parution, x1.valid, z1.district,

x1.market, x2.name, x2.activity,

x2.district, x2.address, x2.tel, x2.fax,

x2.region, x2.district where x1.district

= x2.district) select x0.name, x0.activity,

x0.market;

district = district

companies

bids

regions

district = district

name, activity, market

σ

Π

Submit

Submit
region = Figure 2: Step 1 - partial evaluation of the execution plan, Step 2 - construction of the partially evaluated query3.2.1 Eval algorithmThe eval algorithm is encoded in the open call to each operator. The implementations of get-next and closeare generally unchanged from the classical implementations.1 Evaluation commences by calling open on the rootoperator of the tree. Each operator proceeds by calling open on its children, waiting for the result of the call,and then returning to its parent. We consider two cases that can result from calling open on all the children ofan operation. Either all the calls succeed, or at least one call fails. In the former case, the operator marks itselfas available and returns success to its parent. In the latter case, the operator marks itself as unavailable andreturns failure to its parent. The traversal of the tree continues until all operators are marked either availableor unavailable. Note that by insisting that each operator open all its children, instead of giving up with the �rstunavailable child, we implement a simple form of query scrambling. See Figure 3 for an outline of the algorithm.After traversal of the tree for the open calls �nishes, the root operator of the tree has marked itself eitheravailable or unavailable. If it is marked available, then all sources are available and the �nal result is producedin the normal way. If at least one data source is unavailable, the root of the execution plan will be markedunavailable and the �nal result cannot be produced. In the latter case the tree is processed on a second pass.Each subtree rooted with an available operator materializes its result. Materialization is accomplished by theroot operator of the subtree repeatedly executing its get-next call and storing the result. The resulting tree ispassed to the construct algorithm.3.2.2 Construct algorithmWe construct a declarative query from an annotated execution plan by �rst constructing a declarative expressionfor each operator in the tree in a bottom-up fashion. The declarative expressions are nested to form the partiallyevaluated query. This algorithm is based on two working assumptions. We assume, �rst, that each (physical)1A complication arises from operators that call open during the execution of a get-next call. We do not consider these operatorshere.RR n�3127

10 Ph Bonnet & A.Tomasiceval(operator) ffor each subtree in children of operator feval(subtree)gif source is available or all subtrees are available then fproduce resultmark operator availableg else fmark operator unavailablegg Figure 3: The evaluation algorithm.construct(execution plan) returns Partially EvaluatedQuery fif available() then freturn the query containing the intermediate resultg else fS := ;for each subtree in children(execution plan) fS := S [construct(subtree)greturn the query for execution plan using Sgg Figure 4: Construction of the partially evaluated query.operator has a corresponding declarative expression, and second, that declarative expressions can be composedin the query language. The �rst assumption holds for a broad range of operations including all relationsoperations and operations for sorting, materialization, etc. The second assumption holds for database querylanguages, including SQL and OQL.The Codd's theorem [10] guarantees that every relational algebra expression can be transformed into anequivalent relational calculus expression. The partially evaluated query that is constructed is thus equivalent tothe tree of operators obtained from the eval algorithm, i.e., a partial evaluation of the original execution plan.This ensures that the answer to the partially evaluated query is similar to the answer to the original query,under the assumption that no updates are performed on the data sources.Operators marked available generate a declarative expression that accesses the materialized intermediateresult. It is an expression of the form select x from x in r, where x is new unique variable and r is the nameof the temporary relation holding the materialized intermediate result.2Operators marked unavailable generate a declarative expression corresponding to the operator. For example,a project operator generates an expression of the form select p from x in arg, where p is the list of attributesprojected by the operator, x is a unique variable, and arg is the declarative expression that results from thechild operator of the project operation. The association between the operators we consider and declarativeexpressions is straightforward.The construction of the partially evaluated query, see Figure 4, consists in traversing recursively the tree ofoperators, stopping the traversal of a branch when an available operator is encountered (there is an intermediateresult), or when an unavailable leaf is reached (a submit operator associated to an unavailable data source),and in nesting the declarative expression associated to each traversed node.The partially evaluated query, together with the annotated execution plan is used to return a partial answer.2An alternative implementation generates the expression select x from x in bag(t), where t is the list of tuples in the mate-rialized intermediate result. This implementation advantageously encodes the entire state of the partial answer in the query. Thedisadvantage is the size of the resulting partial answer query. INRIA

11extract(execution plan, parachute query) returns Answer fS := materialized subqueries(execution plan)for each subquery in S fif parachute query � query thenreturn parachute query evaluated on intermediate result of subquerygreturn nullg Figure 5: The extraction algorithm.3.3 Extraction AlgorithmWe present an algorithm for extracting information from a transparent partial answer generated by the evalalgorithm, using a parachute query. The algorithm traverses the annotated execution plan searching for anintermediate result that matches the parachute query.The algorithm proceeds as follows, see Figure 5. First, a query is generated for each intermediate resultmaterialized in the annotated execution plan. We obtain a set of queries whose result is materialized in theannotated execution plan. Then, we compare the parachute query to each of these queries. If the parachutequery is contained by one of these queries, then we can obtain the answer to the parachute query: it is the resultof the evaluation of the parachute query on the materialized result of the associated subquery in the annotatedexecution plan. (This problem is exactly the same as matching a query against a set of materialized views.)Otherwise, we cannot return any answer to the parachute query. Query containment is de�ned in [20].3.4 Trade-o�s in the ImplementationThere are a few trade-o�s or design decisions that concern the implementation of the evaluation, construction,and extraction algorithms. We use a heuristic for the traversal of the execution plan in the evaluation algorithm.This heuristic is evaluate as much as we can during the evaluation of a query. We assume that the user prefersproducing as much of the �nal result as possible with the sources that are available. An alternative would beto stop the evaluation as soon as a source is found unavailable. The former solution improves the availabilityof the �nal answer, the latter solution informs the user more quickly that only a partial answer is possible.The algorithms described in this section are based on a pipelined execution model. In particular we assumethat once a data source responds to a request, its pipeline functions properly. Similar algorithms for non-pipelined execution can be readily constructed to avoid this assumption.The traversal of the execution plan can be performed either sequentially or in parallel. If the execution planis traversed sequentially, each unavailable data source must time-out, thus lengthening the total execution time.(A data source is found unavailable if it has not returned its complete response within a given time.) Parallelevaluation reduces this cost considerably since all data sources are contacted in parallel.There are di�erent possibilities concerning the materialization of the results produced during the evaluation.A �rst possibility is to systematically materialize the results obtained from the data sources and record themin the partial answer. This approach has two advantages. First, if the partial answer is resubmitted to thesystem, the sources that have already been available are not concerned by the query anymore. This increases thelikelihood of obtaining the �nal result. Second, in the case of transparent partial answers, there are intermediateresults that can be extracted. This heuristic increases the cost of processing and storage. An alternativeheuristic, in the case of a partial evaluation, chose to leave unmaterialized the intermediate results of someavailable data sources, thus forcing the data source to be contacted again when the partial answer is resubmitted.This heuristic trade-o�s between the amount of information contained in partial answers and work required toevaluate a re-submitted query.When constructing the partially evaluated query, declarative expressions containing the intermediate resultsare generated. One solution includes the contents of the intermediate result in the query. Since the size of apartially evaluated query can be very large, depending on the sources that are available and on the intermediateresults that are produced, the partially evaluated query may be very large; it may occupy several megabytes.This partially evaluated query may be submitted again to the database system. However, database optimizershave not been designed for handling queries of this size. An alternative consists in including a reference to eachRR n�3127

12 Ph Bonnet & A.Tomasictemporary relation that stores an intermediate result in the partially evaluated query. Such a solution has theadvantage of producing partially evaluated queries of a reasonable size. However, the query interface has to bemodify to accept queries containing these references and the temporary relations must be garbage collected atsome point in time.4 ImplementationWe have implemented the evaluation and construct algorithms in the framework of the Disco mediator proto-type [18]. We have made some choices concerning the trade-o�s discussed in Section 3.4. First, the executionmodel for our run-time system is non-pipelined, and the execution plan is traversed sequentially. Second, wematerialize systematically the intermediate that are produced into temporary �les. Third, we use exceptionsfor the upward exchange of information during the recursive traversal of the tree. Finally, we use temporary�les to store intermediate results of a partially evaluated query.We have implemented ad hoc extraction primitives that allow access to the set of data sources that wereinvolved in a query, the set of data sources that were available, and the set of sources that were unavailable.It is also possible to retrieve the intermediate results that have been materialized, together with the list ofdata sources that participated in this result. We assume that the application program can manipulate theintermediate result, i.e. it knows the type and the meaning of some intermediate result. In Section 3 we discussthe implicates of this assumption.Transparent partial answers include the annotated execution plan produced by the eval function and thepartially evaluated query produced by the construct function. The implementation of the eval algorithm takesinto account the requirements introduced by the extraction primitives we support. Each node in the annotatedexecution plan maintains a list of the sources that participate in the result it produces, and whether thesesources are available or not during the evaluation.The Disco mediator prototype accepts a query language that includes composition of declarative statements(nested select statements). We thus use this language to represent the original queries, the partially evaluatequeries and the parachute queries. Our implementation is currently restricted to use a purely relational model,and ask conjunctive queries involving select, project, and join.The status of the implementation allows us to validate the algorithms we have presented. We have set upan example with the company, bids and region data sources as described in Section 5. The prototype has somelimitations: it is not integrated with the query compiler and optimizer, it accepts only restricted forms of joinand select predicates, and it does not implement the extract algorithm. We are currently working on the extractalgorithm and on the integration with the Disco query compiler. This work will allow us to experiment withparachute queries.5 Application ScenarioWe use the DISCO infrastructure in the framework of the project Bourse d'A�aires Electroniques. The goal ofthis project is to provide an electronic commerce platform in the domain of public construction. The DISCOinfrastructure provides a uniform view of a set of heterogeneous data sources, spread in France over the Internet,to di�erent actors in the life of a construction project.We have in particular built wrappers for a data source that contains administrative information aboutcompanies, and for a data source that contain bids for work concerning public markets. These wrapperssupport the select and scan operators.The wrappers export the schemas described in appendix A. A bid for work concerns a market in a district;it has been issued on a parution date and it is valid until a validity date. A company has a name, an address,a phone and a fax number; it is located in a given district, and it works in a given activity domain. Bothwrappers support scan and select operations.Wrappers are located on the same host as the mediator, and it is possible to turn them on and o�. We canthus easily experiment with unavailable data sources, in the context of the architecture we described in section3.1. Our prototype performs the evaluation and sends sub-queries to the wrappers, that are available or not,simulating the data sources that are available or not.Our prototypes evaluate an execution plan that corresponds to a query written against the global schema.The global schema we consider contains two remote classes and a local class. The remote classes correspond tothe classes exported by the wrappers. The local class region associates regions and districts. We can note thatwe use a purely relational model, as the mediator only supports relational operations for the time being. INRIA

13
district = district

exec

district = district
exec

companies

bids

Slice

JoinNestedLoop

JoinNestedLoop

name, activity, market

regions

Filter
district = "Rhone-Alpes"

Figure 6: Example execution planWe consider in this section an original query asked of the system, and we study various cases correspondingto the availability of the di�erent data sources. We also discuss the information that can be extracted from thedi�erent transparent partial answers that are produced.The original request is : select the companies and the bids for work located in the Rhne-Alpes region andreturn the name and activity of the companies with the markets of bids on work.. This can be expressed withthe following query:from x in companies, y in bids, z in regionsselect x.name, x.activity, y.marketwhere x.district = y.district and z.region = "Rhone Alpes"and x.district = z.district;The mediator compiler generates an execution plan for this original query, see �g 6. A query execution planis a tree of physical operators. Each physical operator corresponds to the implementation of a logical operator,i.e. an operator de�ned in the realtional algebra [10]. scanFile corresponds to scan; this operator performs ascan on a collection of data. slice corresponds to project; this operator projects out a list of attributes from theresult of its input operator. �lter corresponds to select; this operator uses a given predicate to �lter the resultof its input operator. nestedJoin corresponds to join; this operator implements the nested loop algorithm forjoining its two input operators (that are designated as the right and left input operators). exec corresponds tosubmit; this operator sends a subquery (a tree of logical operators) to a data source.The execution plan in �gure 6 is the input of our prototype. The operator slice is the root of the tree. It hastwo inputs, a scanFile on the bids and a JoinNestedLoop. The JoinNestedLoop operator has in turn two inputs,a scanFile on the companies and a �lter operator, which has one input, a scanFile on the regions. A projectionlist is de�ned for the slice operators; predicates are de�ned for the nestedJoin and �lter operators.We experiment by evaluating this execution plan in presence of unavailable data sources. There are twodata sources involved, there are thus four possible cases: companies data source is unavailable, bids data sourceis unavailable, both bids and companies data sources are unavailable, all data sources are available.In the following sections, we discuss the results of the eval and construct algorithms in the four cases wehave identi�ed. We also describe the output of the extraction primitives.When our prototype is integrated with the DISCO compiler, we can show that we can obtain the �nal resultif we resubmit the partially evaluated query to the system. We can also discuss the execution plans that aregenerated by the compiler for the partially evaluated queries.5.1 Companies Data Source is UnavailableThe companies data source is unavailable during the evaluation of the execution plan. The output of eval isan annotated execution plan (see �g 7). None of the join operations can be performed. Intermediate resultsRR n�3127

14 Ph Bonnet & A.Tomasic
district = district

exec

exec

companies

bids

Slice

JoinNestedLoop

tmp1

JoinNestedLoop

name, activity, market

regions

Filter
district = "Rhone-Alpes"

district = district

a

u

u

u

u

a tmp0

Figure 7: Case 1: companies data source is unavailableare materialized that correspond to the extraction from the bids data source, and to the result of the �lteroperation applied to the region relation.The construct function takes the annotated execution plan and constructs the following partially evaluatedquery.from x0 in (from x1 in (from x3 in ({["23/11/96","23/12/96","35","Amnagement avec extension de la cuisine et des locaux annexes de lasalle polyvalente. "],[52 more tuples not shown]["23/11/96","13/12/96","75"," Objet du march : restructuration dubtiment Colonie aux chlets du Prariand. Lieu d'excution : Megve(74). "]}) select x3), x2 in (from x4 in (from x6 in (from x7 in(companies) select x7) select x6), x5 in (from x8 in ({["RhoneAlpes","69"],["Rhone Alpes","38"],["Rhone Alpes","74"],["RhoneAlpes","73"],["Rhone Alpes","42"],["Rhone Alpes","1"],["RhoneAlpes","7"],["Rhone Alpes","26"]}) select x8) selectx4.name,x4.activity,x4.district,x4.address,x4.tel,x4.fax,x5.region,x5.districtwhere x4.district = x5.district) selectx1.parution,x1.valid,x1.district, x1.market,x2.name,x2.activity,x2.district,x2.address,x2.tel,x2.fax,x2.region,x2.districtwhere x1.district = x2.district) select x0.name, x0.activity,x0.market;We can note that the intermediate results are materialized in this query. We use a relatively small data setfor our experiments, so it is possible to print this partially evaluated query. With a realistic data set, say with100 times more bids, the print out of this partially evaluated query alone would take many pages!A �rst extraction function returns the sources that were availableavailable sources: ((rmi://dyade.inrialpes.fr/bids) (local))A second extraction function returns the sources that were unavailableunavailable sources: ((rmi://dyade.inrialpes.fr/companies))A third extraction function returns the intermediate results, together with the sources that participated inthese results. Here, the intermediate results are obtained from a single source, and the operations that areperformed preserve the type which can be derived from the global schema. In this case, an application programmay know the type of the intermediate results. INRIA

15
district = district

exec

exec

companies

bids

Slice

tmp0

JoinNestedLoop

JoinNestedLoop

name, activity, market

regions

Filter
district = "Rhone-Alpes"

district = district

u

a
a

a

u

u

Figure 8: Case 2: bids data source is unavailablesource: ((rmi://dyade.inrialpes.fr/bids))intermediate result: rto(set(bids),((tuple("23/11/96","23/12/96","35"," Amnagementavec extension de la cuisine et des locaux annexes de la sallepolyvalente. ")) (tuple("23/11/96","13/12/96","75"," Objet du march :restructuration du btiment Colonie aux chlets du Prariand. Lieud'excution : Megve (74). ")),[51 more tuples not shown])source: ((local))intermediate result: rto(set(region),(tuple("Rhone Alpes","69"))(tuple("Rhone Alpes","38")) (tuple("Rhone Alpes","74")) (tuple("RhoneAlpes","73")) (tuple("Rhone Alpes","42")) (tuple("Rhone Alpes","1"))(tuple("Rhone Alpes","7")) (tuple("Rhone Alpes","26")))5.2 Bids Data Source is UnavailableThe bids data source is unavailable during the evaluation of the execution plan. The output of eval is anannotated execution plan (see �g 8). A join operation can be performed between the relation extracted fromthe companies data source and the result of the �lter applied to the region relation. As a result , there is onlyone intermediate result produced, which corresponds to the result of this join operation.The construct function takes the annotated execution plan and constructs the following partially evaluatedquery.from x0 in (from x1 in (from x3 in (from x4 in (bids) select x4)select x3), x2 in (from x5 in ({["ATELIER SOIXANTE QUATORZE","Bureauxd'tudes - btiments et travaux publics","74","1 r Jean Jaurs BP36274012 Annecy Cedex ","0450516945","0450528088","RhoneAlpes","74"],[6 more tuples not shown]["AFREM","Bureaux d'tudes - btiments et travauxpublics","69","12 quai Commerce 69336 Lyon", "0478434343","0478648777", "Rhone Alpes","69"]})RR n�3127

16 Ph Bonnet & A.Tomasic
district = district

exec

exec

companies

bids

Slice

JoinNestedLoop

tmp0

JoinNestedLoop

name, activity, market

regions

Filter
district = "Rhone-Alpes"

district = district

u

u

u

u

u

Figure 9: both bids and companies data sources are unavailableselect x5) selectx1.parution, x1.valid, x1.district, x1.market, x2.name, x2.activity,x2.district, x2.address, x2.tel,x2.fax,x2.region,x2.districtwhere x1.district = x2.district) select x0.name, x0.activity,x0.market;The extraction function returns the intermediate result, together with the name of the two sources thatparticipated in this result. Here, the intermediate result does not directly correspond to a class in the globalschema. Therefore, there is no possibility that the application program can know the type or the meaning ofthis result without specifying a parachute query. We also see that in this case there is only one intermediateresult, compared to the two that were available in the previous case. The intermediate results correspondingto the extraction from the companies data source, and to the result of the �lter operation have been destroyedwhen the result of the join operation has been produced. We can increase the number of intermediate result bynot destroying them when they have been used to produce another result. This is at the cost of an increasedspace occupation.source: ((rmi://dyade.inrialpes.fr/companies) (local)))valeur: rto(set(foobar),((tuple("ATELIERSOIXANTE QUATORZE","Bureaux d'tudes - btiments et travauxpublics","74","1 r Jean Jaurs BP362 74012 Annecy Cedex","0450516945","0450528088","Rhone Alpes","74"))(tuple("AFREM","Bureaux d'tudes - btiments et travauxpublics","69","12 quai Commerce 69336 Lyon","0478434343","0478648777","Rhone Alpes","69"))[6 more tuples not shown]))5.3 Both Bids and Companies Data Sources are UnavailableBoth the bids and the companies data sources are unavailable during the evaluation of the execution plan. Theoutput of eval is an annotated execution plan (see �g 9). Only the local operation can be performed, there areno data extracted from the data sources.The construct function takes the annotated execution plan and constructs the following partially evaluatedquery.from x0 in (from x1 in (from x3 in (from x4 in (bids) select x4)select x3), x2 in (from x5 in (from x7 in (from x8 in (companies) INRIA

17
district = district

exec

exec

companies

bids

final answer

Slice

JoinNestedLoop

JoinNestedLoop

name, activity, market

regions

Filter
district = "Rhone-Alpes"

district = district

a

a
a

a

a

a

Figure 10: all sources are availableselect x8) select x7), x6 in (from x9 in ({["Rhone Alpes","69"],["RhoneAlpes","38"],["Rhone Alpes","74"],["Rhone Alpes","73"],["RhoneAlpes","42"],["Rhone Alpes","1"],["Rhone Alpes","7"],["RhoneAlpes","26"]}) select x9) select x5.name,x5.activity,x5.district,x5.address,x5.tel,x5.fax,x6.region,x6.district wherex5.district = x6.district) select x1.parution,x1.valid,x1.district,x1.market,x2.name,x2.activity,x2.district,x2.address,x2.tel,x2.fax,x2.region,x2.district where x1.district = x2.district) select x0.name,x0.activity, x0.market;5.4 All sources are AvailableBoth the bids and the companies data sources are available during the evaluation of the execution plan (see �g10). The output of eval is the �nal result. The overhead in the computation of the �nal result is limited to avariable a�ectation each time an operator produces its result. We use the exception mechanism to encode thebehavior of the system in case sources are unavailable, this also introduces an overhead in the case where allsources are available. We however claim that the use of the eval algorithm in the run-time system does nota�ect performances. 3({["BALTHAZARD ET COTTE","Matires premires pour lebtiment et les travaux publics"," Objet du march : construction d'uncentre de loisirs et du spectacle avec cantine scolaire. Lieud'excution : Z.A.C. de la Bovagne. "], ["ATELIER SOIXANTE QUATORZE","Bureauxd'tudes - btiments et travaux publics"," Objet du march :construction d'un groupe scolaire. Lieu d'excution : avenuedu Stade, 74970 Marignier. "],["AFREM","Bureaux d'tudes - btimentset travaux publics"," Objet du march : cration de 8 salles de coursdans le hall du btiment 307. Lieu d'excution : btiment 307(I.N.S. A.). "],["MORTAMET VIDAL MANHES (STE)","Bureaux d'tudes -btiments et travaux publics"," Objet du march : cration de 8 sallesde cours dans le hall du btiment 307. Lieu d'excution : btiment 307(I.N.S. A.). "],["MORILLON-CORVOL","Matires premires pour lebtiment et les travaux publics"," Objet du march : construction d'unbtiment usage de salle polyvalente, mairie et restaurant3The overhead obviously depends on the number of nodes in the execution plan.RR n�3127

18 Ph Bonnet & A.Tomasicscolaire. Lieu d'excution : Bny. "],["SEDIMEDIFFUSION","Import-export - btiment et travaux publics"," Objet dumarch : construction d'un btiment usage de salle polyvalente,mairie et restaurant scolaire. Lieu d'excution :Bny. "],["BALTHAZARD ET COTTE","Matires premires pour le btimentet les travaux publics"," Objet du march : extension etrhabilitation du collge Les Mntriers. Lieu d'excution : aucollge Les Mntriers, 21, rue de Landau, 68150 Ribeauvill. "]})6 Related WorkThe problem of unavailable sources has, so far, been considered as an implementation issue. To our knowledge,various straightforward solutions, where an unavailable source either returns the empty set or generates anerror, are not documented.APPROXIMATE, [21], tackles the issue of unavailable data. They propose an approach based on approx-imate query processing. In presence of unavailable data, the system returns an approximate answer which isde�ned in terms of the subsets and supersets sandwiching the exact answer. The system uses semantic infor-mation concerning the contents of the database for the initial approximation. In our context, we do not useany semantic information concerning the data sources. The hypothesis underlying APPROXIMATE and oursystem are thus di�erent.References [6] and [14] survey cooperative answering systems. These systems emphasize the interactionbetween the application program and the database system. They aim at assisting users in the formulation ofqueries, or at providing meaningful answers in presence of empty results. Reference [14] introduces a notion ofpartial answer. When the result of a query is empty, the system anticipates follow-up queries, and returns theresult of broader queries, that subsume the original query. These answers are o�ered in partial ful�llment of theoriginal query. This notion of partial answer is di�erent from the one we have introduced. For [14], a partialanswer is an answer to a query subsuming the original query. For us, a partial answer is the partial evaluationof the original query.The approach we have developed in this paper was originally proposed in [19]. In that paper, partiallyevaluated queries, i.e. opaque partial answers, are introduced. They are proposed as a step in query evaluationwith unavailable data sources. In this paper, we have introduced transparent partial answers and parachutequeries.In the area of research on programming languages, partial evaluation [5] is a technique used to improveexecution times of programs. This technique permits the partial evaluation of a program with respect to somepartially speci�ed input to the program, e.g., constants that appear in the source code. Our approach wasinitially inspired by this area of research.7 ConclusionWe have proposed a novel approach to the problem of processing queries that cannot be completed for somereason. We have focused on the problem of processing queries in distributed heterogeneous databases withunavailable data sources. Our approach o�ers two aspects. First, in presence of unavailable data sources thequery processing system returns a partial answer by partially evaluating the query. The partial answer may beresubmitted to the system to produce the �nal answer. Second, we de�ne algorithms to extract informationfrom a partial answer using additional queries. The additional queries are known as parachute queries.We described a framework of various problems related to partial answers and parachute queries. Ourdescription forms a taxonomy for work on the problem. In addition, the use of parachute queries provides avery
exible and familiar interface for application programs.We have implemented our approach for one branch of the taxonomy in the case of unreachable data sources:a source is considered unavailable if it cannot be contacted. In this context, we have proposed algorithms forthe evaluation of transparent partial answers, and for the extraction of information using parachute queries.We have used an application scenario to illustrate our approach.The solution we have implemented is valid under certain working assumptions. First, once a source can becontacted it is assumed that it will produce its result completely. A source never returns half of an answer.Second, we have assumed that no updates relevant to a query are performed on the data sources between theINRIA

19start of query processing and when the �nal result is returned. Third, we have implemented our algorithms ina mediator based architecture. Relaxing these assumptions is future work.We have investigated a particular class of partial answers and parachute queries. In particular, we haveconcentrated on the case where query optimization is completely unchanged by partial evaluation. The rela-tionships between the optimizer and the partial answers or the parachute queries are also a subject for futurework.Our approach based on partial evaluation generalizes to many applications. A query is evaluated until aninterruption condition occurs, and then our algorithms are applied. We have concentrated on unavailable datasources because it is an important problem for heterogeneous database systems. We believe partial evaluationis important, in other domains, such as long lived query processing. In this context, the processing of a querylast for example several day. Using partial evaluation, query processing could be easily interrupted, examinedto determine its progress, and then resumed.AcknowledgmentsThe authors wish to thank Louiqa Raschid and Michael Franklin for fruitful discussions, and Remy Amouroux,Olga Kapitskaia, Mauricio Lopez, Dan Smith and Pierre Yves Chevalier for comments on previous drafts of thispaper.References[1] Sibel Adali, Kasim Selcuk Candan, Yannis Papakonstantinou, and V. S. Subrahmanian. Query cachingand optimization in distributed mediator systems. In ACM SIGMOD Int. Conf. on Management of Data,pages 137{148, Montreal, Canada, 1996.[2] Laurent Amsaleg, Michael J. Franklin, Anthony Tomasic, and Tolga Urhan. Scrambling query plans tocope with unexpected delays. In International Conference on Parallel and Distribution Information Systems(PDIS), Miami Beach, Florida, 1996.[3] S. Bressan, C.H. Goh, et al. The COntext INterchange mediator prototype. In Proceedings of the ACMSIGMOD International Conference on Management of Data, Tucson, Arizona, 1997. To appear.[4] Michael J. Carey et al. Towards heterogeneous multimedia information systems: The garlic approach.In RIDE-DOM '95, Fifth Int. Workshop on Research Issues in Data Engineering - Distributed ObjectManagement, pages 124{131, Taipei, Taiwan, 1995.[5] C. Consel and O. Danvy. Tutorial notes on partial evaluation. In Conference record of the TwentiethAnnual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages: papers presentedat the symposium, Charleston, South Carolina, January 10{13, 1992, pages 493{501, New York, NY, USA,1993. ACM Press.[6] Terry Gaasterland, Parke Godfrey, and Jack Minker. An overview of cooperative answering. Journal ofIntelligent Information Systems, 1(2):123{157, 1992.[7] H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, and J. Widom. The TSIMMISproject - integration of heterogeneous information sources. In Proc. of the 100th Anniversary Meeting ofInformation Processing Society of Japan, pages 7{18, Tokyo, 1994.[8] Gardarin et al. IRO-DB: a collection of selected papers. Technical Report RR-95/34, Laboratoire PRISM,Universite Versailles Saint-Quentin en Yvelines, CNRS, 1995.[9] Goetz Graefe. Query evaluation techniques for large databases. ACM Computing Surveys, 25(2), 1993.[10] P. Kanellakis. Elements of relational database theory. In Handbook of Theoretical Computer Science,chapter 17. Elsevier Science Publishers B.V., j. van leeuwen edition, 1990.[11] Donald Kossmann, Laura M. Hass, Edward L. Wimmers, and Jun Yang. I can do that! using wrapperinput for query optimization in heterogeneous middleware systems. submitted to publication, 1996.RR n�3127

20 Ph Bonnet & A.Tomasic[12] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying heterogeneous information sources usingsource descriptions. In VLDB'96, Proc. of 22th Int. Conf. on Very Large Data Bases, pages 251{262,Mumbai (Bombay), India, 1996.[13] Ling Liu and Calton Pu. Distributed interoperable object model and its application to large-scale interop-erable database systems. In Fourth International Conference on Information and Knowledge Management(CIKM'95), Baltimore, Maryland, 1995.[14] Amihai Motro. Cooperative database systems. In Proceedings of the 1994 Workshop on Flexible Query-Answering Systems (FQAS '94), pages 1{16. Department of Computer Science, Roskilde University, Den-mark, 1994. Datalogiske Skrifter - Writings on Computer Science - Report Number 58.[15] M. Rusinkiewicz et al. Semantic integration of information in open and dynamic environments. Technicalreport, Microelectronics and Computer Technology Corporation (MCC), 1996.[16] Timos Sellis and Subrata Ghosh. On the multiple-query optimization problem. Transactions on Knowledgeand Data Engineering, 2(2):262{266, June 1990.[17] Ming-Chien Shan, Ra� Ahmen, Jim Davis, Weimin Du, and Kent Kent, William. Modern DatabaseSystems: The Object Model, Interoperability, and Beyond, chapter Pegasus: A Heterogeneous InformationManagement System, pages 664{682. ACM Press, 1995.[18] Anthony Tomasic, Rmy Amouroux, Philippe Bonnet, Olga Kapitskaia, Hubert Naacke, and Louiqa Raschid.The distributed information search component (disco) and the world-wide web. In Proceedings of the ACMSIGMOD International Conference on Management of Data, Tucson, Arizona, 1997. To appear.[19] Anthony Tomasic, Louiqa Raschid, and Patrick Valduriez. Scaling heterogeneous database and the designof Disco. In Proceedings of the 16th International Conference on Distributed Computing Systems (ICDCS-16), pages 449{457, Hong Kong, May 1996. IEEE Computer Society Press.[20] Je�rey D. Ullman. Principals of Database and Knowledge-Base Systems, volume 2. Computer SciencePress, 1989.[21] S. V. Vrbsky and J. W. S. Liu. APPROXIMATE: A query processor that produces monotonically improvingapproximate answers. Transactions on Knowledge and Data Engineering, 5(6):1056{1068, December 1993.[22] Gio Wiederhold. Intelligent integration of information. In Proceedings of the 1993 ACM SIGMOD Inter-national Conference on Management of Data, pages 434{437, Washington, D.C., 1993.A SchemasIn this appendix we give the schemas for our scenerio in ODL-like syntax. The additional information in theinterface tells Disco the address of the name service that returns a remote object handle for access to thecorresponding data source.interface remote "//amber.inria.fr/bids" Bids (extent bids) {attribute string market;attribute int district;attribute string parution;attribute string validity;}interface remote "//amber.inria.fr/companies" Companies (extent companies) {attribute string name;attribute string activity;attribute int district;attribute string address;attribute string tel;attribute string fax;}; INRIA

21interface local Region (extent regions) {attribute string region;attribute int district;};B Partial Evaluation AlgorithmWe present, in this section, detailed algorithms for the eval and construct functions. We also introduce thepartialEval function that combines both functions and return either the �nal result or a partial answer. We�rst de�ne the abstract types that are used in the detailed algorithms.abstractType Answerfunc isComplete() returns booleanabstractType CompleteAnswer subtype from Answerfunc CompleteAnswer(Set of Values)func getValues() returns Set of ValuesabstractType PartialAnswer subtype from Answerfunc PartialAnswer(String, PhysicalOperator)func extractInformation(String) returns Set of Valuesfunc extractInformation() returns Set of pairs associating a Set of values and a List of Sourcesfunc listOfParticipatingSources() returns List of Sourcesfunc listOfAvailableSources() returns List of Sourcesfunc listOfUnavailableSources() returns List of SourcesabstractType PhysicalOperatorfunc kind() returns the kind of this operatorfunc produceResult()func getResult() returns Set of Valuesfunc formatResult() returns Stringfunc markAvailable() returns Set of Valuesfunc markUnavailable() returns Set of Valuesfunc isAvailable() returns Set of ValuesabstractType Filter subtype from PhysicalOperatorfunc Filter(PhysicalOperator)func kind() returns SELECTfunc operand() returns PhysicalOperatorfunc predicate() returns PredicateabstractType Slice subtype from PhysicalOperatorfunc Slice(PhysicalOperator)func kind() returns PROJECTfunc operand() returns PhysicalOperatorfunc projectionList() returns ProjListabstractType JoinNestedLoop subtype from PhysicalOperatorfunc JoinNestedLoop(PhysicalOperator, PhysicalOperator)func kind() returns JOINfunc rightOperand() returns PhysicalOperatorfunc leftOperand() returns PhysicalOperatorfunc predicate() returns Predicatefunc projectionList() returns PredicateRR n�3127

22 Ph Bonnet & A.TomasicabstractType ScanRel subtype from PhysicalOperatorfunc ScanRel(Relation)func kind() returns SCANabstractType Exec subtype from PhysicalOperatorfunc Exec(PhysicalOperator)func kind() returns EXECabstractType EvalExceptionfunc EvalException(PhysicalOperator)func getAnnotatedExecutionPlan() returns the root of the annotated execution planabstractType TimerExceptionfunc partialEval(root of execution plan) returns Answertry fvalues := eval(root of execution plan);return new CompleteAnswer(values));gcatch (EvalException ee) froot of annotated execution plan := ee.getAnnotatedExecutionPlan();residualQuery := constructQuery(root of annotated execution plan);return new PartialAnswer(residualQuery, annotated execution plan);gendfuncfunc eval(physical operator) returns Set of Valuesthrows EvalExceptionswitch physical operator.kind()case EXEC:try fphysical operator.produceResult();physical operator.markAvailable();return physical operator.getResult();g catch (TimerException te) fphysical operator.markUnavailable();raise EvalException(physical operator);gcase SCAN:physical operator.produceResult();physical operator.markAvailable();return physical operator.getResult();case SELECT:try feval(physical operator.operand());physical operator.produceResult();physical operator.markAvailable();return physical operator.getResult();g catch (EvalException ee) fphysical operator.markUnavailable();raise EvalException(physical operator);gcase PROJECT:try feval(physical operator.operand());physical operator.produceResult(); INRIA

23physical operator.markAvailable();return physical operator.getResult();g catch (EvalException ee) fphysical operator.markUnavailable();raise EvalException(physical operator);gcase JOIN:boolean leftAvailable;try feval(physical operator.leftOperand());leftAvailable := true;g catch (EvalException ee) fleftAvailable := false;gboolean rightAvailable;try feval(physical operator.rightOperand());rightAvailable := true;g catch (EvalException ee) frightAvailable := false;gif (leftAvailable and rightAvailable) fphysical operator.produceResult();physical operator.markAvailable();return physical operator.getResult();g else fphysical operator.markUnavailable();raise EvalException(physical operator);gggfunc construct(physical operator) returns Partially Evaluated Queryif (physical operator.isAvailable()) freturn = "select " x"from " + physical operator.formatValue();g else fswitch (physical operator.kind()) fcase PROJECTreturn = "select " physical operator.projectionList()"from " x + " in " construct(physical operator.operand());case SELECTreturn = "select " + x +"from " + x + " in " + construct(physical operator.operand()) +"where " + physical operator.predicate();case JOINreturn = "select " + physical operator.projectionList()+"from " + left + " in " + construct(physical operator.leftOperand()) +", " +right + " in " + construct(physical operator.rightOperand()) +"where " + physical operator.predicate();case SCANreturn = "select " + x +"from " + x + " in " + physical operator.relationName()case EXECreturn = "select " + x +"from " + x + " in " + construct(operator.subQuery())RR n�3127

24 Ph Bonnet & A.Tomasicgg

INRIA

Unité de recherche INRIA Lorraine, Technopôle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY

Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhône-Alpes, 655, avenue de l’Europe, 38330 MONTBONNOT ST MARTIN

Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route desLucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Éditeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)http://www.inria.fr

ISSN 0249-6399

