
IS
S

N
 0

24
9-

63
99

ap por t

de r ech er ch e

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Dealing with Discrepancies in Wrapper Functionality

Olga Kapitskaia , Anthony Tomasic , Patrick Valduriez

N ˚ 3138

Mars 1997

THÈME 1

Dealing with Discrepancies in Wrapper FunctionalityOlga Kapitskaia� , Anthony Tomasic� , Patrick Valduriez�Th�eme 1 | R�eseaux et syst�emesProjet RodinRapport de recherche n�3138 | Mars 1997 | 21 pages
Abstract: Much of the world's information is stored electronically in data sources. The data sources can befull-
edged databases, simple �les, HTML pages or specialized data sources that possess diverse query processingcapabilities. The common architecture to integrate such sources consists of mediators that give a global viewover the content of all sources, and wrappers that give a local view of each source. Answering queries in thisarchitecture is a di�cult problem due to the wide range of capabilities of data sources.This paper presents a solution to this problem in the context of the Disco query processor. We providea tool to the wrapper implementor to describe the capabilities of the wrapper in �ne detail. When a wrapperis registered with the mediator, the mediator uploads the capabilities of the wrapper, and smoothly integratesthese capabilities into query processing. Our solution is novel both in the level of detail permitted by the tooland its easy incorporation into existing query optimization strategies. In this paper we describe: the queryprocessing of Disco, the language for specifying wrapper capabilities, the algorithms that integrates thesecapabilities into query processing, and an implementation of these techniques in the Disco prototype.Key-words: Heterogeneous Distributed Database, Mediator, Wrapper, Capabilities of Sources, Optimization

(R�esum�e : tsvp)This work has been done in the context of Dyade, a joint R & D venture between Bull and INRIA.� e-mail: FirstName.LastName@inria.fr
Unité de recherche INRIA Rocquencourt

Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
Téléphone : (33) 01 39 63 55 11 – Télécopie : (33) 01 39 63 53 30

G�erer les di��erences des fonctionnalit�es des adaptateursR�esum�e : Aujourd'hui, la plupart des informations se trouve stock�e dans diverses sources de donn�ees. Cessources peuvent être des bases de donn�ees, des �chiers, des pages HTML ou des banques de donn�ees specialis�es,chacune poss�edant des capacit�es de traitement di��erentes. L'architecture la plus souvent utilis�ee pour int�egrerde telles sources de donn�ees utilise des m�ediateurs qui donnent une vue globale du contenu des sources et desadaptateurs, qui donnent la vue locale de chaque source. Dans ce contexte, le traitement de requêtes est rendudi�cile par la diversit�e des capacit�es des sources de donn�ees.Dans cet article, nous pr�esentons une solution �a ce probleme dans le projet Disco. Nous proposons un outilqui permet aux d�eveloppeurs d'adaptateurs de d�ecrire les capacit�es d'une source avec beaucoup de pr�ecision.Lors de l'int�egration d'un source, le m�ediateur int�egre la description des capacit�es, a�n de les utiliser lors del'optimisation des requêtes. Notre solution pr�esente les avantages suivants. D'abord, elle permet une descriptiontr�es �ne des capacit�es des sources. Ensuite, elle permet d'utiliser la connaissance des capacit�es des sources lorsde l'optimisation de requêtes et ceci independemment de la strategie d'optimisation adopt�e. Ce article decrit(a) le traitement de requetes dans Disco, (b) le langage de sp�eci�cation des capacit�es des adaptateurs, (c) lesalgorithmes pour integrer ces capacit�es dans le processeur des requêtes et (d) l'impl�ementation de ces techniquesdans notre prototype.Mots-cl�e : Base de Donn�ees H�et�erog�ene Distribu�ee, M�ediateur, Adaptateur, Capacit�es des sources, Optimi-sation

Dealing with Discrepancies in Wrapper Functionality 31 IntroductionThe Disco (Distributed Information Search COmponents) project [TRV96] is developing components for sear-ching and integrating information over distributed heterogeneous data sources. The data sources can be full-
edged databases, simple �les or specialized data servers (e.g. a multimedia server or an information retrievalengine). Thus, data can be structured, semi-structured or unstructured. The target applications of Disco arethose of Internet and Intranet which typically require integration of large numbers of data sources. The mainobjective of Disco is to provide uniform and optimized access to the underlying data sources using a commondeclarative (SQL-like) query language.To scale up to large numbers of data sources, Disco adopts a distributed architecture of specialized com-ponents [RAH+96, GMHI+94, KLSS95, FRV96] with mediators and wrappers. Mediators encapsulate a repre-sentation of multiple data sources and provide a query language for the application. They typically resolvecon
icts involving the dissimilar representation of knowledge of di�erent data models and database schema, andcon
icts due to the mismatch in querying power of each data source. This architecture permits mediators to bedeveloped independently and to be combined, providing a mechanism to deal with the complexity introducedby a large number of data sources. To permit multiple data sources to be accessed in a uniform way, mediatorsaccept queries and transform them into subqueries that are distributed to data sources.To deal with the heterogeneous nature of data sources, wrappers give a structured view of the data source andtransform subqueries from a subset of the mediator query language to the particular language of the data source.A wrapper supports the functionality of transforming queries appropriate to the particular data source, andreformatting answers (data) appropriate to each mediator. The wrapper implementor (DBI) writes wrappersfor each type of data source.The wrapper interface is a key to both query processing e�ciency and wrapper development e�ort. Thereare two extreme solutions for the wrapper interface: high-level and low-level. A high-level (SQL-like) interface,e.g., Open Database Connectivity (ODBC), is well-suited for modern databases, e.g., relational databases,since the wrapper interface can be almost directly mapped in the database interface. However, a data sourcemay have a very limited interface, for instance, queries of the form \select * where att matches value" on aninformation retrieval (IR) engine. In that case, writing the wrapper involves a lot of e�ort to support complexSQL statements using the data source interface. For instance, mapping project or multi-attribute select inthe IR engine interface is quite involved, even using a wrapper implementation toolkit [PGGMU95]. A low-level interface, e.g., scan, obviously makes wrapper development easy but makes query processing ine�cient byforcing the data sources to be copied in the mediator for further processing.The problem with either high-level or low-level wrapper interface is that the interface is �xed. To help theDBI, Disco provides a
exible wrapper interface. Disco interfaces to wrappers at the level of an abstractalgebraic machine of logical operators [Gra93]. When the DBI implements a new wrapper, she chooses a (sub)set of logical operators to support. The DBI implements the logical operators, and also implements a call inthe wrapper interface which returns the set of supported logical operators.Such operator-based interface solves the classical problem of varying level of functionalities in data sources.It provides a good balance between implementation of new complex interfaces and the gain from additionalcomplexity. It also permits incremental wrapper implementation (going from simple operators to more complexones). However, it introduces a new problem for mediators which must produce code for wrappers of varyingfunctionality. We address this problem by having the mediator query processor aware of each wrapper func-tionality (in terms of supported operators) and use this knowledge in processing queries in a way which fullyexploits the wrappers. For example, a mediator may generate a logical expression for a wrapper to project thename attribute from a relation r.project(name, scan(r))The mediator will pass this logical expression to a wrapper, thereby, pushing the project operation onto thewrapper, only if the wrapper interface supports the project and scan logical operators, and only if the wrappersupports composition of these logical operators.To summarize, the contributions of this paper are the following. First, we de�ne an operator-based modelas wrapper interface. This interface is the basis for a
exible language to specify the functionality of wrappers.Second, we propose algorithms for combining wrapper functionality with mediator query processing. We believethey work with any query processing algorithm that can accommodate logical operators. Finally, we describethe current implementation of the operator model and query processing algorithm in the Disco prototype. Allexamples used to illustrate the algorithms are based on our prototype implementation.RR n�3138

4 O. Kapitskaia, A. Tomasic, P. ValduriezThis paper is organized as follows. Section 2 describes mediator query processing. Section 3 states theproblem formally. Section 4 proposes algorithms for combining wrapper functionality with mediator queryprocessing. Section 5 describes our language for specifying the wrapper interface and treats the question oflogical operators composition. Section 6 describes the current implementation status of the operator model inthe Disco prototype. Section 7 discusses related work and Section 8 concludes the paper.2 Mediator Query ProcessingThe mediator includes a query processor and a run-time system. It also contains an internal database whichrecords information on data sources, types, schemas, and views. This database is updated during registrationphases when new wrappers for data sources are introduced by importing their local schema and functionality.To hide local schema dissimilarities to the application, views are used. The mediator implements physicaloperators for all supported logical operators. The run-time system is able to execute all physical operators thatimplement the logical operators of the wrapper interface. The query processor searches for the best way tobalance the execution of an input query between the wrappers and the run-time system. In this section, weprovide an overview of query processing in Disco and describe the way wrapper interaction is modeled.2.1 OverviewQuery processing consists of generating the best execution plan for a query and executing that plan using thewrappers and the mediator run-time system. The input query explicitly references the views de�ned over thelocal schemas. Query processing proceeds along several steps (see Figure 1).Step 1 corresponds to semantic query processing in traditional optimizers. It parses the query and, usingthe view de�nitions, reformulates it into one or more equivalent queries on the local schemas. This is done byusing view de�nitions [TRV96, FRV96]. Each query is decomposed into n sub-queries each expressed on a localschema (for a wrapper) and a composition query. The composition query is to be executed by the mediator afterreceiving the results of execution of all sub-queries by the wrappers. Since multiple composition queries arepossible, depending on the grouping done for the sub-queries, we use the heuristic of [LRO96] to consider onlythe queries that issue as few sub-queries as possible to the same data source. At this stage, query processingignores the wrappers functionality. Thus, the sub-queries assume that all logical operators are supported byeach wrapper.Step 2 performs logical search space generation. It transforms a decomposed query (i.e., the sub-queries andthe composition query) into a logical operator tree. Disco has the usual logical operators of project, join, etc.Transformation rules, such as commuting and associating join, rewrite logical expressions to equivalent logicalexpressions. For each wrapper, there is a sub-tree of the logical operator tree that corresponds to a preliminarylogical plan for that wrapper. Another (top-level) sub-tree corresponds to the preliminary composition queryplan. These plans are preliminary because we don't know yet whether a wrapper is capable of executing itscorresponding plan.Step 3 is new and is addressed in this paper. Based on the knowledge of each wrapper functionality, itidenti�es the parts of a preliminary logical plan that can be actually executed by the corresponding wrapper.Each part of the logical operator tree that can be executed by a wrapper is kept as a candidate sub-query, andthe rest of the tree that cannot becomes part of the composition query plan. At the end of this step, a validlogical operator tree for the original query has been generated.Step 4 corresponds to the traditional step of execution plan generation. The distributed execution plan(corresponding to the sub-queries and the composition query) is generated by transforming logical operatorsinto physical operators such as index-scan, hash-join, etc. Since each logical operator may have several physicalimplementations, many physical operator trees can be produced. Disco uses a cost model [NGT97] to selectthe physical operator tree with least cost.Step 5 corresponds to distributed query execution. The query processor calls the wrappers to execute theircorresponding execution plan and to send the results back to the mediator run-time system which can computethe �nal composition query.2.2 Wrapper CallTo model a call to a wrapper we introduce the logical operator submit(id, expr) that takes a source id anda logical operator expression as arguments. This operator means that the given logical expression expr will beINRIA

Dealing with Discrepancies in Wrapper Functionality 5
Mediator Run-time SystemMediator Query Processor

4. Generate distributed execution plan
3. Identify sub-trees executable by wrappers
2. Transform the query into logical operator tree
1. Reformulate the query on local schema 5. Execute composition

 query

Wrapper 1 Wrapper n

result n result 1
call call

...

Figure 1: Query Processing in DISCOexecuted on a source id. Each access to a local data source (wrapper) is represented by submit. For example,the logical expressionproject(map, join(pred, submit(source1, select(scan(A))), submit(source1, scan(B))))means that two logical expressions will be evaluated at source1: select(scan(A)) and scan(B). The resultsof these expressions, say r1 and r2, are sent to the mediator. Having received the results, the mediator executesthe rest of the expression: project(map, join(pred, r1, r2)).Technically, the addition of the submit operator to a logical operator tree t at subtree rooted at an operatoro transforms the tree into a new tree t0. The new tree t0 is de�ned as t with subtree rooted at o replaced by thesubmit operator. Thus, the submit operator is a leaf node of the new tree. The subtree rooted at o is passedas argument to the submit operator. Thus, no information is lost since the subtree is preserved. For the restof this paper, by an abuse of notation, we consider the new tree t0 to be t with an additional submit operatorinserted into the tree, and we ignore the shift of the subtree to the argument of the operator.3 Problem De�nitionThis paper concentrates on Step 3 of query processing (Figure 1), the generation of the preliminary logical plansthat are executed by the corresponding wrappers. A preliminary logical plan for a wrapper is represented bya logical operator tree. During the registration phase the mediator imports a wrapper's functionality in theform of a grammar. The grammar describes in a compact way the logical operators supported by the wrapper,the speci�c arguments permitted to each operator, and the relationships permitted between operators. Thus,the wrapper de�nes the expressions of logical operator trees it can process. The set of all expressions that thewrapper can process form the language conforming to the imported grammar.Currently in Disco, the set of logical operators exported by a wrapper must be a sub-set of the logicaloperators supported by the mediator. The problem of this paper is, given a logical operator tree generatedduring logical search space generation that should be executed by a wrapper, �nd a sub-tree that the wrappercan execute. Finding an executable sub-tree amounts to introducing an operator submit in the right place in alogical operator tree. This section de�nes the problem formally and identi�es the solution we provide.Let us introduce the following de�nitions:UAmed - set of mediator logical operators, (i.e., the operators supported by the mediator)UAwrappi - set of wrapperi logical operators (i.e., the logical operators supported by wrapperi)L(UAmed) - mediator logical operators language (i.e., the set of all possible logical expressions (operator trees)that can be generated by the mediator in Step 2)RR n�3138

6 O. Kapitskaia, A. Tomasic, P. ValduriezL(UAwrappi) - wrapperi logical operators language (i.e., the set of all logical expressions that wrapperi canexecute)L(Q) - the user query language (i.e., the set of all queries expressed in a high-level language)We model Steps 1 and 2 of query processing as a rewriting function (see Figure 1). This function rewrites auser query q into a set of equivalent logical operator trees. Each logical operator tree consists of preliminarylogical operator trees for the data sources and a preliminary composition query.Rewrite : L(Q)! 2L(UAmed), where 2L(UAmed) denotes the set of all subsets of L(UAmed).Thus, the rewrite function takes as input q 2 L(Q) and returns a set of l 2 L(UAmed), where l 2 Rewrite(q).In addition, the preliminary logical operator tree lwrapperi for each wrapperi has been identi�ed.The set of logical operators exported by wrapperi is a subset of the set of logical operators supported by themediator. Thus, wrapperi can execute only a proper subset of the mediator expressions:(UAwrappi � UAmed)) (L(UAwrappi) � L(UAmed))) (9l j l 2 L(UAmed) and l 62 L(UAwrappi))The problem is to �nd a rewriting l0wrapperi of each preliminary logical operator tree lwrapperi such that allbut the leaf nodes of l0wrapperi is an expression in the mediator logical operator language, and the leaf nodes areoperators submit whose argument is an expression in a wrapper logical operator language. The part of lwrapperithat cannot be executed by the wrapper, say l00, is executed by the mediator by extending the preliminarycomposition query with l00.To resolve this problem we de�ne a transformation T that performs this rewriting for all lwrapperi . (Thealgorithms implementing this transformation are given in the next section.) Transformation T satis�es thefollowing de�nition:T : L(UAmed)! L(UAmed [submit)In addition, since we are in an environment where mediators issue subqueries to wrappers and wrappers returnsubanswers, the transformation T maintains the following two invariants : (i) each traversal path from the rootoperator to a leaf operator in the generated tree contains exactly one submit, and (ii) the subtree argumentto submit contains only operators permitted by the source. The �rst invariant means that a submit operatorcannot contain another submit operator, nor can some leaf operator have a submitmissing. The second invariantmeans that the source will only receive subqueries that it is capable of executing.4 Producing Plans Executable by WrappersIn this section, we describe two algorithms for producing �nal logical plans, i.e., logical operator trees, thatcan be executed by wrappers (for step 3 in Figure 1). Algorithm allTrees generates all possible trees whilealgorithm maxTree generates only one tree.4.1 Assumptions and De�nitionsFor the UAwrappi , we de�ne a very simple interface, a set of operator names. Each operator has a speci�cinterface that encodes its meaning, signature and collection of possible arguments. For now, we assume that ifthe wrapper exports the operator name, it means that it supports the entire de�nition for that operator. Forexample, if a source exports the select operator name in its UAwrappi , it must support the entire de�nitionof select. We will relax this restriction later, in Section 5. For Disco, select supports boolean conjunctsand disjuncts in the predicate. Thus, there is a universal de�nition of select known to the mediator and allwrappers that support that operator. We also make an assumption that each source exports at least the scanoperator in the UAwrappi .We consider two possible strategies of adding the submit operator to a preliminary logical operator tree.One produces all possible trees that can be executed on a source, i.e., generate all possible combinations oflogical operator trees that di�er by the place of the submit operator in the tree. The other produces the treewith the maximum number of operators executed on the wrapper. Both strategies are useful. The �rst strategyexplores all possible plans, including plans where an operator is executed on the mediator even though thewrapper may execute it. This plan may be interesting if the cost of executing of the operator in the mediator isless than that in the wrapper. However, exploring these plans may well increase optimization time. The secondstrategy implements a heuristic that reduces network tra�c. INRIA

Dealing with Discrepancies in Wrapper Functionality 7(Set, boolean) allTrees(Wrapper w, LogicalOperator tree, Set capabilities) fop = tree.topOperator();if (op.children == 0) // must be a scan and must be in capabilitiesreturn ((new Set(new Submit(w, op))), false);elseb = false;S = ;;foreach (i2 op.children())(Seti, hasSubmit) = allTrees(w, i, capabilities);S = S [(Seti, hasSubmit);b = b [hasSubmit;ResultSet = crossProduct(Set1, ... ,Setn, op);if (b)return (ResultSet, true);else if (op 2 capabilities)ResultSet = ResultSet [new Submit(w, op);return (ResultSet, false);else // op is not in capabilitiesreturn (ResultSet, true);g Figure 2: Algorithm for exhaustive tree generationThe function allTrees implements the �rst strategy and has the following signature:allTrees : L(UAmed) ! 2(L(UAmed[submit)). We believe that the algorithm is both sound and complete withrespect to the transformation T , that is (l0 2 allTrees (l)) , (l T! l0).The function maxTree implements the second strategy and has the following de�nition:maxTree : L(UAmed)! L(UAmed [submit).We believe that the algorithm is sound with respect to the transformation T , that is(l0 = maxTree(l))) (l T! l0)4.2 Exhaustive tree generation4.2.1 Algorithm allTreesThe algorithm for producing all possible executable trees performs one pass. All trees are being constructeddynamically at the same time. The algorithm proceeds bottom-up and consists of two sequences, the initialcheck sequence followed by a copy sequence (see Figure 2). Each sequence is performed in a number of steps.Each step of the check sequence corresponds to examining an operator to see if it can be executed by the sourceor not. Each step of the copy sequence corresponds to copying the current operator into the output tree. Thealgorithm operates in the check sequence if all operators considered so far can be executed by a source. Theswitch to copy sequence occurs when an operator is found in the tree that cannot be executed by the source.In this case, all remaining operators must be executed in the mediator.The input to the algorithm is the preliminary logical operator tree lwrapperi for a wrapperi and the set ofcapabilities of the source UAwrapperi . All operators apply only to the data on the associated source. The outputof the algorithm is a pair, consisting of a set of new logical operator trees (containing submit) and a booleanindicating if the original logical operator tree contains at least one operator that cannot be executed on thesource. Note, that since each source exports at least scan operator, it is always possible to produce at least onenew logical operator tree. The development of the algorithm is illustrated by the examples in Figures 3 and 4.The algorithm starts operating in the check sequence. It proceeds by traversing the input tree in post-�xorder. After visiting each child, the algorithm tests the result of the recursive call on each child to see if anoperator that cannot be executed on the source has been detected in that child. If no operator has been detected,RR n�3138

8 O. Kapitskaia, A. Tomasic, P. Valduriez
Input tree.
All operators can
be executed on the
source

(1) (2) (3) (4) (5)Figure 3: Logical operator trees (1)-(5) are the result of applying the allTrees function to the input tree. Alllogical operators in the input tree can be executed on the source. White circles represent operators, black circlesrepresent the submit operator.
Input tree. Operator
can not be executed on
the source

(1) (2)Figure 4: Logical operator trees (1)-(2) are the result of applying the allTrees function to the input tree.Marked logical operator cannot be executed by the source.i.e., all operators so far can be executed by the source, one of two cases arises: either the source is capable ofexecuting the current operator or it is not. If it is, the algorithm remains in the check sequence. It returns theset of new logical operator trees resulting from cross-product of the sets of new logical operator trees producedby recursive calls on each child, and a new logical operator tree produced by adding submit to the subtree ofthe input logical operator tree rooted at the current operator. The boolean value returned is false, indicatingthat all operators can be executed.If the source is not capable of executing the current operator, the algorithm switches to the copy sequence.It returns the set of new logical operator trees resulting from cross-product of the sets of new logical operatortrees produced by recursive calls on each child. In addition, the boolean value returned is true, indicating thatan operator has been found that cannot be executed by the source.If the result of the recursive call on the children detects an operator that cannot be executed by the source,the algorithm switches to the copy sequence. In this case, the result is the set of new logical operator treesresulting from cross-product of the sets of new logical operator trees produced by a recursive call on each child,and the boolean value is true. Thus, the switch from the check sequence to the copy sequence means that, ateach step of recursion, the algorithm cannot add the operator submit to the input tree at the subtree rootedat the current operator.Function crossProduct used in the algorithm of Figure 2 produces the cross product of the given sets. Theinput to the function is a set of sets of logical operator trees fSet1; :::; Setng, and a logical operator op. Theoutput is a set of new logical operator trees Set = fop1; :::; opmg, each having an operator op as a root, andthe children of each new logical operator tree are one of possible combinations of cross product. The number ofnew logical operator trees produced by crossProduct is m =Qnk=1 card(Setk), where card(Setk) is the numberof logical operator trees in Setk and n is number of sets.4.2.2 ExamplesWe illustrate the algorithm allTrees with the following examples. 1 The logical operators supported at themediator level are:UAmed = fselect, project, join, scang.1All examples given in this section are the output of our prototype. INRIA

Dealing with Discrepancies in Wrapper Functionality 9Example 1. The input query q is:select x.namefrom x in bookswhere (x.name="franklin")and(x.year<1995)For simplicity, we suppose that query q concerns one wrapper w. Let us consider the preliminary logical plan l= project(select(scan(books))) and two cases of wrapper functionality.1. UAwrapper = fselect, project, join, scang.The algorithm �rst introduces the submit operator at the sub-tree rooted at scan. Since the parent ofthe scan operator, select, is unary, only one Set(i), containing a logical expression l0 = submit(w, scan), isproduced. Function crossProduct gets as input a set containing this Set and a logical operator select. Theresult of crossProduct is a Set0 containing one logical expression: l00 = select(submit(w,scan(books))).Since the algorithm stays in the check sequence, one more logical expression, resulting from introducing theoperator submit at a sub-tree rooted at select is produced : l000 = submit(w, select(scan(books))). Thus,the ResultSet on this step contains two logical expressions :submit(w,select(scan(books)))select(submit(w,scan(books)))The algorithm continues the execution in the same way. The �nal result is the following Set of logicaloperator trees:project(submit(w,select(scan(books))))project(select(submit(w,scan(books))))submit(w,project(select(scan(books))))2. UAwrapper = fproject, scang.The result of applying the algorithm is the Set that contains only one logical operator tree:project(select(submit(w,scan(books))))Example 2. The input query q is:select x.titlefrom x in books and y in bookswhere x.name=y.nameAs in the previous example, we suppose that the query q concerns only one wrapper w. Let us consider thepreliminary logical operator tree: l = project(join(scan(books)scan(books))) and two cases of wrapperfunctionality.1. UAwrapper = fproject, select, join, scang.The result of applying the algorithm is the following Set:submit(w,project(join(scan(books)scan(books))))project(submit(w,join(scan(books)scan(books))))project(join(submit(w,scan(books)),submit(w,scan(books))))2. UAwrapper = fjoin, select, scang.Then the result of applying the algorithm is the following Set :project(submit(w,join(scan(books)scan(books))))project(join(submit(w,scan(books))submit(w,scan(books))))
RR n�3138

10 O. Kapitskaia, A. Tomasic, P. Valduriez4.3 Single tree generation4.3.1 Algorithm maxTreeAlgorithm maxTree pushes as many operators as possible into the submit operator in order to increase localprocessing in the wrappers and reduce network tra�c. The algorithm performs one pass. It proceeds bottomup and operates in two sequences, the initial check sequence followed by copy sequence (see Figure 5). Themeaning of these sequences is the same as for algorithm allTrees.The input to the algorithm is the logical operator tree and the set of capabilities of the source. All operatorsapply only to the data of the associated source. The output of the algorithm is a pair consisting of the new logicaloperator tree and a boolean indicating if the new logical operator tree contains a submit operator somewherein it. The algorithm starts with the check sequence. It proceeds by traversing the tree in post-�x order. Aftervisiting each child, the algorithm tests the result of the recursive call on each child to see if a submit operatorhas been added anywhere. If so, the algorithm switches to the copy sequence, the submit operator is addedto all children that do not have one, and the current operator is returned with all the modi�ed children as itsargument. In addition, the boolean value returned is true. If no child has a submit operator, then one of twocases arises: either the source is capable of executing the current operator or it is not. If it is, the algorithmremains in check sequence and the operator and its children are returned with a false boolean value. If it isnot, a submit operator is added to all children, the algorithm switches to the copy sequence, and the currentoperator is returned will all modi�ed children as its argument and the boolean value is true.LogicalOperator maxTree(Wrapper w, LogicalOperator tree, Set capabilities) f(newtree, hasSubmit) = addSubmit(w, tree, capabilities);if (hasSubmit)return newtree;elsereturn new Submit(w, newtree);g(LogicalOperator, boolean) addSubmit(Wrapper w, LogicalOperator tree, Set capabilities) fop = tree.topOperator();if (op.children == 0) // must be a scan and must be in capabilitiesreturn (tree, false);elseb = false;S = ;;foreach (i 2 op.children())(Seti, hasSubmit) = addSubmit(w, i, capabilities);S = S [(Seti, hasSubmit)b = b [hasSubmit;if (!b)if (op 2 capabilities)return (tree, false)elsereturn (new Submit(w, tree), true)elseforeach (i 2 S)if i's flag is false, add Submit to i's operatorreturn (new Operator(op, S), true)gFigure 5: Algorithm for generating a single tree with the maximum work done by the wrapper.4.3.2 ExamplesLet us consider the following examples. The logical operators supported at the mediator level are: INRIA

Dealing with Discrepancies in Wrapper Functionality 11UAmed = f select, project, join, scan g.Example 1. The input query q is:select x.namefrom x in bookswhere (x.name="franklin")and(x.year<1995)For simplicity, we suppose that query q concerns one wrapper w. Let us consider the logical operator treel = project(select(scan(books))) and two cases of wrapper functionality.1. UAwrapper = fselect, project, join, scan g.Then the result of applying the algorithm maxTree is the following:submit(w,project(select(scan(books))))2. UAwrapper = fproject, scang.Then the result of maxTree is:project(select(submit(w,scan(books))))Example 2. The input query q is :select x.titlefrom x in books and y in bookswhere x.name=y.nameAs in the previous examples, we suppose that the query q concerns only one wrapper w. Let us consider thelogical operator tree l = project(join(scan(books)scan(books))) and two cases of wrapper functionality.1. UAwrapper = fproject, select, join, scang.Then the result of maxTree is:submit(w,project(join(scan(books)scan(books))))2.UAwrapper = fjoin, select, scang.Then the result of maxTree is:project(submit(w,join(scan(books)scan(books))))}4.4 DiscussionEssentially, algorithms allTrees and maxTree are the functions used by an optimizer to translate a pre-liminary logical operator tree l for a wrapper into another logical operator tree l0 that can be executed. Theresulting logical operator trees contain two parts, the part a executed by the mediator and the part b executedby the wrapper. Since l is simply a subtree of the overall tree used for executing the entire query, by simplyreplacing l by l0, the composition query for the overall query is changed { it is extended by b on the branch thatcontained l.Once this step is accomplished for all preliminary logical operator trees, the resulting tree can be executed.This logical operator tree then goes through the physical optimization step and the resulting (again, one or more)physical operator trees can be assigned a cost. The optimizer repeats this procedure in some way to search forthe lowest cost physical operator tree. The way used to search depends on the optimizer: randomized, dynamicprogramming, etc. All of these optimizers can bene�t from the algorithms we provide.5 Wrapper Interface LanguageIn Section 4, we de�ned a very simple interface to express wrapper functionality: a set of operator names. If awrapper exports an operator it means that it supports the entire interface of this operator.This assumption is too restrictive for the real data sources. Very often wrappers are able to support a givenoperator but only on a subset of the interface of the operator. The examples of restrictions that have to be takeninto account are the supported path expressions, boolean conjuncts, boolean disjuncts, the set of predicatesthat can be applied on the attributes, variable bindings for a particular attribute, etc.RR n�3138

12 O. Kapitskaia, A. Tomasic, P. ValduriezIn this section, we extend the wrapper interface with more functionality. We still use an operator-levelinterface; a wrapper provides the description for each logical operator it supports. A wrapper exports itsfunctionality description during the registration phase of query processing and this description is used in queryprocessing to generate logical operator trees executable on the source. We �rst extend the description to dealwith the particular nature of each operator, and then we extend the description to deal with the compositionof operators.5.1 Operator Description LanguageThe wrapper functionality description expresses several important facts about the underlying sources. Firstof all, if a wrapper exports several collections, a given logical operator might be supported by one collectionbut not by the other. A wrapper can specify which collections support which logical operators. Another veryimportant restriction for heterogeneous sources are on predicates: some operators require certain comparisonsto appear in predicates. Consider wrappers for information retrieval (IR) systems. For example, a WAIS enginetakes as input a word (or sometimes a list of words with boolean connectives). This means that a wrapperfor the WAIS engine requires that a select logical operator is always sent to a wrapper. Since the selectoperator contains a predicate and the predicate compares an attribute to a constant, the wrapper for the theWAIS engine will always be able to convert the subquery into a call to the WAIS engine.The wrapper can also require that only a limited set of predicates be applied on each given attribute for agiven logical operator. For example, a WAIS engine understands only equality predicate for any attribute inthe query, and does not understand greater than or less than comparison predicates.To understand the
avor of the wrapper interface, let us consider the following simple example. The Databaseand Logic Programming (DBLP) bibliographic server2 is an IR system that processes two IR requests.3 Giventhe name of an author, it returns the list of publications of this author; given a keyword it returns the list ofpublications with the keyword in the title of the publication.A wrapper for DBLP exports the following simple schema (in ODL-like language)interface Publication (extent publications) {attribute string Title;attribute string KeywordTitle;attribute string Author;}; The wrapper for this data source exports the following logical operators: fselect, project, scang. Theselect operator can be applied on the collection Publication. More precisely it is applied on the attributesKeywordTitle and Author. Since a DBLP server accepts only one constant as input, the wrapper acceptsa predicate on the select with exactly one of the attributes KeywordTitle or Author. The DBLP serveruses information-retrieval methods of search, thus retrieving only matching publications. Here, the wrapperimplementor has two choices. One choice is to �lter the results of the IR search, checking for equality. Thus,exactly the meaning of the equality predicate is implemented. A second choice is to pass every answer fromthe IR search back to the mediator. In this case, the wrapper essentially exports a match predicate instead ofequality. Since the DBLP IR engine always returns the entire publication, the project operator is implementedin the wrapper. In addition, we require that the project operator is always over attributes Author and Title.In e�ect, the attribute KeywordTitle does not exist in the underlying data source. We use this attribute tomodel the fact that IR searches match any keyword in a title. Thus, the user does not give the entire titleof a publication in a query, only a keyword can be speci�ed. The operator scan can be applied to the extentpublications without further restrictions.In our wrapper interface language, this functionality is expressed as follows:select [publications 1 f bind Author (=)bind KeywordTitle (=)g]project [publications 2 f bind combine Author ()bind combine Title ()g]scan [ALL]2The DBLP bibliographic server is located at http://sunsite.informatik.rwth-aachen.de/dblp/db/index.html.3We consider only part of the server's functionality. INRIA

Dealing with Discrepancies in Wrapper Functionality 13Each operator expresses its functionality separately. For each operator, the operator lists the collection namesand attributes that it can understand. Thus, for a given operator tree, each occurrence of an attribute is tracedto the original collection that the attribute is derived from. This pair of (attribute, collection) is comparedagainst the functionality for the operator. If the operator lists ALL, as in the scan operator, then all collectionsare permitted.The integer 1 after the collection name is the minimal number of the attributes of this collection to appearin the argument of the operator. The keyword bind before the attribute name means that this attribute mustappear in the attribute of the operator. The absence of the keyword combine means that the attribute cannot becombined, i.e., only one attribute in a query can be bound. For each attribute, the list of supported predicatesfor any given logical operator is given after the attribute name. (\=" for all attributes of DBLP). The keywordALL in the description of logical operator scan means that this operator can be applied to any attribute withany predicates. In general, the keyword ALL can replace (i) the list of all collections on which operator can beexecuted, or (ii) the list of attribute names, or (iii) the list of the predicates supported. The complete BNFfor the operator description language is given in Appendix A. The functionality of this language is inspiredby [LRO96].This operator description language has several advantages. First of all, it facilitates the task of integratinga new wrapper. Expressing details at a high-level about the wrapper functionality is easy. Second, the level ofdetail is high, thus giving a �ner control of the implementation of a wrapper. Third, the wrapper interface isdynamic. It is uploaded during the registration phase and does not have to be compiled. If the functionality ofa wrapper changes, a new functionality description is uploaded dynamically and replaces the old one. Finally,the wrapper interface is general. It provides a uniform description of any set of logical operators supported bya wrapper (relational logical operators as well as non-relational ones).5.2 Integration into Query ProcessingThe wrapper interface language allows a wrapper to de�ne in detail its functionality. This information is usedin the algorithms of Section 4. Modi�cation of the algorithms to account for the extended functionality ofthis section is straightforward. When the algorithms check that an operator can be executed by a source, thealgorithm also checks that the arguments of the operator match the restrictions of the new functionality.That is, the initial check sequence of the algorithm veri�es if the current logical operator satis�es the wrapperfunctionality description, i.e., if the collection name mentioned in the query is in the list of collection namesto which the current operator can be applied, if the attribute names are in the list of the attribute names towhich the current operator can be applied, and if the predicate in the query is supported for the given attribute.In addition we verify if the binding requirements for the logical operator hold, i.e., if a necessary number ofattributes appear in the operator argument and if these attributes are combined in a required way.In the current implementation, we treat the boolean conjuncts and disjuncts in a special way. The functio-nality language in its current stage does not provide the way to specify if a wrapper supports conjuncts anddisjuncts. Thus, for an expression select(``x.age > 25 and x.salary=50000'', op), for some operatortree t, a check is done separately for both x.age > 25 and x.salary=50000. The operator select can bepushed inside submit if both conjuncts of the predicate satisfy the exported wrapper functionality. In futurework, we are planning to extend the language to describe restrictions on conjuncts and disjuncts.5.3 Operator CompositionQuery processing and the algorithms of Section 4 both assume that all wrappers support the scan operator.All wrappers must export this operator in their functionality description. While all wrappers support scan,not all of them can execute a subquery consisting only of a scan, since the result of the scan operator is theentire collection being accessed. Some wrappers are not able to provide the entire data collection of underlyingsources. For example, a DBLP wrapper can only execute queries that contain some selection criteria (one ofthe KeywordTitle or Author should appear); it is not able to return the entire collection of the underlyingpublications as an answer. Other wrappers are likely to have numerous other subtleties in the form of logicaloperator trees they can execute.To express the requirement that select must appear with scan, we de�ne a language for expressing restric-tions on operator composition. The wrapper implementor speci�es the grammar that describes all possible formsof logical operator trees that a wrapper can understand. She speci�es the restrictions in operator composition,the possibilities for a logical operator to be an argument of another logical operator, etc. For example, theRR n�3138

14 O. Kapitskaia, A. Tomasic, P. ValduriezDBLP wrapper exports the grammar4 shown in Figure 6. This grammar states that scan must be composedwith select. The parser generated from this grammar parses over a string that lists each operator with itsarguments, e.g. select(scan).TOKEN :{} { <OP1 : "select" >| <OP2 : "scan" >}void Operators() :{}{ <OP1> "(" <OP2> ")" <EOF> {}} Figure 6: Composition grammar for DBLP wrapperA wrapper can choose not to specify its requirements of operator composition order. If no speci�cation isprovided, a default grammar is used to check the candidate logical plans. In the current implementation weuse \relational-style" operator composition rules: any logical operator (except scan, that should have an extentname as argument) can have any other logical operator as argument and there are no speci�c restrictions ontheir composition.The advantages of the composition functionality grammar are similar to the advantages of the operator func-tionality grammar: better control over the wrapper implementation, dynamic modi�cation of the functionality,etc.5.4 Extending Algorithms allTrees and maxTreeExtending algorithm allTrees to understand the composition functionality is straightforward. The algorithmis extended to verify each generated logical operator tree. For each logical operator tree, the argument ofthe submit operator is converted to a string and parsed by the corresponding parser. If this string is parsedsuccessfully, the logical operator tree, argument of operator submit, satis�es the composition order requirementsof the wrapper. Thus, the generated logical operator tree is kept in the result set. If the string does not parse,the argument of submit does not satisfy the composition requirements of the wrapper, and the generated logicaloperator tree is removed from the result set.Extending algorithm maxTree is more involved and requires a new algorithm. The new algorithm (that wecall maxTreeExtended) performs two passes, an initial bottom-up traversal of the tree followed by a top-downtraversal. The bottom-up traversal operates like maxTree algorithm, except that it does not construct the newtree during this pass. Each node is simply marked with a boolean variable mark indicating if the node was inthe check or copy state of the bottom-up traversal. (Let us remind that the node is in the check state if alloperators so far can be executed by the source, and the node is in the copy state if an operator was found thatcannot be executed by the source.) The top-down traversal descends the tree, examining each node's state asindicated by the boolean variable in the �rst traversal.If the node is in a copy state the top-down traversal recurses on the node's children and then copies theresults of the recursive calls into the result tree, just as the algorithm maxTree. If the node is in the check statethe algorithm constructs a string representing the subtree rooted at the current node, and attempts to parse it.If the parsing is successful, a submit operator is added to this node and the algorithm returns this operator. Ifthe parsing is unsuccessful, the current node is copied into the result tree and the top-down traversal continueson each child branch independently.The result of the bottom-up and top-down traversals of the algorithm insures that at most a single submitlies on each path from the root to each leaf. However, depending on the tree and the operator compositionspeci�ed by a wrapper, some branches might not have a submit operator. Thus, the algorithm has to check theresult tree to insure that each path has a submit. If a path without submit operator exists, the tree cannot belabeled properly with submit operators, and maxTreeExtended returns NULL. The resulting algorithm is givenin Appendix B. The development of the algorithm is illustrated by the example in Figure 7.4The grammars are given in the syntax of Jack Parser generator (http://www.suntest.com/Jack/) that we use in our prototypeINRIA

Dealing with Discrepancies in Wrapper Functionality 15
 join

submit

projectsubmit

scan scan

(0) (1) (2) (3)

scan scan

project

 join

(check)

(copy)

scan scan

project

 join

 select

scan scan

project

 join

 select
 select

 select

(check)

(copy) (check)

scan()

project(scan())

Figure 7: Example of applying maxTreeExtended. Tree (0) is an input tree. Operator select can not beexecuted by the source. Tree (1) is the result of bottom-up traversal of the algorithm. All nodes are markedand the operator submit is not introduced. Tree (2) shows the strings that are parsed on the top-down traversalof the algorithm. Assuming that the source allows the composition of project and scan as well as sub-queriesconsisting of scan alone, tree (3) is the result tree.5.5 DiscussionThe introduction of the composition grammar produces a complication for the query processor { it may not bepossible to generate a tree that can process a query on a given wrapper. The algorithms of Section 4 avoidedthis by requiring that every wrapper process scan, but the possibility to specify composition grammar lifts thisrestriction. For some restricted query languages and algebras, it is possible to determine if such a tree can begenerated or not. However in the general case, the problem remains open.We have considered combining the operator description language and the operator composition language.However, using the operator composition language implies a more expensive algorithm for the generation of �nallogical operator trees. Since this algorithm is used extensively in query optimization, we have left the divisionof the two languages in order to study the impact of each language on query optimization in future work.6 ImplementationThis section describes the current implementation status of this work, in the framework of the Disco prototype[TAB+]. The prototype is implemented in Java and communication with the wrappers is done using the JavaRemote Method Invocation (RMI) mechanism.Logical Operators. We have implemented the following logical operators at the mediator level:UAmed = fscan, select, project, joing. These operators are those of relational algebra. The mediatoralso implements physical algorithms for the local execution of the composition query.Query Processor. Currently, Disco implements a simple query processor. As part of the Disco queryprocessor, we have implemented the extended version of allTrees and maxTree. We are currently implementingthe maxTreeExtended algorithm. The choice of the algorithm, i.e., exhaustive tree generation, or the use of theheuristic, is a parameter of the query processor. This implementation was useful to validate our algorithms:the system generates only the logical operator trees that the wrapper can execute. maxTree generates themaximal possible tree, and allTrees generates all possible combinations of executable trees. We have addedthe ability to change the functionalities exported by the wrappers to experiment with the di�erent combinationsof functionalities. The examples in Section 4 are based on this experimentation work.Communication with the wrappers. The mediator is currently connected with three wrappers implemen-ted in the framework of the Electronic Marketplace project [BAE97], done between INRIA and Bull in thecontext of the Dyade joint venture. The goal of this project is to provide a uniform view of the heterogeneousdistributed information sources in the domain of public construction. The sources are distributed over theInternet in France.The mediator is a resource executing under the Jigsaw HTTP server software [BS97]. The wrappers areJava RMI servers that contact data sources. Two data sources are �les, and the third one is a WWW server.Thus, in response to a sub-query, the wrappers for the �le data sources read the associated �les, and thewrapper associated with the WWW server reads the available HTML �les, parses them and generates theRR n�3138

16 O. Kapitskaia, A. Tomasic, P. Valduriezappropriate answer. Communication between the mediator and the wrappers is accomplished using RMI, andthe communication between a wrapper and the WWW server is via HTTP.The wrappers are the following. The �rst wrapper provides access to the calls for tenders for public marketsstored in the Lotus Database and presented on-line as the WWW site. The second wrapper allows access to asecond source of the calls for tenders. Data is stored in a �le. Both wrappers export the same schemas thatdescribe their structure. A call for tender concerns a market in a district; it is issued on a appearance dateand is valid until a validity date. The third wrapper provides the information about building and constructioncompanies in France. The data is stored in a �le. The schema exported by the wrapper consists of the company'sname, its activity, its address, phone and fax numbers and the district the company is located in.All three wrappers can perform select and scan operators that can be composed. The wrappers exporttheir functionality in the form described in Section 5. The wrappers functionality descriptions are later used bythe query processor.The typical queries that we execute in this environment are the following:� �nd the appearance dates of the calls for tenders in the given district,� �nd the name of the companies and the market of the calls for tenders that are both located in the samedistrict,� �nd the name and the activity of the companies and the market of the calls for tenders that are bothlocated in a given district, etc.7 Related WorkAll systems striving to integrate heterogeneous information sources face the problem of integrating di�erentfunctionalities of local sources. We study the related work with respect to two questions: (i) how do existingsystems describe source capabilities; (ii) how is this description used during the query processing. The ap-proaches taken di�er on the level at which the necessary check of source capabilities is done. Some systems(e.g. IRO-DB [GST96], Pegasus [DS95]) eliminate the problem during the schema integration process. Databaseadministrators de�ne a federated schema that is constituted from local schemas, representing local sources. Thefunctions provided on the federated level are only those that can actually be performed on local data sourcesand queries containing functions that cannot be directly mapped on some local functions are not accepted.Other systems integrate di�erent domains but require a user to address each speci�c function in a domainexplicitly. For example, Hermes [ACPS96] can integrate relational, object-oriented and spatial databases. Eachdomain is viewed as consisting of three components: a set of values �; a set F of functions on �; and a set ofrelations on the data objects in �. The functions in F take objects in � as input and return as output objectsfrom their range. This di�erent domain knowledge is not \uni�ed" at the global level, and each speci�c functionin each domain has to be addressed explicitly.Other systems prefer to detect the functional discrepancies during query processing by means of some kindof source description. InterViso [THMVB95] is a DBMS front-end that allows a user to access data managedby di�erent heterogeneous distributed DBMSs. User query is formulated in terms of a federated schema andduring query processing, this query is reorganized into the series of SQL statements that are directed to thelocal bases. All data operations are performed by local relational engines. To specify which relational operationscan be performed at a data source, InterViso de�nes a capabilities table that includes the number of joins thatcan be done in one query, the availability of GROUP BY, aggregates, LIKE pattern matches, string operations,INDEX, and DISTINCT. If a data source cannot perform the needed function, the query is directed to anotherdata source, or a missing functionality is supplied by a schema translator.The local capabilities speci�ed by the system concern mostly the di�erent \dialects" of SQL and assumethat the basic relational operators can be executed at a data source. The system is closely related to SQL queryprocessing and cannot be easily extended to support various \operator sets".Reference [LSK95] gives a language for describing information sources that re
ect the content of thosesources. The query generation algorithm operates in two phases - �rst it determines the join order, and then�nds the relevant external sources to answer each conjunct of a query. The optimization criteria minimizes thenumber of external information sources accessed. In fact, source capabilities are modeled as a subset of queriesthe source is willing to answer and are presented like query forms. Nevertheless the plan generation algorithmsupposes that each source is able to answer any query, so the source capabilities descriptions are not used.Reference [LRO96] extends the language proposed in [LSK95] and creates a capability record for each sourcerelation. These descriptions are of the form (S in, S out, S sel, min, max). S in is a set of attributes requiredINRIA

Dealing with Discrepancies in Wrapper Functionality 17on input, S out is a set of attributes returned from a source relation and S sel is a set of attributes on whicha source can perform selection. A query plan is a sequence of accesses to the source relations (satisfying inputrequirements of each source) interspersed with the operations that are performed in the mediator. The queryprocessor �rst generates semantically correct conjunctive plans and then orders the conjuncts (subgoals) of eachplan to ensure that the plan is executable (which means that the input requirements of each source are satis�ed).Reference [PGH96] generalizes source capability records.Our operator functionality language is also a generalization of capability records. In addition, we providethe operator composition functionality and show how these languages can be used for an operator-based queryprocessor.The Garlic project [KHWY97] has an optimizer which exploits the knowledge of wrapper query capabilities.Their optimizer is based on use of grammar-like rules [Loh88]. Each wrapper exports its own set of rules thatdescribes its own optimization. During optimization the optimizer \switches" from generic optimization rules tothe rules speci�c to a wrapper. This work is closely related to ours. The main di�erence is that Garlic wrappercapability rules describe optimization and are necessarily intertwined with a particular optimizer, as opposedto our method of adding a step to a generic optimization framework.In the distributed heterogeneous systems, the original query expressed in mediator terms is not directlyexecutable on local sources. The related research area concentrates on formulating a semantically correctexecution plan. Reference [LRO96] and [LSK95] show that the problem of �nding a semantically correct queryplans amounts to �nding a conjunctive query that uses only local source relations and is contained in a givenoriginal query, and therefore is closely related to the problem of answering queries using views. Interestedreaders might consult [LMSS95, Qia96] that treat the problem of answering queries using a �nite set of viewsand [LRU96] that considers the case of an in�nite set of views.8 ConclusionA common architecture to integrate large numbers of distributed heterogeneous data sources consists of media-tors that give a global view of the data sources and wrappers that give a local view of each source. Processingqueries in this architecture is di�cult because data sources have varying levels of functionality.In Disco we deal with this problem by providing a
exible wrapper interface in terms of logical operators.When the DBI implements a new wrapper (for a new type of data source), she chooses a (sub) set of logicaloperators to support. This provides a good balance between implementation of new complex interfaces andthe gain from additional complexity. To produce code for wrappers of varying functionality, the mediatorincorporates the wrapper capabilities into query processing.The novel contributions of this paper are the following. First, we have de�ned a composable operatormodel as wrapper interface. This model is simple and general enough to capture a wide range of data sourcecapabilities.Second, this interface is the basis for two
exible languages to specify the functionality of wrappers. The �rstinterface language is used to describe the operators supported by a wrapper in �ne detail, yet at a high-level ofabstraction. This language eases the task of integrating a new wrapper. The second language is used to expressthe restrictions on operator composition imposed by a wrapper. The
exibility of our language permits alsoincremental wrapper implementation (going from simple operators to more complex ones).Third, we proposed two algorithms for combining wrapper functionality with mediator query processing.The �rst algorithm generates all possible logical plans executable by a wrapper. The second one generates oneplan that trades optimization time for query execution time using a heuristic. These algorithms work with anyquery processing algorithm that can accommodate logical operators.Finally, we have described the current implementation of the operator model and query processing algorithmin the Disco prototype. The prototype is implemented as Java classes and includes wrappers for an existingapplication of Electronic Marketplace, which we develop with Bull.Future work in this area will extend the wrapper interface language to increase the number of details inthe wrapper functionality description. For instance, we will add the capability of describing complex predicatesand object-oriented features (e.g., path expressions, etc.). Secondly, we will study the impact of our algorithmsto the performance of the query optimizer. Finally, we will apply our language to other logical operators (e.g.those of geographical information systems) in order to incorporate specialized sources into our system.RR n�3138

18 O. Kapitskaia, A. Tomasic, P. ValduriezAcknowledgmentsThe authors wish to thanks R�emy Amouroux, Francoise Fabret and Philippe Bonnet for comments on earlierdrafts of this paper.References[ACPS96] S. Adali, K. Candan, Y. Papakonstantinou, and V. S. Subrahmanian. Query caching and optimi-zation in distributed mediator systems. In ACM SIGMOD Int. Conf. on Management of Data,1996.[BAE97] Electronic marketplace. http://www.multimedia.bull.net/info/bmm/bae/, 1997.[BS97] A. Baird-Smith. Jigsaw HTTP server software and related activity.http://www.w3.org/pub/WWW/Jigsaw/Activity.html, 1997.[DS95] W. Du and M-C. Shan. Query processing in pegasus. In Object-Oriented Multidatabase Systems:A Solution for Advanced Applications. 1995.[FRV96] D. Florescu, L. Raschid, and P. Valduriez. Query modi�cation in multidatabase systems. Int.Journal of Intelligent and Cooperative Information Systems, special issue on Formal Methods inCooperative Information Systems: Heterogeneous Databases, 5(4), December 1996.[GMHI+94] H. Garcia-Molina, J Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, and J. Widom. TheTSIMMIS project - integration of heterogeneous information sources. In 100th Anniversary Mee-ting of Information Processing Society of Japan, 1994.[Gra93] G. Graefe. Query evaluation techniques for large databases. ACM Computing Surveys, 25(2):73{170, June 1993.[GST96] G. Gardarin, F. Sha, and Z.-H. Tang. Calibrating the query optimizer cost model of IRO-DB, anobject-oriented federated database system. In Int. Conf. on Very Large Data Bases, 1996.[KHWY97] D. Kossmann, L. M. Hass, E. L. Wimmers, and J. Yang. I can do that! using wrapper input forquery optimization in heterogeneous middleware systems. Submitted for publication, 1997.[KLSS95] T. Kirk, A. Levy, Y. Sagiv, and D. Srivastava. The Information Manifold. In AAAI SpringSymposium on Information Gathering in Distributed Heterogeneous Environments, 1995.[LMSS95] A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava. Answering queries using views. In Int. Conf.on Principles of Database Systems, 1995.[Loh88] G. M. Lohman. Grammar-like functional rules for representing query optimization alternatives.In ACM SIGMOD Int. Conf. on Management of Data, 1988.[LRO96] A. Levy, A. Rajaraman, and J. Ordille. Querying heterogeneous information sources using sourcedescriptions. In Int. Conf. on Very Large Data Bases, 1996.[LRU96] A. Levy, A. Rajaraman, and J. Ullman. Answering queries using limited external query processors.In Int. Conf. on Principles of Database Systems, 1996.[LSK95] A. Levy, D. Srivastava, and T. Kirk. Data model and query evaluation in global informationsystems. Journal of Intelligent Information Systems, 5(2), September 1995.[NGT97] H. Naacke, G. Gardarin, and A. Tomasic. Leveraging mediator cost models with heterogeneousdata sources, 1997. Submitted for publication.[PGGMU95] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and J. Ullman. A query translation schemefor rapid implementation of wrappers. In Int. Conf. on Deductive and Object-Oriented Databases,1995.[PGH96] Y. Papakonstantinou, A. Gupta, and L. Haas. Capabilities-based query rewriting in mediatorsystems. In IEEE Int. Conf. on Parallel and Distributed Information Systems, 1996. INRIA

Dealing with Discrepancies in Wrapper Functionality 19[Qia96] X. Qian. Query folding. In IEEE Int. Conf. on Data Engineering, 1996.[RAH+96] M. Roth, M. Arya, L. Haas, M. Carey, W. Cody, R. Fagin, P. Schwarz, J. Thomas, and E. Wim-mers. The Garlic project. In ACM SIGMOD Int. Conf. on Management of Data, 1996.[TAB+] A. Tomasic, R. Amouroux, P. Bonnet, O. Kapitskaia, H. Naacke, and L. Raschid. The distributedinformation search component (DISCO) and the World-Wide Web. In ACM SIGMOD Int. Conf.on Management of Data. Prototype Demonstration. To appear., 1997.[THMVB95] M. Templeton, H. Henley, E. Maros, and D. Van Buer. InterViso: Dealing with the complexity offederated database access. VLDB Journal, 4:287{317, 1995.[TRV96] A. Tomasic, L. Rachid, and P. Valduriez. Techniques for scaling access to distributed heterogeneousdatabases in DISCO. In Int. Conf. on Distributed Computing Systems, 1996.A Operator Description Language BNFFigure 8 gives the BNF of the operator description language described in Section 5functionalities ::= (operators)*operators ::= operator name [collections]collections ::= (collection name MIN f collection g)+j ALLcollection ::= (binding attribute name (predicates))+j ALLpredicates ::= (predicate name)*j ALLbinding ::= [bind] [combine]Figure 8: BNF of the operator description languageThe non-terminals of the grammar are given in this font. (e)* means that e can be repeated zero times ormore, (e)+ means that e can be repeated once or more. Square brackets [...] indicate that the ... is optional(here, both bind and combine are optional). Keywords are given in this font. The language has the followingkeywords: bind, combine, ALL. The keyword bind before the attribute name means that the given attributeshould be bound on input, i.e., it must appear in the attribute for this operator. The keyword combine beforethe attribute name means that the given attribute can be bound on input at the same time as some otherattribute. The keyword ALL can replace (i) the list of all collections on which operator can be executed, or(ii) the list of attribute names, or (iii) the list of the predicates supported. The tokens given in this font arethe terminals of the grammar. The language uses the following terminals: operator name, collection name,attribute name and predicate name. The values of these terminals are known to the system at the connecttime. MIN is an integer number indicating the minimal number of attributes that should be bound on input.B Algorithm maxTreeExtendedThis appendix extends the algorithm maxTree with the operator composition order veri�cation. The descriptionof this algorithm is given in Section 5.3.Note, that the result of the bottomUp function is an annotated logical operator tree, i.e., a tree where eachnode consists of a pair of logical operator and its mark. This annotated tree is given as input to the topDownfunction.LogicalOperator maxTreeExtended(Wrapper w, LogicalOperator tree, Set capabilities) f(newtree, mark) = bottomUp(tree, capabilities);result = topDown(w, (newtree, mark));// verify if each path in result has submitif(verify(result))return result;RR n�3138

20 O. Kapitskaia, A. Tomasic, P. Valduriezelsereturn NULL;g// check=false, copy=true(LogicalOperator, boolean) bottomUp(LogicalOperator tree, Set capabilities)fop = tree.topOperator();if (op.children == 0) // must be a scan and must be in capabilitiesreturn (tree, check);elseb = false;S = ;;foreach (i 2 op.children())(Seti, mark) = bottomUp(i, capabilities);S = S [(Seti, mark)b = b [mark;if (!b)if (op 2 capabilities)return (tree, check)elsereturn (tree, copy)elsereturn (new Operator(op, S), copy)g

INRIA

Dealing with Discrepancies in Wrapper Functionality 21LogicalOperator topDown (Wrapper w, (LogicalOperator tree, boolean mark)) fop = tree.topOperator();if (mark = check) fboolean goodOrder = w.parse(tree.toString());if (goodOrder)return new Submit(tree);gif (op.children() == 0) freturn tree;gelse fS = ;;foreach (i 2 op.children())S = S [topDown(w, (i, mark));return new Op(S, op);gg

RR n�3138

Unité de recherche INRIA Lorraine, Technopôle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY

Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhône-Alpes, 655, avenue de l’Europe, 38330 MONTBONNOT ST MARTIN

Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Éditeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)http://www.inria.fr

ISSN 0249-6399

