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Abstract: Distributed systems require declarative access to diverse data sources of information. One ap-proach to solving this heterogeneous distributed database problem is based on mediator architectures. In thesearchitectures, mediators accept queries from users, process them with respect to wrappers, and return answers.Wrapper provide access to underlying data sources. To e�ciently process queries, the mediator must optimizethe plan used for processing the query. In classical databases, cost-estimate based query optimization is ane�ective method for optimization. In a heterogeneous distributed databases, cost-estimate based query opti-mization is di�cult to achieve because the underlying data sources do not export cost information. This paperdescribes a new method that permits the wrapper programmer to export cost estimates (cost estimate formulasand statistics). For the wrapper programmer to describe all cost estimates may be impossible due to lack ofinformation or burdensome due to the amount of information. We ease this responsibility of the wrapper pro-grammer by leveraging the generic cost model of the mediator with speci�c cost estimates from the wrappers.This paper describes the mediator architecture, the language for specifying cost estimates, the algorithm forthe blending of cost estimates during query optimization, and experimental results based on a combination ofanalytical formulas and real measurements of an object database system.Key-words: Heterogeneous Distributed Database, Mediator, Wrapper, Optimization, Cost Model
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Mod�eles de coûts pour des sources de donn�ees h�et�erog�enesR�esum�e : Les syst�emes distribu�es acc�edent �a des sources d'informations diverses au moyen de requêtes d�ecla-ratives. Une solution pour r�esoudre les probl�emes li�es �a l'h�et�erog�en�eit�e des sources repose sur une architecture �abase de m�ediateurs. Dans cette architecture, le m�ediateur accepte en entr�ee une requête de l'utilisateur, la traite�a l'aide d'adaptateurs et renvoie la r�eponse. Les adaptateurs fournissent l'acc�es aux sources de donn�ees. Pourtraiter une requête de mani�ere e�cace, le m�ediateur doit optimiser le plan d�ecrivant le traitement de la requête.L'optimisation de requêtes bas�ees sur l'estimation du coût est bien adapt�ee aux bases de donn�ees classiques.Toutefois, pour les bases de donn�ees h�et�erog�enes, cette optimisation bas�ee sur le coût est di�cile �a mettre enplace car les sources de donn�ees n'exportent pas d'information de coût. Cet article d�ecrit une nouvelle m�ethodepermettant au d�eveloppeur d'adaptateur d'exporter des estimations de coût (formules de coût et statistiques).Le d�eveloppeur d'adaptateur ne peut cependant pas d�ecrire l'ensemble des estimations de coût par manqued'information ou si cette description est trop vaste. Nous all�egeons la charge du d�eveloppeur en compl�etantsa description avec le mod�ele de coût g�en�erique pr�ed�e�ni du m�ediateur. Cet article d�ecrit l'architecture dum�ediateur, le langage pour sp�eci�er les estimations de coût, l'algorithme pour m�elanger les informations decoûts pendant l'optimisation et des r�esultats exp�erimentaux bas�es sur une combinaison de formules analytiqueset de mesures e�ectu�ees sur un syst�eme de bases de donn�ees objet.Mots-cl�e : Base de Donn�ees H�et�erog�ene Distribu�ee, M�ediateur, Adaptateur, Optimisation, Mod�ele de coût



Leveraging Mediator Cost Models with Heterogeneous Data Sources 31 IntroductionDeclarative access to diverse data sources of information is recognized as a key issue in heterogeneous systems.The concept of a mediator [Wie93] has been proposed as a good basis for giving integrated views of multipleheterogeneous data sources. Declarative queries upon the views have to be processed e�ciently by the mediator.The work described in this paper is part of the Disco [TRV96] project at INRIA. Disco has a mediator basedarchitecture for accessing heterogeneous distributed databases. The architecture consists of data sources thatprovide raw data, wrappers that provide interfaces to data sources, mediators that provide declarative queryaccess to multiple wrappers, and clients that provide queries to mediators and accept answers returned frommediators. Several projects follow a similar architecture (TSIMMIS [GMHI+94], Garlic [C+95], DIOM [LP95],Information Manifold [KLSS95], HERMES [SAB+97], COIN [GMS94], IRO-DB [G+95]) or related architecturalframeworks (Infosleuth [R+96]).Declarative access in the form of queries on data sources gives a degree of freedom to the mediator todetermine the best plan for the execution of the query. From a declarative query, the mediator can generatemultiple access plans involving local operations at the data source level and global ones at the mediator level.The plans can di�er widely in execution time due to varying local processing costs, communication costs, andmediator processing costs. The method for choosing the best plan remains an open issue. In classical databasesystems, the query optimizer generally implements a search strategy using a cost model. Plans are generatedand compared using a cost estimate derived from database statistics and cost formulas to compute the cost ofeach operator of the plan. This approach cannot easily be applied to heterogeneous databases with multiple datasources because: (i) data sources do not report needed statistical information (e.g., HTML �les, object-orienteddatabases); (ii) cost formulas for processing an operator (e.g., selection, or join) vary radically depending onthe implementation of the wrapper and the underlying data source; (iii) communication costs are di�cult todetermine and may vary over time according to the network or system loads (e.g., on the Internet).Various solutions to the cost estimate problem have been proposed in the past [BGW+81, AHY83, YC84].Recently, the calibration approach was introduced in [DKS92] and extended to object systems in [GST96]. Acalibrating procedure is proposed that estimates the coe�cients of a generic cost model, which can be specializedfor a class of systems. This approach has been implemented in Pegasus [SAD+95] and in the IRO-DB project[GGT95]. The main problem for calibration appears when a data source does not follow the generic cost modelof these systems (which cannot be changed). We believe that this situation arises frequently in a heterogeneousenvironment. Another approach, proposed in the HERMES [ACPS96] project, records the cost information forevery query issued to a data source. Cost estimates for new queries are based on the history of queries issuedto a data source. Although very interesting for uniformly used sources, the approach is limited for data sourceswhich are queried with dissimilar predicates or which are rarely queried. We survey in more detail the existingproposals in Section 6.In this paper, we describe a new approach to the problem of evaluating the cost of a query plan in aheterogeneous DBMS with multiple data sources. The approach relies on combining a generic cost modelwith speci�c cost information exported by wrappers. The wrapper implementor speci�es any part of the costinformation of the data source, from nothing to everything. By default, the mediator implements its own genericcost model, and when possible, corrects it with the information imported from the wrappers. Thus, the genericcost model is used by the mediator for unknown data source operations, while the wrapper cost models provide,through a standard interface, more accurate cost formulas. The proposed heterogeneous and extensible costmodel is currently being implemented in Disco [TRV96]. In the validation section of this paper, we provideevidence of the bene�ts of this new approach.To support the extensible cost model, we provide a tool for the wrapper implementor to export statistics,size and cost computation rules. The statistics re
ect properties of the underlying data source such as thecardinality of a collection. The size rules re
ect the change in result sizes due to an operation, such as thereduction in cardinality due to a select operation. The cost rules compute cost estimates, such as the estimatedresponse time for a scan operation. Speci�c cost information are imported from a wrapper to the mediatorwhen a data source is registered. Then, during query processing, some standard cost computation functions ofthe mediator are overridden by the imported cost functions for the given data source.For statistics, the wrapper may export a triplet for each collection giving the number of objects, the totalsize of the collection in term of disk space, the average size of objects, and a triplet for each attribute giving theminimum, maximum, and the number of distinct values. In addition, the presence of indices may be exported.For cost rules, several formulas for each wrapper operation may be exported. One formula computes responsetime for the �rst tuple, a second computes response time for the next tuple, and the third computes total workRR n�3143
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Figure 1: The registration phase of system interaction.in terms of milliseconds. Size rules are integrated within the cost rules, and may include for each operationformulas to compute the new cardinality and the new total size.For a simple, predictable data source the wrapper implementor can easily provide accurate cost estimates.(The only di�culty is estimating network performance, a problem which we do not consider in this paper). Butfor more complicated sources, the burden on the wrapper implementor becomes too large, since the amountof cost information required increases dramatically. In that case, partial information, such as typical cost offrequent operations or even cost of test queries can be exported, thus permitting graceful improvement of themediator generic cost model.In summary, we provide an elegant framework for integrating heterogeneous cost models within a genericmodel. Furthermore, the framework is extensible in the sense that some wrappers may only provide partialinformation about underlying costs, while others may provide speci�c information for given queries. The twoextreme indeed encompass calibration (i.e., no speci�c rules for a data source) and historical query caching(i.e., speci�c information for past queries). Our algorithm to blend rules and statistics from wrappers with thedefault cost model of the mediators bene�ts from object-orientation to gracefully extend the generic cost modelthrough overriding statistics and cost computation methods.The paper is organized as follows. In Section 2, we present an overview of the architecture of the project,focusing on the mediator and wrapper capabilities. We particularly detail the query optimization process andshow the importance of the cost model. Section 3 describes how a wrapper provides the necessary statistics, sizeand cost computation rules. We provide a language for expressing this information. Section 4 gives a detailedoverview of the cost computation module in the mediator. The mediator dynamically loads cost information fromthe wrapper. The cost computation module uses object-orientation concepts such as overriding to blend wrapperinformation. Section 5 validates the approach through an experimental study using the 007 benchmark on topof ObjectStore. It demonstrates the bene�ts of our proposal compared to the classical calibrating approach.Section 6 compares our approach with related work. The conclusion in Section 7 summarizes the paper andsketches future topics of research.2 Architecture and Generic Cost ModelSeveral projects follow the same general mediator architectural framework as mentioned in the introduction.In this section we describe the architecture of Disco [TRV96] by describing an overview of the phases andsteps required to process a query. We also introduce the generic cost model of the mediator. To simplify thepresentation we have suppressed some details.2.1 Registration PhaseInteraction between the wrapper and mediator occurs in two phases, the registration phase and the queryprocessing phase. During the registration phase, mediators contact wrappers and upload all the informationrequired to use the wrapper, including cost information. Figure 1 shows a diagram of the steps of interactionbetween the mediator (M) and wrappers (W) during the registration phase. In this phase, the mediator (inresponse to instructions from the mediator administrator) calls the wrapper (Step 1a and 1b). The wrapperreturns a collection of information needed for query processing (Step 2a and 2b). The collection contains theschema of the wrapper (re
ecting the schemas of the underlying data sources, not shown here), capabilities of thewrapper (the set of operations the wrapper can execute), and cost information. Schema and cost information areINRIA
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Figure 2: The query phase of system interaction.stored in the mediator catalog. (The nature of the schema and capabilities information and its integration intoquery processing is considered elsewhere [KTV97]. In this paper we will assume that all wrappers can execute alloperations.) We envision an administrative interface for both the mediator and wrapper to re-register wrappers.This interface is necessary when the cost formulas are improved by the wrapper implementor, or the statisticsbecome out of date.2.2 Query Processing PhaseIn the second phase, queries are processed. The second phase typically happens multiple times for everyregistration phase. Figure 2 shows a diagram of the steps involved. In Step 3 the client issues a query tothe mediator and waits for an answer. The mediator accepts the query and decomposes it into subqueries,one for each wrapper, and a composition subquery. In Steps 4a and 4b, the mediator issues the subqueries tothe wrappers and waits for a response. The wrappers process the subqueries by consulting the associated datasources (not shown) and generate subanswers that are returned to the mediator in Steps 5a and 5b. The mediatorcombines the subanswers by using the composition subquery and generates the �nal answer that is returned tothe client in Step 6. Note that in Disco, the query in Step 3 is declarative, written in simple object/relationalSQL language. The subqueries of Step 4 are algebraic and extend the relational logical operators.To accomplish the translation from Step 3 to Step 4, the mediator does several things. It parses the clientquery, it transforms the query, written with respect to a global view, into a query over local schemas, andit optimizes the query to produce the best query execution plan. The mediator then executes the best plan,resulting in Step 4 and the subsequent steps. During optimization, the mediator estimates the cost of variousoperations and of entire plans. The mediator chooses the most speci�c information available as the result ofregistering wrappers. As discussed in the introduction, the best plan depends on good cost estimates for thesubqueries sent to the wrapper. The mechanism described in this paper results in good cost estimates.The mediator constructs several plans for the optimization of a query. A plan consists of a tree of algebraicoperators. Although there exist many di�erent data source managers, the basic algebraic operators are alwaysthe same; typically they include all operators of a classical object algebra [ABD+92, AK93]. Thus, the mediatoralgebra covers the following common operators:� unary operators including scan, select, project, sort;� binary operators including join, union;� aggregate operators for elimination of duplicates or computing aggregate functions (e.g., sum and average),plus� an operator submit that is used to model the issuing of a subplan to a wrapper.2.3 Mediator generic cost modelThe role of the mediator optimizer is to select the most e�cient plan among the alternatives based on the costestimations. When no speci�c information are given by wrappers, the mediator estimates the cost of plans usinga cost model. There are several major components of the cost : CPU cost, IO cost, and Communication cost.However, for simplicity, the generic cost model does not separate CPU and IO costs, which are buried in globalcost formulas parameters.The cost model depends on time parameters and statistical parameters. We assume in this paper a uniformcommunication cost; discrepancy of communication costs is a subject of future research. Time parametersRR n�3143



6 H. Naacke, G. Gardarin, A. Tomasiccome in three forms: the overhead required to start processing TimeFirst, the time required to deliver eachtuple TimeNext, and the time to get all tuples TotalTime. TimeFirst accounts for query start up time and,in particular, sort operations. TimeNext gives the average time cost of each tuple. The time is measured inmilliseconds.For unary operators, the generic cost model of the mediator considers two cases: sequential scan, and indexscan. The cost formulas are established using a calibrating approach [GST96]. These formulas requires theselectivity of a selection that can be derived from the minimum, maximum, and number of distinct values ofthe restricted attributes. Furthermore, to be able to select the relevant formula, the data source must exportthe presence of indexes on attributes. In the generic cost model, clustering is not considered.For binary operations, the generic cost model of the mediator considers three cases : index join, nes-ted loops and sort merge join. The formulas are those of [GST96]. When an index is existing, the indexjoin formula is selected, otherwise the best of the two others is chosen. Applying these formulas does notrequire more information that those de�ne above for selections, as the join cardinality can be estimated as1=Min(CountDistinct(A); CountDistinct(B)). Thus, no further statistics are required for the generic costmodel. The same is true for aggregate computation.2.4 ImplementationThe implementation of Disco uses Java as the common language for mediator processing and wrapper proces-sing. The cost formulas exported by wrappers are implemented as code generated from a compiler of the costformula language. The resulting code is shipped to the mediator during the registration phase.Encapsulating cost functions via code-shipping yields fast evaluation time for the functions during queryoptimization. Fast evaluation times are a requirement due to the computational intensity of query optimization.In addition, since cost formulas are shipped during the registration phase, the loading of cost formulas does notdelay query processing. Finally, since the shipped code executes in the process space of the mediator, the entirelibrary of code in the mediator (including the standard Java library) is available to the wrapper implementorwhen the cost formulas are de�ned.3 Cost Communication LanguageLocal wrappers export data and operations described by the source administrator using a common objectmodel. To base the system on solid foundations, we selected a subset of CORBA Interface De�nition Language(IDL) [OMG95] to specify data source interfaces. To export statistics of collections, including cardinality,selectivity, object size, etc., we extend the interface body with a cardinality section. To overcome the limitationsof using generic cost formulas in the mediator query optimizer, we also add a cost formula section which providesspeci�c formula to the mediator. The cost formula section aims to better calculate the cost of an algebraicoperation, i.e., a node in the query tree. In this section we describe the interface between the wrapper and themediator. The IDL interface is extended in order to export statistics and cost information.3.1 Exporting InterfacesTo de�ne the objects exported by each data source, we use a subset of IDL. It allows data source providers toeasily map the interface and structure of the objects they provide, in a de�nition language close to existing stan-dards [Cat95, OMG95]. For data sources conforming to these standards, the mapping is quite straightforward.Interface de�nitions include typed attributes, operations, and exceptions.Interface declaration may also include constant and type declarations. Support of inheritance and aggre-gation of interfaces is planed. Elementary types are built in and complex types can be constructed using thetuple and sequence constructors. Like in IDL, relationships are not supported, but we believe that it is notfundamental as local join operations can hide them. Figure 3 gives an example of a simple interface description.We de�ne the employee interface with typical attributes and operations.3.2 Exporting StatisticsThe local data sources also export statistics together with interfaces. Statistics are used as parameters in themediator cost model formulas. Exported statistics are simple, they describe data sources collections in the sameway as in former calibrating approaches [DKS92, GST96]. The wrapper implementor expresses the statisticalINRIA



Leveraging Mediator Cost Models with Heterogeneous Data Sources 7interface Employee {attribute Long salary;attribute String Name;short age();} Figure 3: An example interface.properties of a collection through two special methods attached to each interface description. To distinguishtheses two methods from other possible ones, we add the keyword cardinality in front of the signatures ofthe both methods. The �rst method, named extent returns the number CountObject of objects in the extent,the size TotalSize of the extent in bytes, and the average size ObjectSize of an object in bytes. The secondmethod, named attribute describes, for a given attribute AttributeName, a boolean Indexed indicating theexistence of an index, the number CountDistinct of distinct values for the attribute in the extent, and theminimum Min and maximum Max values for the attribute. Since the minimum and maximum values maybe of various types, we encode this object in a special polymorphic Constant object. Figure 4 shows the twocardinality methods added into the interface de�nition of employee.interface Employee {...cardinalityextent(out long CountObject, out long TotalSize, out long ObjectSize);cardinalityattribute(in String AttributeName, out Boolean Indexed,out Long CountDistinct, out Constant Min, out Constant Max);} Figure 4: An example interface extended with statistics.More precisely, we extend the interface body BNF syntax (see [OMG95]) to include the cardinalitymethods, as shown in Figure 5.The mediator calls the two methods extent and attribute during the interface registration, and stores theinterface statistics in its catalog.This cardinality section is purely descriptive and it provides enough information to map this IDL interfaceinto a programming language. We show in Figure 6 the cardinality implementation for the employee interfacein Java. These functions are very simple in the example.3.3 Exporting formulasAs explained in the previous section, we assume that each data source wrapper is able to provide a basic objectalgebra. This is in general not true, but relaxing this assumption is out of the scope of this paper.<interface body> ::= <export>�<export> ::= <type dcl>;j <const dcl>; j <except dcl>; j <attr dcl>; j <op dcl>;j <card dcl>;<card dcl> ::= cardinality <extent sign>; j cardinality <attribute sign>;<extent sign> ::= extent(out long CountObject, out long TotalSize, out long ObjectSize)<attribute sign> ::= attribute(in String AttributeName, out Boolean Indexed,out Long CountDistinct, out Constant Min, out Constant Max)Figure 5: BNF for cardinality descriptionsRR n�3143



8 H. Naacke, G. Gardarin, A. Tomasicvoid extent (LongHolder CountObject, LongHolder TotalSize, LongHolder ObjectSize) fCountObject.value = 10000;TotalSize.value = 15;ObjectSize.value = 120;gvoid attribute(String AttributeName, BooleanHolder Indexed,LongHolder CountDistinct, ConstantHolder Min, ConstantHolder Max) fif (AttributeName.equals ("salary")) fIndexed.value = true; CountDistinct.value = 10000;Min.value = 1000; Max.value = 30000;gelse if (AttributeName.equals ("Name")) fIndexed.value = true; CountDistinct.value = 10000;Min.value = "Adiba"; Max.value = "Valduriez";gg Figure 6: The Employee cardinality method de�nitions.Cardinality of collection C C.CountObjectSize of collection C in bytes C.TotalSizeAverage object size in C C.ObjectSizePresence of an index for an attribute A C:A.IndexedCount of distinct values for an attribute A C:A.CountDistinctMinimum value of an attribute A C:A.MinMaximum value of an attribute A C:A.MaxFigure 7: Name scheme for statistics in a formula.However, even if implementing standard operators, a local data source may implement it in a very speci�cway, e.g., using a bit map index, a pointer chasing operator, or an e�cient clustering algorithm. Thus, thegeneric cost model of the mediator optimizer will not be valid for this data source. To overcome this di�culty,we extend the interface de�nition with an optional new section to give cost formulas that will override thegeneric cost model of the mediator.A cost formula is either collection oriented or operator oriented. If the cost formula is included inside theinterface de�nition of a particular collection, it describes cost functions for operators on that particular collection.If the cost formula is apart from any interface de�nition, it describes cost functions that are not specially relatedto a particular collection but rather to an operator, i.e., the cost formula is valid for all collections of the sourcethat have no collection speci�c cost formula. We will focus on the second kind of cost formulas; the �rst kindcan be expressed using the same interface by naming explicitly the collection.3.3.1 Cost Formula SyntaxCost formulas have the standard mathematical syntax (c.f., the BNF grammar in Figure 9). Wrapper writersmay use all the statistics, from the collection interfaces, by simply naming them. The naming convention isbased on path expressions, such as Collection.Attribute.Statistic, where Collection is a collection name, Attributeis an attribute of the collection, and Statistic is a term referring to a statistic. Attribute and Collection may beomitted in non-ambiguous cases. Figure 7 lists the variable names for statistics that can be used in a formula.In addition, wrapper implementors may de�ne their own local variables or functions to parameterize theirformulas. For example, they may de�ne the variable PageSize = 4000. They may also invoke functions from thestandard Java library. For example, a cost formulas could depend on the current date D accessible by the Javacall: D = System:currentT imeMillis().To better introduce the cost formula syntax, we give an example of a formula for a linear scan on thecollection Employee :TotalTime = 120 + Employee.TotalSize � 12 + Employee.CountObjectEmployee.CountDistinct INRIA



Leveraging Mediator Cost Models with Heterogeneous Data Sources 9scan(employee) (TotalTime = 120 + Employee.TotalSize � 12 + Employee.CountObjectEmployee.CountDistinctselect(C, A = V ) (CountObject = C.CountObject � selectivity(A,V )TotalSize = CountObject � C.ObjectSizeTotalTime = C.TotalTime + C.TotalSize � 25Figure 8: Two example rules for computing both time and statistic formulas.3.3.2 Operator-Formula AttachmentIn addition to writing formulas, the wrapper implementors indicate the operator on which a formula apply. Weuse a rule-based approach to bind each formula with its associated operator. We describe in the next sectionhow the mediator matches such rules.Each rule describes the cost for one operator. A rule is divided into a head and a body: (i) The rule headrepresents the operator and its arguments ; an argument may be bound to a collection or a predicate, or may bea free variable. (ii) The rule body is the formula itself ; the body may contain more than one formula dependingon how many costs are provided by the wrapper implementor.In Figure 8, we show some example rules for a scan operation on the collection employee and a selectoperation. In the �gure, employee refers to the employee collection, A is a free variable that will be bound toa particular attribute name, V is a free variable that will be bound to a particular value, and selectivity(A,V ) refers to an ad-hoc function de�ned by the wrapper implementor, that could handle, for example, histogramstatistics [IP95, PIHS96]. Variables without a collection name refer to the result of the formula.Given the plan select(scan(employee), salary = 10), both of the rules match a part of the plan. The�rst rule matches scan(employee), invoking the computation of TotalTime in the �rst rule. The second rulematches select(c, salary = 10), where c represents the result of the scan and matches C, and A matchessalary and V matches 10, invoking the three computations of the formulas. The last computation uses theprevious TotalTime result to compute a new TotalTime result. Note that for both rules, several formula aremissing. Default formulas (i.e., that of the generic cost model) are used in this case.The rule approach provides a very large advantage to the wrapper implementor. The presence of freevariables in the rule head makes very easy to adjust the cost precision by writing several rules, each rule moreand more speci�c. However, the drawback to this expressiveness is the proliferation of query-speci�c cost rulesthat tends to slow down the cost estimate process. In other words the cost rules overriding mechanism shouldnot induce signi�cant workload on the mediator site. That is why we do not use the standard overridingmechanism of Java, but implement our own e�cient one based on kind of virtual tables.As we mentioned above, both statistical formulas and cost formulas are used to estimate the cost of a plan(tree). The cost of the execution of the plan is determined with a two step bottom-up algorithm described inthe next section. In the �rst step, each operator submitted to a remote data source is matched against the rulehead patterns. If the operator name match the rule head, the binding mechanism uni�es each variable in thepattern with a corresponding value from the operator being estimated. Therefore, two rules may have di�erentmatching levels: (i) uni�cation on the collection name; (ii) uni�cation on the attribute name; (iii) uni�cation onthe predicate operation and the predicate arguments. In this case, we select the most speci�c rule, with morebound parameters. In case of multiple rules matching at the same level, we select the �rst one in the ordergiven by the wrapper implementor.4 Cost Evaluation AlgorithmIn this section we describe the cost evaluation algorithm. The algorithm executes in the mediator as part of queryprocessing. Before query processing begins, wrappers are registered with the mediator. During registration,wrapper rules are integrated into the mediator cost model. During query processing, the integrated rules areused to estimate the cost of query execution plans.RR n�3143



10 H. Naacke, G. Gardarin, A. Tomasic< cost rule > ::= < operator > ( < formula >�< operator > ::= scan( < collection > )j select( < collection >, < sel pred > )j project( < collection >, < proj pred > )j join( < collection >, < collection >, < join pred > )< collection > ::= <name> j <variable>< sel pred > ::= < attribute > = < value >< proj pred > ::= < attribute > , < attribute >�< join pred > ::= < attribute > = < attribute >< attribute > ::= <name>< value > ::= <number> j <string>< formula > ::=< result > = < math expr > ;< math expr > ::= parameterj <number>j < math expr > < op > < math expr >j < function > ( < math expr > ,< math expr >�)< op > ::= + j - j * j /< function > ::= <name>< result > ::= TotalTime j TimeFirst j TimeNextj CountObject j TotalSizeFigure 9: Grammar for cost rules description4.1 Cost Formula IntegrationIntegration consists of compiling the rules written by the wrapper implementor and transmitting the results ofcompilation to the mediator. Usually, these two steps are decoupled as a convenience to the wrapper imple-mentor. Additional variables and functions, that come with the wrapper cost formula, are also stored in themediator.In compiling a rule, the head of each rule is converted into an internal structure that represents the operatorpattern, e.g., select(C, A=V). The rule head internal structure is similar to that of an operator in the querytree. The rule body is converted into object code. This compilation speeds up both the subsequent matchingbetween query tree operators and rule heads and the evaluation for cost formula. The rules are grouped into threescopes based on their applicability domain: wrapper-scope, collection-scope and predicate-scope (see Figure10).Wrapper-scope rules apply to any collection and any predicate of the source. Collection-scope rules apply to aspeci�c collection with any predicate. Predicate-scope rules have the most restricted domain; they apply only toa speci�c collection with a speci�c predicate. This grouping of rules into scopes forms a specialization hierarchy.Furthermore, the mediator has two additional scopes, the default-scope and the local-scope. The local-scopeis similar to a wrapper-scope but applies to operators local to the mediator1. The default-scope encapsulates allother scopes and contains a rule for all variables and operators. If a more speci�c rule is not found, the default-scope rule is used. As an elegant consequence, we are able to use the specialization and matching mechanismacross all operations and scopes.4.2 Cost EstimationOnce the rule integration is done, the query processor in the mediator can generate cost estimates for a plan.A plan consists of a tree of operator nodes. To estimate the cost of a plan, a traversal of the plan is done. Thisrecursive tree traversal has two phases: a top-down traversal from the root to the leaves and then a bottom-uptraversal from the leaves to the root. During the �rst phase cost formulas are associated with nodes. Duringthe second phase the cost of each operator is computed. Since the �rst phase is top down, each node has costformulas associated with it before the costs are computed. Since the second phase is bottom-up, the cost of thechildren of an operator are computed before the cost of an operator are computed. This algorithm is shown inFigure 11. We describe in detail the 3 steps of the algorithm.1The rules for the local-scope are di�erent than other scopes because the mediator processes local operators using a physicalalgebra instead of a logical algebra. INRIA
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select(manager, Predicate)

Default-scope rules

select(employee, salary = value) select(employee, name = Value)

Query specific rulesFigure 10: The hierarchic cost formula tree.cost(node) f1: associate cost formulas with nodeforeach child in node.children f2: cost(child)g3: apply formulas to nodeg Figure 11: Cost Estimation AlgorithmStep 1. Associate cost formulas with node.This step selects, for each statistic and cost, the most speci�c rule among all the possible rules that apply forthe node. Selecting a rule consists of matching the node against the heads of cost rules. Since cost rules areclassi�ed, node is matched over the scope hierarchy, until the most specialized rule is found.The matching order is: (1) predicate-scope (names and attributes), (2) operator-scope, (3) collection-scope,(4) wrapper-scope, (5) default-scope. Thus, if no formula have been imported from wrapper, a default-scoperule is selected.For example, the following operators are ordered by matching order:select(R, P) > select(Employee, P) > select(Employee, salary = A)select(Employee, salary = A) > select(Employee, salary = 77)join(R1, R2, P) > join(Employee, Book, P) > join(Employee, Book, x1.id = x2.id)All rules at the same matching level that match a node are associated with the node. In addition, severalformula may compute di�erent values for the same variable for a node. During the second phase, con
ictsbetween multiple formulas for the same value are resolved by evaluating all formula and choosing the lowestvalue (see Step 3).Furthermore, for each selected formula, the list of statistics involved in the formula computation is �lled andpropagated to children. Then, each child receives the list of statistics they have to compute. For each statistic,a formula has to be found in the scope hierarchy. The list mechanism guarantees the liveness of step 3.RR n�3143



12 H. Naacke, G. Gardarin, A. TomasicSince every variable is considered, if the matching rule only provides some of the required formula (e.g.,the join rule computes only TotalTime), the scope hierarchy is scanned until the �rst less-speci�c rule is found(e.g., CountObject and TotalSize are processed by a default-scope formula). The mediator default cost modelguarantees that a least one formula is found for every variable for every node.At the moment, we do not cope with ambiguous matching within a scope. We are currently investigating thesigni�cance of a sorting criteria to classify such cases. For instance, for an operator join(Employee, Manager,predicate), both patterns join(Employee, R2, P) and join(R1, Book, P) match.Phase 1 of the algorithm can be optimized during this step in the following two ways: (i) at each node therequired variables are analyzed, depending of the form of each formula. The set of required variables are passedto each child in Step 2. Only formula that compute required variables are associated with a node (and thus,subsequently selected for invocation). (ii) If no variables required from a child node, the recursive call to thechild is cut. The savings from this optimization depend on the form of the formulas. In the best case, the rootnode has formulas containing only constants and consequently no recursive traversal of the tree is performed.Step 2: Recursive traversal via depth �rst fetch.Each child node is recursively called to assign cost formula and compute costs associated with the node. If theabove optimization is used, no call is issued to a child if no values are required from the child node.Step 3: Apply formulas to node.The associated formulas are invoked and the corresponding variable is assigned a value. This value will beaccessed by a parent node during the invocation of its formula. In the case where many formula have beenselected to compute the same variable, all formulas are invoked and the lowest value is assigned to the variable.4.3 Extension to Dynamic Cost FormulasWe present in this section possible extensions to the algorithm. We will implement these extensions in a moregeneral framework. The �rst extension deals with cost formula adjustment based on historical cost. The secondextension uses the best current estimation to avoid useless computation, when a previously computed plan ischeaper than the plan being estimated.4.3.1 Historical CostsA simple way to have very accurate cost is to extend the scope hierarchy with a query scope. In the query scope,speci�c rules match a wrapper subquery exactly. A new formula is added after a subquery has been executedand the associated formula are now real costs, not estimates. This solution is close to the HERMES [ACPS96]approach based on historical costs. As in this system, we assume that a formula based on real costs is anaccurate estimate for the next identical subquery. That is, two executions of the same subquery have the samecost regardless of di�erences in time. However this solution is restricted, in that new formulas are restricted toone speci�c subquery and cannot be reused for another, closely related subqueries. (For instance, subqueriesthat vary only by the constant used a predicate.) We plan to investigate how to modify existing formulasdepending on the history of query execution costs instead of storing new formulas. One solution takes existingformulas and adjusts the input parameters until the formula returns a cost close to real execution the cost.Thus, we store only the adjusted parameters instead of new formulas. We expect that all formula using thesame input parameters can be simultaneously adjusted.This technique solves a second problem of the HERMES approach, the proliferation of statistical information,in a di�erent way than in HERMES. Instead of constructing summaries of statistical information, we encodethe history of the execution in the adjustments to the input parameters.4.3.2 Avoiding Useless ComputationRecall that optimizer generates several plans. The estimation algorithm provides plan costs in order to makethe optimizer to choose the cheapest one. Thus, once a plan has been estimated, any more expensive plan willbe rejected. We would like to stop the estimation of a plan in the middle of the process, as soon as the currentlycomputed (sub) cost is greater than the cost of the current best plan. To do this we add a test to Step 3 of thealgorithm in Figure 11. The test compares the current local subcost with the cost of the best current plan: ifthe local subcost is greater than the best current cost, the plan is immediately rejected. We plan to investigatethe impact of this heuristic on optimizer performance. INRIA



Leveraging Mediator Cost Models with Heterogeneous Data Sources 135 ResultsWe have implemented a version of the algorithm of Section 4 using a logic programming language. Thisimplementation allowed us understand in detail the specialization hierarchy and its implications in determiningwhich formula are used for a given operator. We are currently implementing this algorithm in Disco. Inaddition, we studied the impact of improving cost estimates.To study this impact, we used data from an experimental study of calibrating the costs of access to anObjectStore database. The queries used in the validation come from the 007 benchmark [CDN93]. The datafor the experimental study comes from [GST96].The goal of [GST96] focused on tuning the cost model of an optimizer by a calibrating approach. First,several invariant coe�cients appearing in cost formulas are isolated. Then, a set of queries on a calibratingdatabase on each local site are run to deduce cost formula coe�cients. Once the coe�cients are set, the OO7benchmark was run to validate that real execution time are closely estimated by the calibrated formulas.Let us focus on the index scan experiment of this work. A collection of small objects (called AtomicParts inthe OO7 benchmark) is scanned by an index scan. The size of one AtomicPart object is 56 bytes, the collectioncardinality is 70000 and its size is 1000 pages. The page �ll factor is 96% of 4096 bytes. Figure 12 gives theresponse time to scan the AtomicParts collection using an index on the attribute Id. The distribution of theId value is uniform. On the horizontal axis, the varying parameter is the operator selectivity in the range of [0,0.7].The calibrated formula, associated with the index scan operator, has a linear response time estimate. Theformula assumes that the number of pages fetched is proportional to the selectivity of the operator. However,the �gure shows that real response time is not linear. Thus, we could have a more accurate estimate based onYao formula [Yao77] that gives the percentage of pages fetched when processing an index scan on a collection:Y ao(sel) = 1� exp(�1 � (sel � CountObject=CountPage)); where CountObject is the total number of objectsof the collection, and CountPage is the total number of pages of the collection.Thus a better cost estimate formula for the index scan operator is:cost = IO � CountPage � (1� exp(�1 � (sel � CountObjectCountPage ))) + (sel � CountObject �Output)where the cost to read one page is IO = 0:025 s, the time to process one object is OutPut = 0:009 s,CountObject = 70000, and CountPage = 1000. Figure 12 shows that the new estimated curve better �ts theexperimental curve.Using our framework, this new formula can be expressed by wrapper implementors and easily importedinside the mediator. The wrapper implementor simply provides the rule shown in Figure 13.6 Related WorkFrom the early work on distributed query processing [BGW+81, AHY83, DSH+82], it is assumed that thefollowing parameters are available in the system catalog [Cha82, YC84]. For each collection C, the numberof objects jCj and average the size of objects s has to be known ; for counting the number of I/O, it isbetter to be able to derive in some way the number of pages jjCjj. For each attribute, the number of possiblevalues is su�cient to derive the selectivity on equal restrictions. To infer the selectivity of greater than or lessthan restrictions, the system must know the maximum or minimum values of the constrained attribute. Suchparameters are handled by commercial systems, and we keep the same approach. We just de�ned the standardmethods to get these parameters from either the mediator or the wrappers. In case they are not provided,standard values are given, as usual.To query heterogeneous sources, most modern multidatabase systems assume a way to estimate the cost ofa plan using a formula as follows:TotalCost = local processing cost + communication cost + cost of sub-queries.The Garlic authors [C+95] mentions that local processing costs of wrappers and their data sources mustbe estimated by cost models de�ned by each wrappers individually because there is no universal, generic costmodel that is valid for all wrappers and all data sources. We fully agree with this claim, and implement asophisticated way to blend the various cost models in Disco. Further, Garlic assumes a calibrating approachfor di�erent classes of cost models, which is di�cult to implement with numerous and evolving data sources.The calibrating approach was �rst introduced in [DKS92]. A logical cost model with cost coe�cients wasimplemented for relational systems in Pegasus [DS95]. The coe�cients represent on average how much CPURR n�3143
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Validation on OO7: Index Scan
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Figure 12: Improvement of ObjectStore calibration.select(Collection, Id = value) (compute the page count to be used in yao formula:CountPage = Collection.TotalSize/PageSize;compute the oosts:CountObject = Collection:CountObject � (value� (Collection:Id:Min)=((Collection:Id:Max� (Collection:Id:Min)TotalSize = CountObject � Collection:ObjectSizeTotalTime = IO � (Collection:TotalSize=CountPage � (1� exp(�1 � (CountObject=CountPage)))+(CountObject �Output)Figure 13: Cost formula for select operator using Yaotime, I/O time, and other overhead is involved in query and result processing. A calibrating procedure isproposed to estimate the coe�cients on relational DBMSs, including AllBase, DB2, Informix, and Oracle. In[GST96], an extension of this approach to object systems with experiments on O2 and ObjectStore is reported.This approach has been implemented in the IRO-DB project and has demonstrated its limitations. The mainproblem is that many data source does not follow the logical cost model formulas, which are not precise enoughand derived from more or less extended relational systems behavior. Data sources as �les or object databasesas O2 or Object Store behave di�erently from that predicted by the logical cost model. When the number andvariety of data sources increase, it becomes di�cult to integrate new classes of systems in the mediator. Webelieve that providing a tool to describe statistics and formulas at the wrapper level, and a consistent way toleverage the mediator cost model with these information is a nice generalization of the calibrating approach.Another approach is proposed in the HERMES project [ACPS96]. The idea is to record statistics of actualcalls to the sources and consequently estimate the cost of the execution plans based on the recorded statistics.More precisely, at the mediator node, a cost vector database is maintained to record information about datasource calls as they get executed by the mediator. For each call, the cost vector registers the time to computethe �rst answer, the time to compute all the answer, the cardinality of the answer, and the type of predicatesto which these values correspond to. Summary tables are also generated o�-line to avoid heavy burden onINRIA



Leveraging Mediator Cost Models with Heterogeneous Data Sources 15storage. To estimate the cost of a new subquery, the subquery is matched against the cost vector databaseand a kind of regression is applied. The approach is demonstrated as e�cient for sources queried with similarsubqueries. We believe this approach very attractive for mediator capable of handling local databases to recordcost vectors, but not always possible in case for example of PC-based mediators. Also, if queries di�er a lotin quali�cations, it is di�cult to infer statistics from previous queries. We believe that the so-called cachingstatistics approach is good to complement a more generic cost model and graciously adapt it to the real sourcebehavior. As mentioned above, speci�c queries can be recorded at the bottom of our heterogeneous cost modelspecialization hierarchy, which makes possible to integrate the caching approach for certain data sources.7 ConclusionThe Disco project is developing a research prototype of components for searching and integrating informationover distributed heterogeneous data sources. The target applications of this project are those of Internet andIntranet which typically require integration of a large number of divers data sources. Since each data sourcegenerally performs operations in a unique way, the cost for performing an operation may vary a lot from onewrapper to another. Disco is addressing this heterogeneous cost model problem through an extensible costmodel integrated within the mediator component.More precisely, we have proposed in this paper a framework for leveraging a generic cost model with moreaccurate statistics and formulas sent by wrappers at registration time. The framework is general enough tocapture and integrate both general cost knowledge declared as rules given by wrapper writers and speci�cinformation derived from recorded past queries previously executed. Thus, through an inheritance hierarchyof wrapper descriptions with overriding of cost formulas, which integrates the heterogeneous cost models, themediator cost computation component can support a wide variety of data sources. We also propose an interfacelanguage to export statistics and cost computation rules from a wrapper to the mediator. This language will besemi-compiled in bytecode to be sent e�ciently from the wrapper to the mediator at source registration time.It can be seen as useful complements to standard interface description language (e.g., ODMG ODL or CORBAIDL) for giving input to remote query components. In all, the proposed framework is the �rst to o�er a generalsolution to the heterogeneous cost model problem. This approach is currently being implemented in the Discoproject.In addition, in this paper, �rst experiments on top of the ObjectStore database system using the 007benchmark show a good improvement in performance estimate in comparison to a more classical calibratingapproach. We particularly investigate the case of clustering, which can not be easily captured by a calibratingmodel. Further experiments are currently on their way, particularly on bibliographic and multimedia �les, tofully demonstrate the capability of the proposed framework in the case of various sources. In environmentswith data sources of di�erent functionalities, where each source behave as a speci�c abstract data type (ADT)on the local collection of objects, the problem of cost evaluation is crucial, for example to avoid processing alarge number of images by �rst selecting a few images from other data source. (See [BRS96, SLR97] for relatedwork in the area of ADTs.) This area is probably where the proposed heterogeneous cost model frameworkwill demonstrate its full power: exporting cost of ADT operations will provide valuable improvement in queryoptimization. This is a subject of research we intend to address in the near future.AcknowledgmentsThe authors wish to thank Philippe Bonnet and R�emy Amouroux for useful comments on previous drafts ofthis paper.References[ABD+92] Malcolm P. Atkinson, Fran�cois Bancilhon, David J. DeWitt, Klaus R. Dittrich, David Maier, andStanley B. Zdonik. The Object-Oriented Database System Manifesto. In Building an Object-Oriented Database System, The Story of O2. Morgan Kaufmann, 1992.[ACPS96] Sibel Adali, Kasim Selcuk Candan, Yannis Papakonstantinou, and V. S. Subrahmanian. QueryCaching and Optimization in Distributed Mediator Systems. In ACM SIGMOD Int. Conf. onManagement of Data, Montreal, Canada, 1996.RR n�3143
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